CS477 Formal Software Development Methods

Elsa L Gunter
2112 SC, UIUC
egunterQ@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and
by Gul Agha

April 4, 2014

Elsa L Gunter () CS477 Formal Software Development Method / 26

mailto:egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Labeled Transition System (LTS)

A labeled tranistion system (LTS) is a 4-tuple (Q, %, 0, /)
where

o @ set of states
o @ finite or countably infinite

o X set of labels (aka actions)
o 2 finite or countably infinite

e 0 C Q X X x @ transition relation
o | C @ initial states
Note: Write ¢ — ¢’ for (g, a, q') € 0.

Elsa L Gunter () CS477 Formal Software Development Method / 26

Example: Candy Machine

Q = {Start, Select, GetMarsBar, GetKitKatBar}
| = {Start}
Y = {Pay, ChooseMarsBar, ChooseKitKatBar, TakeCandy}

(Start, Pay, Select)

(Select, ChooseMarsBar, GetMarsBar)
(Select, ChooseKitKatBar, GetKitKatBar)
(

(

(]
o
I

GetMarsBar, TakeCandy, Start)
GetKitKatBar, TakeCandy, Start)

Elsa L Gunter () CS477 Formal Software Development Method / 26

Example: Candy Machine

TakeCandy

TakeCandy Select

. i
ChooseKitKatBar ‘..
i

N

|

GetKitKatBar

Elsa L Gunter () CS477 Formal Software Development Method / 26

Predecessors, Successors and Determinism

Let (Q, X, 4, /) be a labeled transition system.

In(g,) ={q'ld == q} In(q) = Ugex In(g, @)
Out(g,a) = {d'|lqg — '} Out(q) = U,c5s Out(q, @)

A labeled tranistion system (Q, X, d, /) is deterministic if

|l <1and|Out(q,a)] <1

Elsa L Gunter () CS477 Formal Software Development Method / 26

Labeled Transition Systems vs Finite State Automata

@ LTS have no accepting states
o Every FSA an LTS - just forget the accepting states

@ Set of states and actions may be countably infinite

@ May have infinite branching

Elsa L Gunter () CS477 Formal Software Development Method / 26

Executions, Traces, and Runs

@ A partial execution in an LTS is a finite or infinite alternating
sequence of states and actions p = go1q1 ... @pq, . .. such that

o el
o gi_1 —% g; for all i with g; in sequence
@ An execution is a maxial partial execution

@ A finite or infinite sequence of actions a;...«qp,... is a trace if there
exist states qg ... qp ... such that the sequence qoa1qy ... @ng, ... is
a partial execution.
o Let p = qo1G1 ... @nq, ... be a partial execution. Then
trace(p) = ag...a,. ...
A finite or inifnite sequence of states qp... g, ... is a run if there exist
actions g ... ay, ... such that the sequence goa1g1...@nq, ... is a
partial execution.
o Let p=qoa1q1...Qnq, ... be a partial execution. Then
run(p) =qo..-qn-- -

Elsa L Gunter () CS477 Formal Software Development Method / 26

Example: Candy Machine

@ Partial execution:
p = Start- Pay - Select- ChooseMarsBar - GetMarsBar - TakeCandy - Start

e Trace: trace(p) = Pay - ChooseMarsBar - TakeCandy
e Run: run(p) = Start - Select - GetMarsBar - Start

Elsa L Gunter () CS477 Formal Software Development Method / 26

Program Transition System

A Program Transition System is a triple (S, T, init)

e S=(G,D,F,6,R,p) is a first-order structure over signature
G = (V,F,af ,R,ar), used to interpret expressions and conditionals

@ T is a finite set of conditional transitions of the form

g—(vi,...,vn):=(e1,-..,€n)

where v; € V distinct, and ¢; term in G, for i =1...n

@ init initial condition asserted to be true at start of program

Elsa L Gunter () CS477 Formal Software Development Method / 26

Example: Traffic Light

V = {Turn, NSC, EWC}, F = {NS, EW, Red, Yellow, Green} (all arity 0),
R={=}

NSG Turn = NS AN NSC = Red — NSC := Green

NSY Turn = NS AN NSC = Green — NSC := Yellow

NSR Turn = NS A NSC = Yellow — (Turn, NSC) := (EW, Red)
EWG Turn = EW N EWC = Red — EWC := Green

EWY Turn= EW AN EWC = Green — EWC := Yellow

EWR Turn=EW AN EWC = Yellow — (Turn, EWC) := (NS, Red)

init = (NSC = Red N EWC = Red A (Turn = NSV Turn = EW)

Elsa L Gunter () CS477 Formal Software Development Method / 26

Mutual Exclusion (Attempt)

P1:: ml: while true do P2 :: nl: while true do
m2: pll(xnot in crit sectx) n2: p2l(xnot in crit sectx)
m3: cl:=0 n3: c2:=0
m4 . wait(c2 =1) nd . wait(cl =1)
mb5 : rl(xin crit sectx) n5: r2(xin crit sectx)
m6: cl:=1 n6: c2:=1
m7 : od n7 : od

Elsa L Gunter () CS477 Formal Software Development Method / 26

Mutual Exclusion PTS

V ={pcl,pc2,cl,c2}, F={ml,...

T = pcl=ml
pcl = m2
pcl =m3

pcl=mdANc2=1
pcl = mb
pcl = m6
pc2 =nl
pc2 = n2
pc2 = n3
pc2=ndNcl=1
pc2 = nb
pc2 = nb

A S R A N N R

,m6,nl, ... n6,0,1}

pcl .= m2
pcl :=m3
(pcl,cl) := (m4,0)
pcl := mb5
pcl ;= m6

(pcl,cl) :==(ml,1)
pc2 := n2

pc2 := n3
(pc2,c2) := (n4,0)
pc2 :=nb
pc2 := nb

(pc2,c2) :=(nl,1)

init =(pcl=mlApc2=nlAcl=1Ac2=1)

Elsa L Gunter ()

CS477 Formal Software Development Method

Interpreting PTS as LTS

Let (S, T,init) be a program transition system. Assume V finite, D at
most countable.

o Let @ =V — D, interpretted as all assingments of values to variables

o Can restrict to mappings g where v and g(v) have same type
o letX =T

o Let 6={(9,8 = (vi,...,vn) :=(e1,...,€n),q") |
Mq(g)A
(Vi < n.q'(vi) = Tq(e))A
(Vv & {vi,....vn}. ¢'(v) = q(v))}

o 1= {q|T(init) = T}

Elsa L Gunter () CS477 Formal Software Development Method / 26

Example: Traffic Lights

Turn = EW
NSY NSC = Red
EWC = Yellow

EWR
Turn = EW
1YG NSC = Red
EWC = Green
NSY
1GR
Elsa L Gunter ()

{

}

}

Turn = NS
NSC = Red
EWC = Red

NSC = Red
EWC = Red

Turn = NS
NSC = Green

EWC = Red

NSY

Turn = NS
NSC = Yellow
EWC = Red

EWY

2YG

CS477 Formal Software Development Method

2GG

EWY

Examples (cont)

@ LTS for traffic light has 3 x 3 x 2 = 18 possible well typed states

e Is is possible to reach a state where NSC # Red AN EWC # Red from
an initial state?

o If so, what sequence of actions allows this?

e Do all the immediate predecessors of a state where
NSC = Green v EWC = Green satisfy NSC = Red N EWC = Red?

e If not, are any of those offend states reachable from and initial state,
and if so, how?

@ LTS for Mutual Exclusion has 6 x 6 x 2 x 2 = 144 posible well-tped
states.

e Is is possible to reach a state where pcl = m5 A pc2 = n57?
@ How can we state these questions rigorously, formally?

@ Can we find an algorithm to answer these types of questions?

Elsa L Gunter () CS477 Formal Software Development Method

Linear Temporal Logic - Syntax

o == pl(o)| fle AV
| oplple! |V [Tl Op

@ p — a propostion over state variables

@ op — “next”

° Uy — "until”

o V¢’ — "releases’

o [y — “box", “always”, “forever”

o Op — “diamond”, “eventually”, “sometime”

Elsa L Gunter () CS477 Formal Software Development Method / 26

LTL Semantics: The ldea

p—| p

op —» @

U —| P Ly ey PP]P]|P]|y

VY —| b | b [Y| Y| |

e —| @l |lP|le|lelr|e|lrlr|elP|e|P]|y

Qp — ®

Elsa L Gunter () CS477 Formal Software Development Method / 26

Formal LTL Semantics

Given:
e G =(V,F,af R, ar) signature expressing state propositions
@ @ set of states,
@ M modeling function over Q and G: M(q, p) is true iff g models p.
Write g = p.
@ 0 =qoq1...qn... infinite sequence of state from Q.

0 =qigit1...qn... the itM tail of o
Say o models LTL formula ¢, write o |= ¢ as follows:
oo lpiffg p
e o E=ypiffo b=y
e oAy iffol=pand o =1
e o kEeVyiffol=poro k=1

Elsa L Gunter () CS477 Formal Software Development Method / 26

Formal LTL Semantics

o lEopiffal =

o |= U iff for some k, o% =) and for all i < k, o' |= ¢

o = eV iff for some k, ok = pandforall i <k, o =1,
or for all i, o' = 1.

o = Ogpif forall i, o/ =

o = Oy if for some i, o' =

Elsa L Gunter () CS477 Formal Software Development Method / 26

Some Common Combinations

o [Op “p will hold infinitely often”
o OUp “p will continuously hold from some point on”
e (Op) = (™gq) "if p happens infinitely often, then so does ¢

Elsa L Gunter () CS477 Formal Software Development Method / 26

Some Equivalences

O(p A) = (D) A (TY)
Olp V) = (0p) v (0¥)
Up=FVe

Elsa L Gunter () CS477 Formal Software Development Method

Some More Eqivalences

Up = ¢ Aoy

Op = VoQp

eVih=(pAY)V (Y Ao(pV)))

pUP =1V (pAo(pV)

O, ¢, U, V may all be understood recursively, by what they state
about right now, and what they state about the future

Caution: O vs O, U vs V differ in there limit behavior

Elsa L Gunter () CS477 Formal Software Development Method / 26

Traffic Light Example

Basic Behavior:
e [((NSC = Red) vV (NSC = Green) VV (NSC = Yellow))
o O((NSC = Red) = ((NSC # Green) A (NSC # Yellow))
@ Similarly for Green and Red
@ (((NCS = Red) N o(NCS # Red)) = o(NCS = Green))
@ Same as J((NCS = Red) = ((NCS = Red)U (NCS = Green)))
o O(((NCS = Green) A o(NCS # Green)) = o(NCS = Yellow))
e J(((NCS = Yellow) A o(NCS # Yellow)) = o(NCS = Red))
@ Same for EWC

Elsa L Gunter () CS477 Formal Software Development Method / 26

Traffic Light Example

Basic Safety
o J((NSC = Red) vV (EWC = Red)

o O(((NSC = Red) A (EWC = Red))V
((NSC # Green) = (o(NSC = Green))))
Basic Liveness
o (O(NSC = Red)) A (O(NSC = Green)) A (O(NSC = Yellow))
o (O(EWC = Red)) A (O(EWC = Green)) A (O(EWC = Yellow))

Elsa L Gunter () CS477 Formal Software Development Method

Proof System for LTL

First step: View ¢ V1 as moacro: ¢ V¢ = —((—¢)U (—1)))
Second Step: Extend all rules of Prop Logic to LTL
U

12
Third Step: Add one more rule: — Gen

¥
Fourth Step: Add a collection of axioms (a sufficient set of 8 exists)
Result: a sound and relatively complete proof system

Elsa L Gunter () CS477 Formal Software Development Method / 26

	Labeled Transition Systems
	Linear Temporal Logic

