CS477 Formal Software Development Methods

Elsa L Gunter
2112 SC, UIUC
egunterQ@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and
by Gul Agha

April 16, 2014

Elsa L Gunter CS477 Formal Software Development Method /13

mailto:egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Formal LTL Semantics

olEpiffgEp

oE—giff o e

o= peANYiff o =@ and o = 1.

olEeVYiffo = @oro =1

olEopiffal =

o |= U iff for some k, 0¥ =) and for all i < k, o' = ¢

o | WV iff for some k, ok =y andforall i <k, o =1,
or for all i, o' = 1.

o= Opif forall i, o' =1

o = Oy if for some i, o' =

Elsa L Gunter CS477 Formal Software Development Method /13

Some More Eqivalences

Up & ¢ Aoy

Op = Volp

pUY < oV (Y Ao(pUY))

eV < (e AY)V(pAo(pVY)

O, ¢, U, V may all be understood recursively, by what they state
about right now, and what they state about the future

Caution: O vs O, U vs V differ in there limit behavior

Elsa L Gunter CS477 Formal Software Development Method /13

Traffic Light Example

Basic Behavior:
e [((NSC = Red) vV (NSC = Green) VV (NSC = Yellow))
o O((NSC = Red) = ((NSC # Green) A (NSC # Yellow))
@ Similarly for Green and Red
@ (((NCS = Red) N o(NCS # Red)) = o(NCS = Green))
@ Same as J((NCS = Red) = ((NCS = Red)U (NCS = Green)))
o O(((NCS = Green) A o(NCS # Green)) = o(NCS = Yellow))
e J(((NCS = Yellow) A o(NCS # Yellow)) = o(NCS = Red))
@ Same for EWC

Elsa L Gunter CS477 Formal Software Development Method /13

Traffic Light Example

Basic Safety
o J((NSC = Red) vV (EWC = Red)

o O(((NSC = Red) A (EWC = Red))V
((NSC # Green) = (o(NSC # Green))))
Basic Liveness
o (O(NSC = Red)) A (O(NSC = Green)) A (O(NSC = Yellow))
o (O(EWC = Red)) A (O(EWC = Green)) A (O(EWC = Yellow))

Elsa L Gunter CS477 Formal Software Development Method

Proof System for LTL

@ First Step: View ¢ V1) as macro: p V¢ = —=((—p)U (—1))
@ Second Step: Extend all rules of Prop Logic to LTL

¥
@ Third Step: Add one more rule: 0 Gen

¥

@ Fourth Step: Add a collection of axioms (a sufficient set of 8 exists)

Al:
A2:
A3:
A4:
Ab:
Ab:
AT:
A8:

O < =(0(=¢))

O(e = ¢) = (Hp =)

Op = (¢ A oOp)

o < —1 0)

o(p =) = (op = oy)

O(e = op) = (¢ = Uyp)

pUY (P ANY)V (p Ao(p V)
pUY = O

@ Result: a sound and relatively complete proof system

@ Can implement in Isabelle in much the same way as we did Hoare

Logic

Elsa L Gunter CS477 Formal Software Development Method /13

Important Meta-Definitions

@ A is sound with respect to B if things that are “true” according to A
are things that are "“true” according to B.

A is complete with respect to B if things that are “true” according to
B are things that are “true” according to A.

A is sound if things that are “true” according to A are true.

A is complete everything that is true (that is in the scope of A) is
“true” according to A.

@ A is relatively complete with repsect to B if A is complete when B is.
Think: A proof system; B mathematical model

Elsa L Gunter CS477 Formal Software Development Method /13

Exercise: (¢ A ¢) = (Op A Ov)

Elsa L Gunter CS477 Formal Software Development Method /13

What is Model Checking?

Most generally Model Checking is
e an automated technique, that given

o a finitely presented (think finite-state) model M of a
system

e and a logical property o,
o checks whether the property holds of model: M = ¢?

Elsa L Gunter CS477 Formal Software Development Method

Model Checking

Model checkers usually give example of failure if M [~ .

This makes them useful for debugging.

e Problem: Can only handle finite models: unbounded or
continuous data sets can't be directly handled

Problem: Number of states grows exponentially in the size of the
system.

Answer: Use abstract model of system

e Problem: Relationship of results on abstract model to real
system?

Elsa L Gunter CS477 Formal Software Development Method /13

System Development
Engineering

o3
- “Modern"”

G,
- Model Checking

S s Totor &
P\ Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 6 \ Y

University of Twente

"Classic"
Model Checking

Classic "waterfall model”
[Pressman 1996]

Elsa L Gunter CS477 Formal Software Development Method

/13

“Classic” Model Checking

(initial) Design ,J

(manual)
abstractions
\ /4
Abstract Model
Verification Model Checker
L=
refinement
techniques
\ /4
Implementation ,J
@: N . P
Q‘)‘ Thursday 11-Apr-2002 Theo C. Ruys - SPIN Beginners' Tutorial 7 \Y
Universitv of Twente

Elsa L Gunter CS477 Formal Software Development Method /13

LTL Model Checking

@ Model Checking Problem: Given model M amd logical property ¢ of
M, does M = ¢?

@ Given transition system with states @, transition relation ¢ and inital
state state /, say (Q, 9, /) = ¢ for LTL formula ¢ if every run of

(Q,d,1), o satisfies o = .

The Model Checking Problem for finite transition systems and LTL
formulae is decideable.

o Treat states g € Q as letters in an alphabet.

e Language of (Q,0,/), £(Q,d,1) (or L(Q) for short) is set of runs in Q
e Language of ¢, Ly = {o|o |= ¢}

@ Question: L(Q) C L(p)?

e Same as: L(Q) N L(—p) =07

Elsa L Gunter CS477 Formal Software Development Method /13

How to Decide the Model Checking Problem?

@ How to answer £(Q) N L(—p) = (7
@ Common approach:

o Build automaton A such the L(A) = £(Q) N L(—¢)
o Are accepting states of A reachable? (Infinitely often?)

e How to build A?

e One possible answer: Build a series of automata by recursion on
structure of —p.

o Another possible answer: Build an automaton B such £L(B) = L(—¢);
take A= B x Q

@ Will do at least one approach if time after Spin

Elsa L Gunter CS477 Formal Software Development Method /13

	LTT
	Model Checking

