


Which Inferences Are Correct?	Which Inferences Are Correct?
$\frac{\{x > 0 \land x < 5\} \ x \ := \ x * x \ \{x < 25\}}{\{x = 3\} \ x \ := \ x * x \ \{x < 25\}} \ YES$	$\frac{\{x > 0 \land x < 5\} \ x \ := \ x * x \ \{x < 25\}}{\{x = 3\} \ x \ := \ x * x \ \{x < 25\}} \ YES$
${x = 3} x := x * x {x < 25}$	$\{x = 3\} \ x := x * x \ \{x < 25\}$ $\frac{\{x = 3\} \ x := x * x \ \{x < 25\}}{\{x > 0 \land x < 5\} \ x := x * x \ \{x < 25\}} \ NO$
$\{x > 0 \land x < 5\} \ x := x * x \ \{x < 25\}$ $\frac{\{x * x < 25\} \ x := x * x \ \{x < 25\}}{\{x > 0 \land x < 5\} \ x := x * x \ \{x < 25\}}$	${x * x < 25} x := x * x {x < 25}$
$\{x > 0 \land x < 5\} \ x \ := \ x * x \ \{x < 25\}$	$\overline{\{x > 0 \land x < 5\} \ x \ := \ x * x \ \{x < 25\}}$
<ロト・イラト・ミト・ミト そう シーマーク (CS477 Formal Software Development Method /1)	(ロト・(ガト・ミン・ミン・ミン・シーラン・シーラン・シーラン・シーラン・シーラン・シーラン・シーラン・シーラ

Which Inferences Are Correct?Post Condition Weakening
$$(x > 0 \land x < 5) x := x + x (x < 25) (x = 3) x := x + x (x < 25) (x > 0 \land x < 5) x := x + x (x < 25) (x > 0 \land x < 5) x := x + x (x < 25) (x > 0 \land x < 5) x := x + x (x < 25) (x > 0 \land x < 5) x := x + x (x < 25) (x > 0 \land x < 5) x := x + x (x < 25) (x > 0 \land x < 5) x := x + x (x < 25) (x > 0 \land x < 5) x := x + x (x < 25) (x > 0 \land x < 5) x := x + x (x < 25) (x > 0 \land x < 5) x := x + x (x < 25) (x > 0 \land x < 5) x := x + x (x < 25) (x > 0 \land x < 5) x := x + x (x < 25) (x > 0 \land x < 5) x := x + x (x < 25) (x > 0 \land x < 5) x := x + x (x < 25) (x > 0 \land x < 5) x := x + x (x < 25) (x > 0 \land x < 5) x := x + y (x < 10) (x + y = 5) x := x + y (x < 10) (x + y = 5) x := x + y (x < 10) (x + y = 5) x := x + y (x < 10) (x + y = 5) x := x + y (x < 10) (x + y = 5) x := x + y (x < 10) (x + y = 5) x := x + y (x < 10) (x + y = 5) x := x + y (x < 10) (x + y = 5) x := x + y (x < 10) (x + y = 5) x := x + y (x < 10) (x + y = 5) x := x + y (x < 10) (x + y = 5) (x + x + y = x + y) (x < 10) (x + y = 5) x := x + y (x < 10) (x + x < 0) (x$$

Problem with (2)

• Want (2) $(y = x * x \land \neg(x < n)) \Rightarrow (y = n * n)$

- From $\neg (x < n)$ have $x \ge n$
- Need x = n
- Don't know this; from this could have x > n
- Need stronger invariant
- Try ading $x \leq n$
- Then have $((x \le n) \land \neg (x < n)) \Rightarrow (x = n)$

CS477 Formal Software De

• Then have x = n when loop done

Example

Second attempt:

$$P = ((y = x * x) \land (x \le n))$$

Again by Post-condition Weakening, sufices to show: (1) $\{n \ge 0\}$

x := 0; y := 0;while x < n do (y := y + ((2 * x) + 1); x := x + 1) $\{(y = x * x) \land (x \le n) \land \neg (x < n)\}$ and (2) $((y = x * x) \land (x \le n) \land \neg (x < n)) \Rightarrow (y = n * n)$

CS477 Formal Software Develo

Proof of (2)

Elsa L Gunter ()

• $(\neg (x < n)) \Rightarrow (x \ge n)$ • $((x \ge n) \land (x \le n)) \Rightarrow (x = n)$ • $((x = n) \land (y = x * x)) \Rightarrow (y = n * n)$

Example

- \bullet For (1), set up While Rule using Sequencing Rule • By Sequencing Rule, suffices to show
- (3) $\{n \ge 0\}$ x := 0; y := 0 $\{(y = x * x) \land (x \le n)\}$ and
- (4) $\{(y = x * x) \land (x \le n)\}$ while x < n do $\{y := y + ((2 * x) + 1); x := x + 1\} \\ \{(y = x * x) \land (x \le n) \land \neg (x < n)\}$

Proof of (4)

Elsa L Gunter ()

By While Rule

$$(5) \{(y = x * x) \land (x \le n) \land (x < n)\} y := y + ((2 * x) + 1); x := x + 1 \{(y = x * x) \land (x \le n)\} i \{(y = x * x) \land (x \le n)\} while x < n do (y := y + ((2 * x) + 1); x := x + 1) \{(y = x * x) \land (x \le n) \land \neg (x < n)\}$$


Proof of (5)

By Sequencing Rule

$$\begin{array}{l}
(6) \ \{(y = x * x) \land (x \le n) \\ \land (x < n)\} \\ y := y + ((2 * x) + 1) \\ ((x + 1) \le n)\} \\ y := y + ((2 * x) + 1) \\ ((y = (x + 1) * (x + 1)) \\ \land ((x + 1) \le n)\} \\ \hline \\
((x + 1) \le n)\} \\ \hline \\
((y = x * x) \land (x \le n) \land (x < n)\} \\ y := y + ((2 * x) + 1); \ x := x + 1 \\ \{(y = x * x) \land (x \le n)\} \\ \hline \\
\end{array}$$

n)}

(7) holds by Assignment Axiom

