Precondition Strengthening
CS477 Formal Software Development Methods

Elsa L Gunter P= PY{PY C {Q
2112 SC, UIUC (){P} C{Q}
egunter@illinois.edu {P} C {Q}

http://courses.engr.illinois.edu/cs477 . i i i
o Meaning: If we can show that P implies P’ (i.e. (P = P’) and

we can show that {P} C {Q}, then we know that {P} C {Q}

Slides based in part on previous lectures by Mahesh Vishwanathan, and o P is stronger than P" means P = P’

by Gul Agha

February 28, 2014

Elsa L Gunter () CS477 Formal Software Development Methoc / Elsa L Gunter () CS477 Formal Software Development Methoc

Precondition Strengthening Which Inferences Are Correct?
o Examples:
x=3=x<7 {x<T}x:=x+3{x<10} {x>0Ax <5} x = x*x {x <25}
{x=3} x == x+3 {x <10} {x=3} x == xxx {x <25}
True= (2=2) {2=2} x = 2 {x=2} {x=3} x == xxx {x <25}
{True} x = 2 {x =2} {x>0Ax <5} x == xxx {x <25}

{x*xx <25} x = x*xx {x <25}
{x>0Ax <5} x = xxx {x <25}

x=n=>x+1=n+1 {x+1=n+1} x = x+1{x=n+1}
{x=n} x = x+1{x=n+1}

Elsa L Gunter () CS477 Formal Software Development Methoc Elsa L Gunter () CS477 Formal Software Development Methoc

Which Inferences Are Correct? Which Inferences Are Correct?
{x>0Ax<b} x = xxx {x <25} VES {x>0Ax <5} x = x*xx {x <25} VES
{x=3} x := x*xx {x <25} {x=3} x := x*xx {x <25}
{x=3} x = xxx {x <25} {x=3} x := x*xx {x <25} NO
{x>0Ax <5} x == xxx {x <25} {x>0Ax <5} x = xxx {x <25}
{x*x <25} x = xxx {x <25} {x*xx <25} x = x*xx {x <25}
{x>0Ax<b5} x = xxx {x <25} {x>0Ax <5} x = xxx {x <25}

Elsa L Gunter () CS477 Formal Software Development Methoc Elsa L Gunter () CS477 Formal Software Development Methoc

Which Inferences Are Correct? Post Condition Weakening

{x>0Ax<5} x := xxx {x <25}

{x =3} x := xxx {x <25} VES {Py C{Q} @=Q
{P} C {Q}
D=3} x = xx fx < 25 0 o Example:
{x>0Ax<5} x = xxx {x <25} X 4y=5) xmx4y (x=5] (x=5) = (x<10)
{x*x <25} x x*x {x <25} {x+y=5} x:=x+y {x<10}

YES
{x>0Ax <5} x = xxx {x <25}

Elsa L Gunter ()

CS477 Formal Software Development Methoc

Elsa L Gunter ()

CS477 Formal Software Development Methoc

{P} G {Q@} {Q} G{R}
P=P (P} C{Q} Q@d=Q {P} G G {R}
{P} C{Q}

o Example:
o Logically equivalent to the combination of Precondition

Strengthening and Postcondition Weakening

{z=zNz=2z} x =z {x=zNz=1z}
e Uses P= Pand Q@ = Q

{x=zNz=z} y=z {x=zANy=12z}
{z=zANz=z} x =z, y =z {x=zANy=12z}

Elsa L Gunter () CS477 Formal Software Development Methoc

Elsa L Gunter ()

CS477 Formal Software Development Methoc

If Then Else (D){y=anx<0}y=y—x{y=a+ x|}

{PAB} G {Q} {PA-B} G {Q}
{P} if B then C; else C —2 {Q}

(B) (y=anx<0)=(y=a+|x|)
(2 {y—x=a+xl} y=y—x{y=a+|x}
o Example: 1) {y=anx<0}y=y—x{y=a+|x|}

{y=a} if x<Otheny:=y—xelsey:=y+x{y=a+|x|} o (1) reduces to (2) and (3) by Precondition Strengthening
o (2) instance of Assignment Axiom
@ (3) holds since x < 0 = |x| = —x

By If _Then_Else Rule suffices to show:
o (1){y=anx<0} y:=y—x {y=a+|x|} and
e (M) {y=an-(x<0)} y:=y+x{y=a+|x}

Elsa L Gunter () CS477 Formal Software Development Methoc

Elsa L Gunter ()

CS477 Formal Software Development Methoc

W) {y=an-(x<0)} y:=y+x {y=a+|x|} If Then Else

6) (y=an-(x<0)=(y+x=a+|x|)
(5) {y+x=a+x]} y:=y+x{y=a+|x}

1) {y=anx<0}y=y—x{y=a+|x|}

(4) {y=an-(x<0)} y:=y+x{y=a+|x} (4) {y=an—(x<0)}y=y+x{y=a+|x}
o (4) reduces to (5) and (6) by Precondition Strengthening {y=a} if x<Otheny:=y—xelsey:=y+x{y=a+|x[}
@ (5) Follows from Assignment Axiom by the If_Then_Else Rule

@ (6) since =(x < 0) = |x| = x

Elsa L Gunter () CS477 Formal Software Development Methoc / Elsa L Gunter () CS477 Formal Software Development Methoc

We need a rule to be able to make assertions about while loops.
o Loop may never execute

o To know P holds after, it had better hold before
o Second approximation:

{rryc{?} {7rc{?}
{ 7 } while Bdo C {P} {P} while B do C {P}

@ Inference rule because we can only draw conclusions if we know
something about the body

o Lets start with:

Elsa L Gunter () CS477 Formal Software Development Methoc Elsa L Gunter () CS477 Formal Software Development Methoc

o Loop may execute C; enf of loop is of C

@ P holds at end of while means P holds at end of loop C o Always know —B when while loop finishes
@ P holds at start of while; loop taken means P A B holds at start of C o Final While rule:

@ Third approximation: {PAB} C{P}

{PAB} C {P} {P} while B do C {P A—-B}
{P} while B do C {P}

Elsa L Gunter () CS477 Formal Software Development Methoc Elsa L Gunter () CS477 Formal Software Development Methoc

{P A B} C {P} o While rule generally used with precondition strengthening and
- postcondition weakening
{P} while B do C {P A B}

o No algorithm for computing P in general

o P satisfying this rule is called a loop invariant ° Requires intuition and an understanding of Why the program

k
@ Must hold before and after the each iteration of the loop works

Elsa L Gunter () CS477 Formal Software Development Methoc / Elsa L Gunter () CS477 Formal Software Development Methoc

Prove:
{n=>0} o Need to find P that is true before and after loop is
x:=0;, y:=0 executed, such that
while x < n do
(y=y+((2*x)+1) (PA=(x<n))=y=nxn
x:=x+1)
{y =nxn}

Elsa L Gunter () CS477 Formal Software Development Methoc Elsa L Gunter () CS477 Formal Software Development Methoc

o First attempt:

Y =X*X
By Post-condition Weakening, suffices to show:
(1) {n=0}

o Motivation: x:=0; y:=0;

e Want v — n%n while x < n do

Y= (y=y+(2xx)+1); x:=x+1)
e X counts up to n {y =xxxA-(x<n)}
o Guess: Each pass of loop calcuates next square and

(2) (y =xxxA=(x<n))=(y=n=xn)

Elsa L Gunter () CS477 Formal Software Development Methoc Elsa L Gunter () CS477 Formal Software Development Methoc

Problem with (2)

Want (2) (y = x*x A—=(x < n)) = (y = nxn)
From —(x < n) have x > n

o Need x =n

o Don't know this; from this could have x > n
o Need stronger invariant

e Try ading x <n

o Then have ((x < n) A =(x < n)) = (x = n)
e Then have x = n when loop done

Elsa L Gunter () CS477 Formal Software Development Methoc

Proof of (2)
o (n(x < n))=(x>n)
o ((x>n)A(x<n))=(x=n)
o((x=n)A(y=xx%x))=(y=nxn)

Elsa L Gunter () CS477 Formal Software Development Methoc

Proof of (4)

By While Rule

(5) {(y = xx) A (x < n) A (x <)}
y=y+(2*xx)+1); x:=x+1
{(y =xxx)A(x< n)}

{(y =x=x)A(x<n)}
while x < n do
(yi=y+((2xx)+1); x:=x+1)
{(y=xx)A(x <n)A=(x <n)}

Elsa L Gunter () CS477 Formal Software Development Methoc

Second attempt:

P=((y=xxx)A(x <n))

Again by Post-condition Weakening, sufices to show:
(1) {n=0}
x:=0; y:=0;
while x < n do
(y=y+(2xx)+1); x:=x+1)
{y=x*x)AN(x <n)A=(x <n)}
and
2) (y=xxx)A(x<n)A=(x<n))=(y=nxn)

Elsa L Gunter () CS477 Formal Software Development Methoc

o For (1), set up While Rule using Sequencing Rule
e By Sequencing Rule, suffices to show
(3){n>0} x:=0;, y =0 {(y=x*xx)A(x<n)}
and
(4) Ay =x=x)A(x<n)}
while x < n do
(y=y+(2xx)+1); x:=x+1)
{ly=x+x)A(x<n)A=(x<n)}

Elsa L Gunter () CS477 Formal Software Development Methoc

Proof of (5)

By Sequencing Rule

©) {y=xxx)n(x<n) (7)) {{r=(x+1)x(x+1))

A(x < n)} A((x +1) < n)}
y=y+(2*x)+1) x=x+1
{ly=Kx+1)x(x+1)) {(y=xxx)A(x<n)}

AMx+1) < n)}

Ay o yY
y=y+(2*x)+1); x:=x+1
{y =x=x) A(x < n)}

(7) holds by Assignment Axiom

Elsa L Gunter () CS477 Formal Software Development Methoc

Proof of (6)

By Precondition Strengthening

(9) {(ly +((2xx) +1))

) ((y=xxx) = ((x+ 1)+ (x +1)))
Ax < n)A(x < n)) = ((x+1) n)}
(((y + (2% x) +1)) yi=y+((2%x) +1)
=(x+1)*(x+1)) {ly =(x+1)*(x+1))

A((x+1) < n)) AM(x+1) < n)}
{(y=xxx)AN(x<n)
Alx < n)}
yi=y+(2%x)+1)
{v= (X +1)#(x+1))
A(x+1) < n)}

Have (9) by Assignment Axiom

CS477 Formal Software Development Methoc

Proof of (8)

o (Assuming x integer) (x < n) = ((x+1) < n)
o (y=xxx)= (r +((2xx) +1))
=((x*xx)+ ((2*x)+ 1))
=((x+1)x(x+1))

e That finishes (8), and thus (6) and thus (5) and thus (4) (while)
o Need 3) {n>0} x:=0;, y =0 {(y =x*x)A(x <n)}

CS477 Formal Software Development Methoc

Proof of (3)

By Sequencing
(10) {n>0} (11) {(0=xxx)A(x < n)}

x:=0 y:=0
{(0=xxx)A(x <n)} {ly =xxx)A(x <n)}

{n>0} x:=0; y:=0 {(y =x*xx)A(x <n)}

Have (11) by Assignment Axiom

| Software Development Methoc

Proof of (10)

By Precondition Strengthening

(13) {(0=0%0)A(0<n)}
x:=0
{0=x*xx)A(x<n)}

A
}x:=0 y:=0{(0=xxx)A(x<n)}

e For (12), 0=0%0and (n>0) < (0<n)
e Have (13) by Assignment Axiom
@ Finishes (10), thus (3), thus (1)

CS477 Formal Software Development Methoc

