
CS477 Formal Software Development Methods

Elsa L Gunter
2112 SC, UIUC

egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and
by Gul Agha

March 7, 2014

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 7, 2014 1

/ 20

mailto:egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Embedding logics in HOL

Problem: How to define logic and their meaning in HOL?

Two approaches: deep or shallow

Shallow: use propositions of HOL as propositions of defined logic
Example of shallow: Propositional Logic in HOL (just restrict the
terms)

Can’t always have such a simple inclusion
Reasoning easiest in “defined” logic when possible
Can’t reason about defined logic this way, only in it.

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 7, 2014 2

/ 20

Embedding logics in HOL

Alternative - Deep:

Terms and propositions: elements in data types,
Assignment: function from variables (names) to values
“Satisfies”: function of assignment and proposition to
booleans
Can always be done
More work to define, more work to use than shallow
embedding
More powerful, can reason about defined logic as well as in it

Can combine two approaches

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 7, 2014 3

/ 20

What is the Meaning of a Hoare Triple?

Hoare triple {P} C {Q} means that

if C is run in a state S satisfying P , and C terminates
then C will end in a state S ′ satisfying Q

Implies states S and S ′ are (can be viewed as) assignments of
variables to values

States are abstracted as functions from variables to values

States are modeled as functions from variables to values

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 7, 2014 4

/ 20

How to Define Hoare Logic in HOL?

Deep embeeding always possible, more work

Is shallow possible?

Two parts: Code and conditions

Shallowest possible:

Code is function from states to states
Expression is function from states to values
Boolean expression is function from states to booleans
Conditions are function from states to booleans, since boolean
expressions occur in conditions

Problem: Can’t do case analysis on general type of functions from
states to states

Can’t do case analysis or induction on code

Solution: go a bit deeper

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 7, 2014 5

/ 20

Embedding Hoare Logic in HOL

Recursive data type for Code (think BNF Grammar)

Keep expressions, boolean expressions almost as before

Expressions: functions from states to values

Boolean expressions: functions from states to booleans

Conditions: function from states to booleans (i.e. boolean
expressions)

Note: Constants, variables are expressions, so are functions from
states to values

What functions are they?

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 7, 2014 6

/ 20

HOL Types for Shallow Part of Embedding

type synonym var name = "string"

type synonym ’data state = "var name ⇒’data"

type synonym ’data exp = "’data state ⇒’data"

We are parametrizing by ’data

Can instantiate later with int of real, or role your own

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 7, 2014 7

/ 20

HOL Terms for Shallow Part of Embedding

Need to lift constants, variables, boolean and arithmetic operators to
functions over states:

Constants:

definition k :: "’data ⇒’data exp" where

"k c ≡λs. c"

Variables:

definition rev app :: "var name ⇒’data exp" ("($)")

where "$ x ≡λs. s x"

We will add more when we specify a specific type of data

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 7, 2014 8

/ 20

Boolean Expressions

Can be complete about boolean

type synonym ’data bool exp = "’data state ⇒bool"

definition Bool :: "bool ⇒’data bool exp" where

"Bool b s = b"

definition true b:: "’data bool exp" where

"true b ≡λs. True"

definition false b:: "’data bool exp" where

"false b ≡λs. False"

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 7, 2014 9

/ 20

Boolean Connectives

We want the usual logical connectives no matter what type data has:

definition and b

::"’data bool exp ⇒’data bool exp ⇒’data bool exp"

(infix "[∧]" 100) where

"(a [∧] b) ≡ λs. ((a s) ∧(b s))"

definition and b

::"’data bool exp ⇒’data bool exp ⇒’data bool exp"

(infix "[∨]" 100) where

"(a [∨] b) ≡ λs. ((a s) ∨(b s))"

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 7, 2014 10

/ 20

Meaning of Satisfaction

Need to be able to ask when a state satisfies, or models a proposition:

definition models :: "’data state ⇒’data bool exp ⇒bool"

(infix "|=" 90)

where

"(s|=b) ≡b s"

definition bvalid :: "’data bool exp ⇒bool" (" ||=")

where

" ||=b ≡(∀s. b s)"

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 7, 2014 11

/ 20

Reasoning about Propositions

Show the inference rules for Propositional Logic hold here:

lemma bvalid and bI:

"[[||=P; ||=Q]] =⇒ ||=(P [∧] Q)"

lemma bvalid and bE [elim]:

"[[||=(P [∧] Q); [[||=P; ||=Q]] =⇒R]] =⇒R"

lemma bvalid or bLI [intro]: " ||=P =⇒ ||=(P [∨] Q)"

lemma bvalid or bRI [intro]: " ||=Q =⇒ ||=(P [∨] Q)"

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 7, 2014 12

/ 20

How to Handle Substitution

Use the shallowness

definition substitute :: "(’data state ⇒ ’a) ⇒ var name ⇒ ’data exp ⇒ (’data state ⇒ ’a)"

(" /[/⇐ /]" [120,120,120]60)

where

"p[x⇐ e] ≡ λ s. p(λ v. if v = x then e(s) else s(v))"

Prove this satisfies all equations for substitution:

lemma same var subst: "$x[x⇐ e] = e"

lemma diff var subst: "[[x 6= y]] =⇒ $y[x⇐ e] = $y"

lemma plus e subst:

"(a [+] b)[x⇐ e] = (a[x⇐ e])[+](b[x⇐ e])"

lemma less b subst:

"(a [<] b)[x⇐ e] = (a[x⇐ e])[<](b[x⇐ e])"

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 7, 2014 13

/ 20

HOL Type for Deep Part of Embedding

datatype command =

AssignCom "var name" "’data exp" (infix "::=" 110)

| SeqCom "command" "command" (infixl ";" 109)

| CondCom "’data bool exp" "command" "command"

("IF / THEN / ELSE / FI" [120,120,120]60)

| WhileCom "’data bool exp" "command"

("WHILE / DO / OD" [120,120]60)

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 7, 2014 14

/ 20

Defining Hoare Logic Rules

inductive valid :: "’data bool exp ⇒command ⇒’data bool exp

⇒’data bool"

("{{ }} {{ }}" [120,120,120]60)where

AssignmentAxiom:

"{{(P[x⇐e])}}(x::=e) {{P}}" |

SequenceRule:

"[[{{P}}C {{Q}}; {{Q}}C’ {{R}}]]

=⇒{{P}}(C;C’){{R}}" |

RuleOfConsequence:

"[[||=(P [−→] P’) ; {{P’}}C{{Q’}}; ||=(Q’ [−→] Q)]]

=⇒{{P}}C{{Q}}" |

IfThenElseRule:

"[[{{(P [∧] B)}}C{{Q}}; {{(P[∧]([¬]B))}}C’{{Q}}]]
=⇒{{P}}(IF B THEN C ELSE C’ FI){{Q}}" |

WhileRule:

"[[{{(P [∧] B)}}C{{P}}]]

=⇒{{P}}(WHILE B DO C OD){{(P [∧] ([¬]B))}}"
Elsa L Gunter () CS477 Formal Software Development Methods

Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 7, 2014 15
/ 20

Using Shallow Part of Embedding

Need to fix a type of data.

Will fix it as int:

type synonym data = "int"

Need to lift constants, variables, arithmetic operators, and predicates
to functions over states

Already have constants (via k) and variables (via $).

Arithmetic operations:

definition plus e :: "exp ⇒exp ⇒exp" (infixl "[+]" 150)

where "(p [+] q) ≡ λs. (p s + (q s))"

Example: x × x + (2× x + 1) becomes

"$’’x’’ [×] $’’x’’ [+] k 2 [×] $’’x’’ [+] k 1)"

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 7, 2014 16

/ 20

Using Shallow Part of Embedding

Arithmetic relations:

definition less b :: "exp ⇒exp ⇒’data bool exp"

(infix "[<]" 140) where "(a [<] b)s ≡(a s) < (b s)"

Boolean operators:

Example: x < 0 ∧ y 6= z becomes

"$’’x’’ [<] k 0 [∧] [¬]($’’y’’ [=] $’’z’’)"

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 7, 2014 17

/ 20

DEMO

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 7, 2014 18

/ 20

Annotated Simple Imperative Language

We will give verification conditions for an annotated version of
our simple imperative language

Add a presumed invariant to each while loop

〈command〉 ::= 〈variable〉 := 〈term〉
| 〈command〉; . . . ; 〈command〉
| if 〈′datastatement〉 then 〈command〉 else 〈command〉
| while 〈′datastatement〉 inv 〈′datastatement〉 do 〈command〉

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 7, 2014 19

/ 20

Hoare Logic for Annotated Programs

Assingment Rule

{|P[e/x]|} x := e {|P|}

Rule of Consequence
P ⇒ P ′ {|P ′|} C {|Q ′|} Q ′ ⇒ Q

{|P|} C {|Q|}

Sequencing Rule
{|P|} C1 {|Q|} {|Q|} C2 {|R|}

{|P|} C1; C2 {|R|}

If Then Else Rule
{|P ∧ B|} C1 {|Q|} {|P ∧ ¬B|} C2 {|Q|}

{|P|} if B then C1 else C − 2 {|Q|}

While Rule
{|P ∧ B|} C {|P|}

{|P|} while B inv P do C {|P ∧ ¬B|}

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha March 7, 2014 20

/ 20

	Embedding Hoare Logic in HOL

