CS477 Formal Software Development Methods

Elsa L Gunter 2112 SC, UIUC

egunter@illinois.edu

http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha

April 11, 2014

Example: Traffic Light

 $V = \{Turn, NSC, EWC\}, F = \{NS, EW, Red, Yellow, Green\}$ (all arity 0),

$$\begin{array}{ll} \textit{NSG} & \textit{Turn} = \textit{NS} \land \textit{NSC} = \textit{Red} \rightarrow \textit{NSC} := \textit{Green} \\ \textit{NSY} & \textit{NSC} = \textit{Green} \rightarrow \textit{NSC} := \textit{Yellow} \\ \textit{NSR} & \textit{NSC} = \textit{Yellow} \rightarrow (\textit{Turn}, \textit{NSC}) := (\textit{EW}, \textit{Red}) \end{array}$$

$$EWG \ Turn = EW \land EWC = Red \rightarrow EWC := Green$$

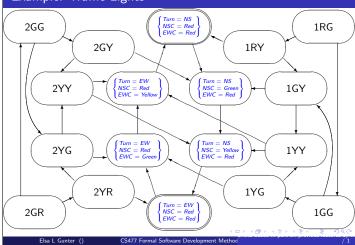
 $EWY \ EWC = Green \rightarrow EWC := Yellow$

$$EWC = Yellow \rightarrow (Turn, EWC) := (NS, Red)$$

 $init = (NSC = Red \land EWC = Red \land (Turn = NS \lor Turn = EW)$

CS477 Formal Software Development Me

Example: Traffic Lights



Examples (cont)

- LTS for traffic light has $3 \times 3 \times 2 = 18$ possible well typed states
 - Is is possible to reach a state where $NSC \neq Red \land EWC \neq Red$ from an initial state?
 - If so, what sequence of actions alows this?
 - Do all the immediate predecessors of a state where $\textit{NSC} = \textit{Green} \lor \textit{EWC} = \textit{Green} \ \text{satisfy} \ \textit{NSC} = \textit{Red} \land \textit{EWC} = \textit{Red}?$
 - If not, are any of those offend states reachable from and initial state, and if so, how?
- \bullet LTS for Mutual Exclusion has $6\times6\times2\times2=144$ posible well-tped
 - Is is possible to reach a state where $pc1 = m5 \land pc2 = n5$?
- How can we state these questions rigorously, formally?
- Can we find an algorihm to answer these types of questions?

Elsa L Gunter () CS477 Formal Software Development Me

Linear Temporal Logic - Syntax

$$\varphi ::= \mathbf{p} | (\varphi) | \neg \varphi | \varphi \wedge \varphi' | \varphi \vee \varphi'$$
$$| \circ \varphi | \varphi \mathcal{U} \varphi' | \varphi \mathcal{V} \varphi' | \Box \varphi | \Diamond \varphi$$

- $\circ \varphi$ "next"
- $\varphi \mathcal{U} \varphi'$ "until"
- $\varphi \mathcal{V} \varphi'$ "releases"
- \bullet $\Box \varphi$ "box", "always", "forever"
- $\Diamond \varphi$ "diamond", "eventually", "sometime"

LTL Semantics: The Idea ψ φ

Formal LTL Semantics

- G = (V, F, af, R, ar) signature expressing state propositions
- Q set of states,
- \mathcal{M} modeling function over Q and \mathcal{G} : $\mathcal{M}(q,p)$ is true iff q models p. Write $q \models p$.
- $\sigma = q_0 q_1 \dots q_n \dots$ infinite sequence of state from Q.
- $\sigma^i = q_i q_{i+1} \dots q_n \dots$ the i^{th} tail of σ

Say σ models LTL formula φ , write $\sigma \models \varphi$ as follows:

- $\sigma \models p$ iff $q_0 \models p$
- $\bullet \ \sigma \models \neg \varphi \ \mathrm{iff} \ \sigma \not\models \varphi$
- $\sigma \models \varphi \land \psi$ iff $\sigma \models \varphi$ and $\sigma \models \psi$.
- $\sigma \models \varphi \lor \psi$ iff $\sigma \models \varphi$ or $\sigma \models \psi$.

Formal LTL Semantics

- $\sigma \models \circ \varphi$ iff $\sigma^1 \models \varphi$
- $\sigma \models \varphi \mathcal{U} \psi$ iff for some k, $\sigma^k \models \psi$ and for all i < k, $\sigma^i \models \varphi$
- $\sigma \models \varphi \mathcal{V} \psi$ iff for some k, $\sigma^k \models \varphi$ and for all $i \leq k$, $\sigma^i \models \psi$, or for all i, $\sigma^i \models \psi$.
- $\sigma \models \Box \varphi$ if for all i, $\sigma^i \models \psi$
- $\bullet \ \sigma \models \Diamond \varphi \ \text{if for some} \ \emph{i,} \ \sigma^\emph{i} \models \psi$

Some Common Combinations

- □◊p "p will hold infinitely often"
- $\Diamond \Box p$ "p will continuously hold from some point on"
- $(\Box p) \Rightarrow (\Box q)$ "if p happens infinitely often, then so does q

Some Equivalences

- $\bullet \ \Box(\varphi \wedge \psi) = (\Box \varphi) \wedge (\Box \psi)$
- $\bullet \ \Box \varphi = \mathbf{F} \, \mathcal{V} \, \varphi$
- $\bullet \ \Diamond \varphi = \mathsf{T} \, \mathcal{U} \, \varphi$
- $\varphi \mathcal{V} \psi = \neg((\neg \varphi) \mathcal{U} (\neg \psi))$
- $\bullet \ \varphi \mathcal{U} \psi = \neg((\neg \varphi) \mathcal{V} (\neg \psi))$
- $\neg (\Diamond \varphi) = \Box (\neg \varphi)$

Some More Eqivalences

- $\bullet \ \Box \varphi = \varphi \wedge \circ \Box \varphi$
- $\bullet \ \Diamond \varphi = \varphi \vee \circ \Diamond \varphi$
- $\varphi \mathcal{V} \psi = (\varphi \wedge \psi) \vee (\psi \wedge \circ (\varphi \mathcal{V} \psi))$
- $\varphi \mathcal{U} \psi = \psi \vee (\varphi \wedge \circ (\varphi \mathcal{V} \psi))$
- \bullet \square , \lozenge , \mathcal{U} , \mathcal{V} may all be understood recursively, by what they state about right now, and what they state about the future
- ullet Caution: \Box vs \Diamond , $\mathcal U$ vs $\mathcal V$ differ in there limit behavior

Traffic Light Example

Basic Behavior:

- $\square((NSC = Red) \lor (NSC = Green) \lor (NSC = Yellow))$
- $\bullet \ \Box((\mathit{NSC} = \mathit{Red}) \Rightarrow ((\mathit{NSC} \neq \mathit{Green}) \land (\mathit{NSC} \neq \mathit{Yellow}))$
- Similarly for *Green* and *Red*
- $\square(((NCS = Red) \land \circ (NCS \neq Red)) \Rightarrow \circ (NCS = Green))$
- Same as \Box ((NCS = Red) \Rightarrow ((NCS = Red) \mathcal{U} (NCS = Green)))
- $\square(((NCS = Green) \land \circ (NCS \neq Green)) \Rightarrow \circ (NCS = Yellow))$
- $\square(((NCS = Yellow) \land \circ (NCS \neq Yellow)) \Rightarrow \circ (NCS = Red))$
- Same for EWC

Traffic Light Example

Basic Safety

- \Box ((NSC = Red) \lor (EWC = Red)
- $\Box (((NSC = Red) \land (EWC = Red)) V$ $((NSC \neq Green) \Rightarrow (\circ (NSC = Green))))$

Basic Liveness

- $(\lozenge(NSC = Red)) \land (\lozenge(NSC = Green)) \land (\lozenge(NSC = Yellow))$
- $(\lozenge(EWC = Red)) \land (\lozenge(EWC = Green)) \land (\lozenge(EWC = Yellow))$

Elsa I Gunter I

S477 Formal Software Development Method

Proof System for LTL

- First step: View $\varphi \mathcal{V} \psi$ as moacro: $\varphi \mathcal{V} \psi = \neg((\neg \varphi) \mathcal{U} (\neg \psi))$
- Second Step: Extend all rules of Prop Logic to LTL
- Third Step: Add one more rule: $\frac{\Box \varphi}{\varphi}$ Gen
- Fourth Step: Add a collection of axioms (a sufficient set of 8 exists)
 - A1: $\Box \varphi \Leftrightarrow \neg(\Diamond(\neg \varphi))$
 - A2: $\Box(\varphi \Rightarrow \psi) \Rightarrow (\Box\varphi \Rightarrow \Box\psi)$
 - A3: $\Box \varphi \Rightarrow (\varphi \land \circ \Box \varphi)$
 - A4: ∘¬φ ⇔ ¬ ∘ φ
 - A5: $\circ(\varphi \Rightarrow \psi) \Rightarrow (\circ\varphi \Rightarrow \circ\psi)$
 - A6: $\Box(\varphi \Rightarrow \circ \varphi) \Rightarrow (\varphi \Rightarrow \Box \varphi)$
 - A7: $\varphi \overset{\smile}{\mathcal{U}} \psi \Leftrightarrow (\varphi \wedge \psi) \vee (\varphi \wedge \circ (\varphi \mathcal{V} \psi))$
 - A8: $\varphi \mathcal{U} \psi \Rightarrow \Diamond \psi$
- Result: a sound and relatively complete proof system
- Can implement in Isabelle in much the same way as we did Hoare Logic

Elsa L Gunter (

S477 Formal Software Development Method

200

Important Meta-Definitions

- A is sound with respect to B if things that are "true" according to A
 are things that are "true" according to B.
- A is complete with respect to B if things that are "true" according to B are things that are "true" according to A.
- A is sound if things that are "true" according to A are true.
- A is complete everything that is true (that is in the scope of A) is "true" according to A.
- A is relatively complete with repsect to B if A is complete when B is.
 Think: A proof system, B mathematical model; or A a proof system,
 B a subsystem.

Elsa L Gunter (

CS477 Formal Software Development Method

Exercise: $\varphi \wedge \psi \Rightarrow \Box \varphi \wedge \Box$

5477 Formal Software Development Metho

What is Model Checking?

Most generally Model Checking is

- an automated technique, that given
- a finite-state model M of a system
- and a logical property φ ,
- checks whether the property holds of model: $M \models \varphi$?

Model Checking

- Model checkers usually give example of failure if $M \not\models \varphi$.
- This makes them useful for debugging.
- Problem: Can only handle finite models: unbounded or continuous data sets can't be directly handled
- Problem: Nnmber of states grows exponentially in the size of the system.
- Answer: Use abstract model of system
- Problem: Relationship of results on abstract model to real system?

4 D > 4 D > 4 E > 4 E > E 9 Q Q

7 Formal Software Development Method

Elsa L Gunter ()

S477 Formal Software Development Method

Elsa L Gunter

LTL Model Checking

- ullet Model Checking Problem: Given model ${\mathcal M}$ amd logical property *varphi* of \mathcal{M} , does $\mathcal{M} \models \varphi$?
- \bullet Given transition system with states ${\it Q}$, transition relation δ and inital state state I, say $(Q, \delta, I) \models \varphi$ for LTL formula φ if every run of (Q, δ, I) , σ satisfies $\sigma \models \varphi$.

The Model Checking Problem for finite transition systems and LTL formulae is decideable.

- Treat states $q \in Q$ as letters in an alphabet.
- ullet Language of (Q, δ, I) , $\mathcal{L}(Q, \delta, I)$ (or L(Q) for short) is set of runs in Q
- $\bullet \ \ \mathsf{Language} \ \ \mathsf{of} \ \varphi \mathsf{,} \ \mathcal{L}\varphi = \{\sigma|\sigma \models \varphi\}$
- Question: $\mathcal{L}(Q) \subseteq \mathcal{L}(\varphi)$?
- Same as: $\mathcal{L}(Q) \cap \mathcal{L}(\neg \varphi) = \emptyset$?

Elsa L Gunter () CS477 Formal Software Development Method