i Model for Hoare Logic?

= Seen proof system for Hoare Logic
= What about models?

= Informally, triple modeled by

= pairs of assignments of program variables to
values

= Where executing program starting with initial
assignment results in a memory that gives the
final assignment

= Calls for alternate definition of execution

3/6/13 1

i Natural Semantics

= Aka Structural Operational Semantics, aka
“Big Step Semantics”

= Provide value for a program by rules and
derivations, similar to type derivations

= Rule conclusions look like
Cm{m
or
(E,m) | v

3/6/13 2

‘ Simple Imperative Programming Language

» [€ Identifiers
= N & Numerals
= B::=true | false | B& B| Bor B| not B
| E<E|E=E
wE:=N|I|E+E|E*E|E-E|-E
wn Ci=skip| GC|I::=E
| if Bthen Celse Cfi | while Bdo Cod

3/6/13 3

‘ Natural Semantics of Atomic Expressions

= Identifiers: (I,m) | m(I)

= Numerals are values: (N,m) | N

= Booleans: (true,m) | true
(false ,m) | false

3/6/13 4

’ Booleans:

(B, m) | false
(B& B’, m) | false

(B, m) | true (B’,m)| b
(B& B, m)| b

(B, m) | true
(Bor B, m) | true

(B, m) || false (B', m)| b
(BorB',m)| b

(B, m) | true
(not B, m) || false

(B, m) | false
(not B, m) | true

3/6/13 5

‘ Relations

(EmIU (EE,miV U~rV=>b
(E~E, m) b

= By U ~ V = b, we mean does (the meaning
of) the relation ~ hold on the meaning of U
and V

= May be specified by a mathematical
expression/equation or rules matching U and
v

3/6/13 6

i Arithmetic Expressions

EmIU (EE,miV UopV=N
(EopE’, m) | N
where N is the specified value for U op V

3/6/13 7

i Commands

Skip: (skip, m) | m

Assignment: (Em)| VvV
(L:=Em) | mlI<--V]

Sequencing: (Cm) | m’ (C',m’)| m’”’
(GC’,mm”’

3/6/13 8

$ If Then Else Command

(Bm) | true (Gm) | m’
(if Bthen Celse C’ fi, m) | m’

(Bm) || false (C’,m) | m’
(if Bthen Celse C’ fi, m) | m’

3/6/13 9

i While Command

(B,m) | false
(while Bdo Cod, m) | m

(Bm)|true (Cm)ym’ (while Bdo Cod,
Y
(while BdoCod, m) | m”’

3/6/13 10

i Example: If Then Else Rule

(if x >5theny:=2 + 3 elsey:=3 + 4fi,
{x->711|7?

3/6/13 11

i Example: If Then Else Rule

(x>5,{x->7})?
(fx>5theny:=2 + 3elsey:=3 + 4fj,

xX->711 7

3/6/13 12

i Example: Arith Relation

?7>7=7

X AX>711? (5x->7}){?
(x>5,{x->7)|?

(if x >5theny:=2 + 3 else y:=3 + 4fi,
x->7D17?

3/6/13

i Example: Identifier(s)

7 > 5 =true
X >7D07 (5.{x->7})15
(x> 5, {x->7})|?

(f x >5theny:=2 + 3 elsey:=3 + 4fi,
{x->7317

3/6/13

14

i Example: Arith Relation

7 >5 =true

XAXx->7H17 (5x->7}){5
(x > 5, {x->7})|true

(fx>5theny:=2+ 3elsey:=3+ 41,
x->7)17

3/6/13

i Example: If Then Else Rule

7 > 5 =true

XAx->7D17 (5{x->7} |5
(x > 5, {x -> 7})|true 12

(yi=2+3,{x->7}

(fx>5theny:=2 + 3elsey:=3 +4fj,
{x->73|7?

3/6/13

16

i Example: Assignment

7 > 5 =true (2+3, {x->7H|?

X AX->7DN7 (54x->715
(x> 5, {x->7})|true J?

(yi=2+3,{x>7}

(if x >5theny:=2 + 3 else y:=3 + 4fi,
X->71)17?

3/6/13

i Example: Arith Op

2472=7?

2Ax->71)|?

GBA{x>7}) ?

7 >5 =true (2+3, {x->7)?
xAX->7DN7 (5x->715 (yi=2+3,{x>7}
(x> 5, {x->7})|true 1?

(if x> 5theny:=2 + 3 else y:=3 + 4fi,
{x->7p 1|7

3/6/13

18

i Example: Numerals
2+3=5

(2Ax->7HI2 3{x->7}) |3

7 > 5 = true (2+3, {x->7}){?

XAX=>7W7 (5{x->71{5 (y:i=2+ 3, {x-> 7}
(x> 5, {x-> 7})|true 17?
(f x >5theny:=2 + 3 elsey:=3 + 4fi,
x->71)17

3/6/13 19

i Example: Arith Op

2+3=5
(24x->7H12 (34x->7}) |3

7 > 5 =true (243, {x->7})I5
XAX=>77 (5{x->7}5 (yi=2+3,{x->7}
(x> 5, {x-> 7})|true 1?
(f x >5theny:=2 + 3 elsey:=3 + 4fi,
Xx->711 7

3/6/13 20

‘ Example: Assignment
2+3=5

(2Ax->71)2 (3{x->7}) |3

7 > 5 =true (2+3, {x->7})|5

XA=>7DN7 (5{X->71)15 (yi=2+ 3, {x>7}
(x > 5, {x-> 7}){true | {x->7, y->5}
(if x >5theny:=2 + 3 elsey:=3 + 4fi,
{x->7}1?

3/6/13 21

‘ Example: If Then Else Rule

2+3=5
Ax->7NI2 (3{x>7}) §3

7 >5 =true (243, {x->7})|5
AE>7DN7 (5{x->7H) 15 (yi=2+3,{x>7}
(x > 5, {x -> 7})|true | {x->7, y->5}
(fx>5theny:=2 + 3elsey:=3 +4fj,

{x->73 | {x>7,y->5}

3/6/13 22

’ Let in Command

(Em) yv (EmI<-v]) § m’
(letI=EinCm) | m’

Where m’’ (y) = m’ (y) for y= I and
m’’ () = m (1) if m(I) is defined,
and m’’ (I) is undefined otherwise

3/6/13 23

‘ Example

XAx->5H) 5 BA{x>5H {3

(x+3,{x->5}) | 8
(5{x->17}) | 5 (x:=x+3,{x->5}) | {x->8}
(letx =5in (x:=x+3), {x->17}) | ?

3/6/13 24

i Example

(X{x->5H) I 5 B{x>5}) {3

(x+3,{x->5}) | 8

5,x>17}) |5 (X:=x+3,{x->5}) | {x->8}

(letx = 5in (x:=x+3), {x -> 17}) | {x->17}

3/6/13 25

i Comment

= Simple Imperative Programming Language
introduces variables implicitly through
assignment

= The let-in command introduces scoped
variables explictly

= Clash of constructs apparent in awkward
semantics

3/6/13 26

‘ Interpretation Versus Compilation

= A compiler from language L1 to language
L2 is a program that takes an L1 program
and for each piece of code in L1 generates a
piece of code in L2 of same meaning

= An interpreter of L1 in L2 is an L2 program
that executes the meaning of a given L1
program

= Compiler would examine the body of a loop
once; an interpreter would examine it every
time the loop was executed

3/6/13 27

‘ Interpreter

= An Interpreter represents the operational
semantics of a language L1 (source
language) in the language of implementation
L2 (target language)

= Built incrementally
= Start with literals
= Variables
= Primitive operations
= Evaluation of expressions
= Evaluation of commands/declarations

3/6/13 28

Interpreter

= Takes abstract syntax trees as input
= In simple cases could be just strings

= One procedure for each syntactic category
(nonterminal)

= eg one for expressions, another for commands

= If Natural semantics used, tells how to
compute final value from code

= If Transition semantics used, tells how to
compute next “state
= To get final value, put in a loop

3/6/13 29

‘ Natural Semantics Example

= compute_exp (Var(v), m) = look_up v m
= compute_exp (Int(n), _) = Num (n)
= compute_com(IfExp(b,c1,c2),m) =
if compute_exp (b,m) = Bool(true)
then compute_com (c1,m)
else compute_com (c2,m)

3/6/13 30

i Natural Semantics Example

= compute_com(While(b,c), m) =
if compute_exp (b,m) = Bool(false)
then m
else compute_com
(While(b,c), compute_com(c,m))

= May fail to terminate - exceed stack limits
= Returns no useful information then

3/6/13 31

