CS477 Formal Software Development Methods

Elsa L Gunter
2112 SC, UIUC
egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and
by Gul Agha

March 7, 2014

Embedding logics in HOL

@ Problem: How to define logic and their meaning in HOL?
o Two approaches: deep or shallow

o Shallow: use propositions of HOL as propositions of defined logic
e Example of shallow: Propositional Logic in HOL (just restrict the
terms)
o Can't always have such a simple inclusion
o Reasoning easiest in “defined” logic when possible
o Can't reason about defined logic this way, only in it.

Elsa L Gunter () CS477 Formal Software Development Methoc

Elsa L Gunter ()

CS477 Formal Software Development Methoc

Embedding logics in HOL What is the Meaning of a Hoare Triple?

o Alternative - Deep:
o Terms and propositions: elements in data types,
o Assignment: function from variables (names) to values
o “Satisfies”: function of assignment and proposition to
booleans
Can always be done
o More work to define, more work to use than shallow
embedding
o More powerful, can reason about defined logic as well as in it

o Can combine two approaches

Elsa L Gunter () CS477 Formal Software Development Methoc

e Hoare triple {P} C {Q} means that
o if Cisrun in a state S satisfying P, and C terminates
o then C will end in a state S’ satisfying Q@

o Implies states S and S’ are (can be viewed as) assignments of
variables to values

o States are abstracted as functions from variables to values
o States are modeled as functions from variables to values

Elsa L Gunter () CS477 Formal Software Development Methoc / 20

How to Define Hoare Logic in HOL? Embedding Hoare Logic in HOL

Deep embeeding always possible, more work

°
@ Is shallow possible?

@ Two parts: Code and conditions
o

Shallowest possible:
o Code /s function from states to states
o Expression is function from states to values
e Boolean expression is function from states to booleans
o Conditions are function from states to booleans, since boolean
expressions occur in conditions

Problem: Can't do case analysis on general type of functions from
states to states

@ Can't do case analysis or induction on code

Solution: go a bit deeper

Recursive data type for Code (think BNF Grammar)
Keep expressions, boolean expressions almost as before
Expressions: functions from states to values

Boolean expressions: functions from states to booleans

Conditions: function from states to booleans (i.e. boolean
expressions)

o Note: Constants, variables are expressions, so are functions from
states to values

o What functions are they?

CS477 Formal Software Development Methoc

Elsa L Gunter ()

CS477 Formal Software Development Methoc

Elsa L Gunter ()

HOL Types for Shallow Part of Embedding HOL Terms for Shallow Part of Embedding

Need to lift constants, variables, boolean and arithmetic operators to
functions over states:

type_synonym var_name = "string" o Constants:
type_synonym ’data state = "var_name =-’data" definition k :: "’data =’data exp" where
type_synonym ’data exp = "’data state =’data" "k ¢ =As. c"
o Variables:
o We are parametrizing by ’data definition rev_ app :: "var name =’data exp" ("($)")
o Can instantiate later with int of real, or role your own where "$ x =)s. s x"

@ We will add more when we specify a specific type of data

Elsa L Gunter () CS477 Formal Software Development Methoc / 2 Elsa L Gunter ()

CS477 Formal Software Development Methoc

Boolean Expressions Boolean Connectives

® Can be complete about boolean o We want the usual logical connectives no matter what type data has:

) = " n
type_synonym ’data bool_exp data state =bool definition and.b

:"’data bool _exp =-’data bool_exp =-’data bool_exp"
(infix "[A]" 100) where
"(a [A]l b) = As. ((a s) A(b s))"

definition Bool :: "bool =-’data bool_exp" where
"Bool b s = b"

definition true_b:: "’data bool_exp" where

definition and-b
"true b =\s. True"

::"’data bool_exp =’data bool_exp =-’data bool_exp"
(infix "[VI" 100) where

definition false b:: "’data bool_exp" where "a [Vl B) = As. ((as) V(b 8))"

"false b =\s. False"

Elsa L Gunter () CS477 Formal Software Development Methoc / 20 Elsa L Gunter ()

CS477 Formal Software Development Methoc

Meaning of Satisfaction Reasoning about Propositions

Show the inference rules for Propositional Logic hold here:
@ Need to be able to ask when a state satisfies, or models a proposition:

lemma bvalid_and bI:
"L |EP; [FAI = = Al @

definition models :: "’data state =-’data bool_exp =-bool"
(infix "E" 90) lemma bvalid_and bE [elim]:
where "[|=® Al @; [|EP; |[FQI =RI =R"
"(sf=b) =b s"
lemma bvalid_or_bLI [intro]l: " |FP = |=(P [VI Q"
definition bvalid :: "’data bool_exp =bool" (" |=")
where lemma bvalid_or_bRI [intro]l: " |FQ = |=(P [VI Q"
"|Eb =(¥s. b s)"

Elsa L Gunter () CS477 Formal Software Development Methoc / 2 Elsa L Gunter () CS477 Formal Software Development Methoc

How to Handle Substitution HOL Type for Deep Part of Embedding

Use the shallowness

definition substitute :: "(’data state = ’a) = var_name = ’
("_/[-/«<=- /1" [120,120,120]160)
where datatype command =
iplxe o] = A s. p(A v. if v = x then e(s) else s(v))" AssignCom "var_name" "’data exp" (infix "::=" 110)
| SeqCom "command" "command" (infixl ";" 109)

CondCom "’data bool_exp" "command" "command"
("IF _/ THEN ./ ELSE ./ FI" [120,120,120]60)

lemma same var _subst: "$x[x< e] = e" WhileCom "’data bool_exp" "command"

lemma diff var_subst: "[x # yl = $ylx< el = $y" ("WHTLE _/ DO _/ OD" [120,120]60)

lemma plus_e_subst:

"(a [+] b) [x< e] = (alx< e]) [+] (b[x< e])"

lemma less_b_subst:

"(a [<] D) [x&= e] = (alx<= e]) [<](blx«= e])"

Prove this satisfies all equations for substitution:

Elsa L Gunter () CS477 Formal Software Development Methoc / 2 Elsa L Gunter () CS477 Formal Software Development Methoc

Defining Hoare Logic Rules Using Shallow Part of Embedding

inductive valid :: "’data bool_exp =-command =-’data bool_exp o Need to fix a type of data.

=’data bool" e .

LI AL " [120,120, 120160) where e Will fix it as int:

AssignmentAxiom: type-synonym data = "int"

"{{(Plx<=el)}}(x::=e) {{P}}" | o Need to lift constants, variables, arithmetic operators, and predicates
SequenceRule: to functions over states

"T{P3}IC {{Q}}; {{Q3}¢’ {{R}}] o Already have constants (via k) and variables (via $).

=PI (C;CO{RI" | @ Arithmetic operations:

RuleOfConsequence:

"IIEE@ [—1 P?) ; {({P3eQ’}; 1@ 1 @ 1 definition plus_e :: "exp =rexp =>exp" (infixl "[+]" 150)
— {{PIICUQI" | where "(p [+] @) = As. (p s + (q.8))"

IfThenElseRule: Example: x x x 4 (2 x x 4 1) becomes

"I{{([A] B)}}c{{Q}}; {{(PIAIC([-1B))>}}C’{{Q}}T

—{{P}}(IF B THEN C ELSE C’ FD){{Q}}" | "$xe Ix] $xer [H k 2 [x] e [+ kDY
WhileRule:

"[{{(P [A] B)}}C{{P}}]

—>{{P}} (WHILE B DO C OD){{(P [A] ([—]B))}}"

Elsa L Gunter () CS477 Formal Software Development Methoc / 20 Elsa L Gunter () CS477 Formal Software Development Methoc

@ Arithmetic relations:

definition less_b :: "exp =>exp =>’data bool_exp"
(infix "[<]" 140) where "(a [<] b)s =(a s) < (b s)"

@ Boolean operators: D E M O

Example: x < 0 Ay # z becomes

"gox00 [<1 k0 [A] [1($ 0y [=] §0z20)"

Elsa L Gunter () CS477 Formal Software Development Methoc / 2 Elsa L Gunter () CS477 Formal Software Development Methoc

Annotated Simple Imperative Language Hoare Logic for Annotated Programs

o We will give verification conditions for an annotated version of
our simple imperative language

o Add a presumed invariant to each while loop Assingment Rule Rule of Consequence
. P=F {PlC{Q} @=Q

(command) = (variable) := (term) {Pl[e/x][} x = e {P[}
| (command); ...; (command) P C (@l
| if ('datastatement) then (command) else (command) S Rl i Then Elee Rul

while ('datastatement) inv ('datastatement) do (command equencing Rule eén Else Rule
| whie ¢ i o " l| gy aqel 10)GIRY {PABLG Q) {PA-E} G Q)

{P} Gi; GA{R[} {|P[} if B then C; else C —2 {Q[}
While Rule
{P B} C{PL

{|P|} while B inv P do C {|P A -B[}

Elsa L Gunter () CS477 Formal Software Development Methoc / 2 Elsa L Gunter () CS477 Formal Software Development Methoc

