CS477 Formal Software Development Methods

Elsa L Gunter 2112 SC, UIUC egunter@illinois.edu http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha

April 4, 2014

伺 ト イヨ ト イヨト

A labeled tranistion system (LTS) is a 4-tuple (Q, Σ, δ, I) where

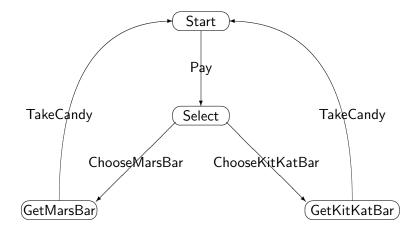
- Q set of states
 - Q finite or countably infinite
- Σ set of labels (aka actions)
 Σ finite or countably infinite
- $\delta \subseteq Q \times \Sigma \times Q$ transition relation
- $I \subseteq Q$ initial states

Note: Write $q \xrightarrow{\alpha} q'$ for $(q, \alpha, q') \in \delta$.

- $Q = \{$ Start, Select, GetMarsBar, GetKitKatBar $\}$
- $I = \{\text{Start}\}$
- $\Sigma = \{Pay, ChooseMarsBar, ChooseKitKatBar, TakeCandy\}$
- $\delta = \begin{cases} (Start, Pay, Select) \\ (Select, ChooseMarsBar, GetMarsBar) \\ (Select, ChooseKitKatBar, GetKitKatBar) \\ (GetMarsBar, TakeCandy, Start) \\ (GetKitKatBar, TakeCandy, Start) \end{cases}$

御 と く き と く き と …

Example: Candy Machine



.

イロト イ理ト イヨト イヨトー

Let (Q, Σ, δ, I) be a labeled transition system.

 $In(q, \alpha) = \{q' | q' \xrightarrow{\alpha} q\} \qquad In(q) = \bigcup_{\alpha \in \Sigma} In(q, \alpha)$ $Out(q, \alpha) = \{q' | q \xrightarrow{\alpha} q'\} \quad Out(q) = \bigcup_{\alpha \in \Sigma} Out(q, \alpha)$

A labeled tranistion system (Q, Σ, δ, I) is deterministic if

 $|I| \leq 1$ and $|Out(q, lpha)| \leq 1$

▲□ → ▲ 三 → ▲ 三 → 二 三

- LTS have no accepting states
 - Every FSA an LTS just forget the accepting states
- Set of states and actions may be countably infinite
- May have infinite branching

Executions, Traces, and Runs

- A partial execution in an LTS is a finite or infinite alternating sequence of states and actions $\rho = q_0 \alpha_1 q_1 \dots \alpha_n q_n \dots$ such that
 - *q*₀ ∈ *I*
 - $q_{i-1} \xrightarrow{\alpha_i} q_i$ for all *i* with q_i in sequence
- An execution is a maxial partial execution
- A finite or infinite sequence of actions $\alpha_1 \dots \alpha_n \dots$ is a trace if there exist states $q_0 \dots q_n \dots$ such that the sequence $q_0 \alpha_1 q_1 \dots \alpha_n q_n \dots$ is a partial execution.
 - Let ρ = q₀α₁q₁...α_nq_n... be a partial execution. Then trace(ρ) = α₁...α_n....

A finite or inifiite sequence of states $q_0 \ldots q_n \ldots$ is a run if there exist actions $\alpha_1 \ldots \alpha_n \ldots$ such that the sequence $q_0 \alpha_1 q_1 \ldots \alpha_n q_n \ldots$ is a partial execution.

• Let $\rho = q_0 \alpha_1 q_1 \dots \alpha_n q_n \dots$ be a partial execution. Then $run(\rho) = q_0 \dots q_n \dots$

◆□> ◆圖> ◆理> ◆理> 「理

Partial execution:

 $\rho = \textit{Start} \cdot \textit{Pay} \cdot \textit{Select} \cdot \textit{ChooseMarsBar} \cdot \textit{GetMarsBar} \cdot \textit{TakeCandy} \cdot \textit{Start}$

- Trace: $trace(\rho) = Pay \cdot ChooseMarsBar \cdot TakeCandy$
- Run: $run(\rho) = Start \cdot Select \cdot GetMarsBar \cdot Start$

A Program Transition System is a triple (S, T, init)

- S = (G, D, F, φ, R, ρ) is a first-order structure over signature
 G = (V, F, af, R, ar), used to interpret expressions and conditionals
- T is a finite set of conditional transitions of the form

$$g \rightarrow (v_1, \ldots, v_n) := (e_1, \ldots, e_n)$$

where $v_i \in V$ distinct, and e_i term in \mathcal{G} , for $i = 1 \dots n$

• *init* initial condition asserted to be true at start of program

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

 $V = \{Turn, NSC, EWC\}, F = \{NS, EW, Red, Yellow, Green\}$ (all arity 0), $R = \{=\}$

 $\begin{array}{lll} \textit{NSG} & \textit{Turn} = \textit{NS} \land \textit{NSC} = \textit{Red} \rightarrow \textit{NSC} := \textit{Green} \\ \textit{NSY} & \textit{Turn} = \textit{NS} \land \textit{NSC} = \textit{Green} \rightarrow \textit{NSC} := \textit{Yellow} \\ \textit{NSR} & \textit{Turn} = \textit{NS} \land \textit{NSC} = \textit{Yellow} \rightarrow (\textit{Turn},\textit{NSC}) := (\textit{EW},\textit{Red}) \\ \textit{EWG} & \textit{Turn} = \textit{EW} \land \textit{EWC} = \textit{Red} \rightarrow \textit{EWC} := \textit{Green} \\ \textit{EWY} & \textit{Turn} = \textit{EW} \land \textit{EWC} = \textit{Green} \rightarrow \textit{EWC} := \textit{Yellow} \\ \textit{EWR} & \textit{Turn} = \textit{EW} \land \textit{EWC} = \textit{Yellow} \rightarrow (\textit{Turn},\textit{EWC}) := (\textit{NS},\textit{Red}) \\ \end{array}$

 $init = (NSC = Red \land EWC = Red \land (Turn = NS \lor Turn = EW)$

- 4 伺 ト 4 ヨ ト 4 ヨ ト

```
P1:: m1: while true do

m2: p11(*not in crit sect*)

m3: c1:= 0

m4: wait(c2 = 1)

m5: r1(*in crit sect*)

m6: c1:= 1

m7: od
```

```
P2:: n1: while true do

n2: p21(*not in crit sect*)

n3: c2:= 0

n4: wait(c1 = 1)

n5: r2(*in crit sect*)

n6: c2:= 1

n7: od
```

Mutual Exclusion PTS

 $V = \{pc1, pc2, c1, c2\}, F = \{m1, \dots, m6, n1, \dots, n6, 0, 1\}$

$$T = pc1 = m1 \rightarrow pc1 := m2$$

$$pc1 = m2 \rightarrow pc1 := m3$$

$$pc1 = m3 \rightarrow (pc1, c1) := (m4, 0)$$

$$pc1 = m4 \land c2 = 1 \quad to \quad pc1 := m5$$

$$pc1 = m5 \rightarrow pc1 := m6$$

$$pc1 = m6 \rightarrow (pc1, c1) := (m1, 1)$$

$$pc2 = n1 \rightarrow pc2 := n2$$

$$pc2 = n2 \rightarrow pc2 := n3$$

$$pc2 = n3 \rightarrow (pc2, c2) := (n4, 0)$$

$$pc2 = n6 \rightarrow (pc2, c2) := (n1, 1)$$

init = ($pc1 = m1 \land pc2 = n1 \land c1 = 1 \land c2 = 1$)

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Let (S, T, init) be a program transition system. Assume V finite, D at most countable.

• Let $Q = V \rightarrow D$, interpretted as all assingments of values to variables

• Can restrict to mappings q where v and q(v) have same type

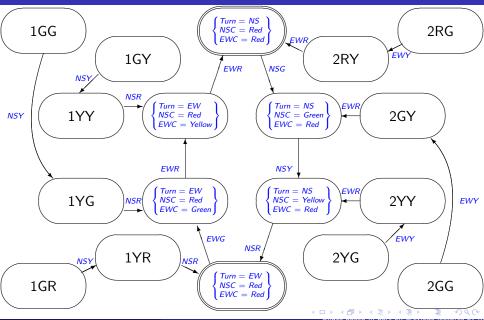
• Let $\Sigma = T$

• Let
$$\delta = \{(q, g \rightarrow (v_1, \dots, v_n) := (e_1, \dots, e_n), q') \mid \mathcal{M}_q(g) \land (\forall i \leq n.q'(v_i) = \mathcal{T}_q(e_i)) \land (\forall v \notin \{v_1, \dots, v_n\}, q'(v) = q(v))\}$$

• $I = \{q | \mathcal{T}_q(init) = \mathbf{T}\}$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ 二 国

Example: Traffic Lights



Examples (cont)

- LTS for traffic light has $3 \times 3 \times 2 = 18$ possible well typed states
 - Is is possible to reach a state where NSC ≠ Red ∧ EWC ≠ Red from an initial state?
 - If so, what sequence of actions allows this?
 - Do all the immediate predecessors of a state where
 NSC = Green ∨ EWC = Green satisfy NSC = Red ∧ EWC = Red?
 - If not, are any of those offend states reachable from and initial state, and if so, how?
- LTS for Mutual Exclusion has $6 \times 6 \times 2 \times 2 = 144$ posible well-tped states.
 - Is is possible to reach a state where $pc1 = m5 \land pc2 = n5$?
- How can we state these questions rigorously, formally?
- Can we find an algorithm to answer these types of questions?

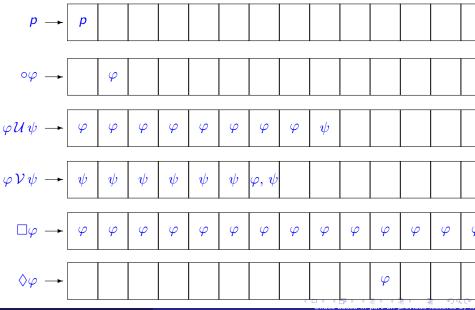
★聞▶ ★ 国▶ ★ 国▶

$\begin{array}{ll} \varphi & ::= & \pmb{p}|(\varphi)| \ \not \varphi|\varphi \wedge \varphi'|\varphi \vee \varphi' \\ & & | \ \circ \varphi|\varphi \mathcal{U}\varphi'|\varphi \mathcal{V}\varphi'|\Box \varphi| \Diamond \varphi \end{array}$

- p a propostion over state variables
- • φ "next"
- $\varphi \mathcal{U} \varphi'$ "until"
- $\varphi \mathcal{V} \varphi'$ "releases"
- $\Box \varphi$ "box", "always", "forever"
- $\Diamond \varphi$ "diamond", "eventually", "sometime"

・ 聞 と ・ 臣 と ・ 臣 と …

LTL Semantics: The Idea



Given:

- $\mathcal{G} = (V, F, af, R, ar)$ signature expressing state propositions
- Q set of states,
- \mathcal{M} modeling function over Q and \mathcal{G} : $\mathcal{M}(q, p)$ is true iff q models p. Write $q \models p$.
- $\sigma = q_0 q_1 \dots q_n \dots$ infinite sequence of state from Q.
- $\sigma^i = q_i q_{i+1} \dots q_n \dots$ the i^{th} tail of σ

Say σ models LTL formula φ , write $\sigma \models \varphi$ as follows:

- $\sigma \models p$ iff $q_0 \models p$
- $\sigma \models \neg \varphi$ iff $\sigma \not\models \varphi$

•
$$\sigma \models \varphi \land \psi$$
 iff $\sigma \models \varphi$ and $\sigma \models \psi$.

• $\sigma \models \varphi \lor \psi$ iff $\sigma \models \varphi$ or $\sigma \models \psi$.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ 二 国

σ ⊨ οφ iff σ¹ ⊨ φ
σ ⊨ φUψ iff for some k, σ^k ⊨ ψ and for all i < k, σⁱ ⊨ φ
σ ⊨ φVψ iff for some k, σ^k ⊨ φ and for all i ≤ k, σⁱ ⊨ ψ, or for all i, σⁱ ⊨ ψ.
σ ⊨ □φ if for all i, σⁱ ⊨ ψ
σ ⊨ ◊φ if for some i, σⁱ ⊨ ψ

▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ …

- $\Box \Diamond p$ "p will hold infinitely often"
- $\bigcirc \square p$ "p will continuously hold from some point on"
- $(\Box p) \Rightarrow (\Box q)$ "if p happens infinitely often, then so does q

▲圖▶ ▲ 国▶ ▲ 国▶ …

- $\Box(\varphi \land \psi) = (\Box \varphi) \land (\Box \psi)$
- $\Diamond(\varphi \lor \psi) = (\Diamond \varphi) \lor (\Diamond \psi)$
- $\Box \varphi = \mathbf{F} \, \mathcal{V} \, \varphi$
- $\Diamond \varphi = \mathbf{T} \, \mathcal{U} \, \varphi$
- $\varphi \mathcal{V} \psi = \neg((\neg \varphi) \mathcal{U}(\neg \psi))$
- $\varphi \mathcal{U} \psi = \neg((\neg \varphi) \mathcal{V}(\neg \psi))$
- $\neg(\Diamond \varphi) = \Box(\neg \varphi)$
- $\neg(\Box\varphi) = \Diamond(\neg\varphi)$

3

く 伺 ト く ヨ ト く ヨ ト

- $\bullet \ \Box \varphi = \varphi \wedge \circ \Box \varphi$
- $\bullet \ \Diamond \varphi = \varphi \lor \circ \Diamond \varphi$
- $\varphi \mathcal{V} \psi = (\varphi \land \psi) \lor (\psi \land \circ (\varphi \mathcal{V} \psi))$
- $\varphi \mathcal{U} \psi = \psi \lor (\varphi \land \circ (\varphi \mathcal{V} \psi))$
- □, ◊, U, V may all be understood recursively, by what they state about right now, and what they state about the future
- Caution: \Box vs \Diamond , \mathcal{U} vs \mathcal{V} differ in there limit behavior

・四・・ モン・ モリン

Basic Behavior:

- $\Box((NSC = Red) \lor (NSC = Green) \lor (NSC = Yellow))$
- $\Box((NSC = Red) \Rightarrow ((NSC \neq Green) \land (NSC \neq Yellow))$
- Similarly for Green and Red
- $\Box(((NCS = Red) \land \circ(NCS \neq Red)) \Rightarrow \circ(NCS = Green))$
- Same as $\Box((NCS = Red) \Rightarrow ((NCS = Red)\mathcal{U}(NCS = Green)))$
- $\Box(((NCS = Green) \land \circ(NCS \neq Green)) \Rightarrow \circ(NCS = Yellow))$
- $\Box(((NCS = Yellow) \land \circ(NCS \neq Yellow)) \Rightarrow \circ(NCS = Red))$
- Same for *EWC*

くほと くほと くほと

Basic Safety

- $\Box((NSC = Red) \lor (EWC = Red)$
- \Box (((NSC = Red) \land (EWC = Red)) \mathcal{V} ((NSC \neq Green) \Rightarrow (\circ (NSC = Green))))

Basic Liveness

- $(\Diamond(NSC = Red)) \land (\Diamond(NSC = Green)) \land (\Diamond(NSC = Yellow))$
- $(\Diamond(EWC = Red)) \land (\Diamond(EWC = Green)) \land (\Diamond(EWC = Yellow))$

・ 何 ト ・ ヨ ト ・ ヨ ト

First step: View $\varphi \mathcal{V} \psi$ as moacro: $\varphi \mathcal{V} \psi = \neg((\neg \varphi)\mathcal{U}(\neg \psi))$ Second Step: Extend all rules of Prop Logic to LTL Third Step: Add one more rule: $\frac{\Box \varphi}{\varphi}$ Gen Fourth Step: Add a collection of axioms (a sufficient set of 8 exists) Result: a sound and relatively complete proof system