
CS477 Formal Software Development Methods

Elsa L Gunter
2112 SC, UIUC

egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and
by Gul Agha
February 21, 2014

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 1

/ 34

mailto:egunter@illinois.edu
http://courses.engr.illinois.edu/cs477


First Order Logic vs Propositional Logic

First Order Logic extends Propositional Logic with

Non-boolean constants

Variables

Functions and relations (or predicates, more generally)

Quantification of variables

Sample first order formula:

∀x .∃y .x < y ∧ y ≤ x + 1

Reference: Peled, Software Reliability Methods, Chapter 3

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 2

/ 34



Signatures

Start with signature:
G = (V ,F , af ,R, ar)

V a countably infinite set of variables

F finite set of function symbols

af : F → N gives the arity, the number of arguments for each
function Constant c is a function symbol of arity 0 (af (c) = 0)

R finite set of relation symbols

ar : R → N, the arity for each relation symbol

Assumes = ∈ R and ar(=) = 2

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 3

/ 34



Terms over Signature

Terms t are expressions built over a signature (V ,F , af ,R, ar)

t ::= v v ∈ V
| f (t1, . . . , tn) f ∈ F and n = af (f )

Example: add(1, abs(x)) where add , abs, 1 ∈ F ; x ∈ V

For constant c write c instead of c( )

Will write s = t instead of = (s, t)

Similarly for other common infixes (e.g. +, −, ∗, <, ≤, . . .)

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 4

/ 34



Structures

Meaning of terms starts with a structure:

S = (G,D,F , φ,R, ρ)

where

G = (V ,F , af ,R, ar) a signature,

D and domain on interpretation

F set of functions over D; F ⊆
⋃

n≥0Dn → D
Note: F can contain elements of D since D = (D0 → D)

φ : F → F where if φ(f ) ∈ (Dn → D) then n = af (f )

R set of relations over D; R ⊆
⋃

n≥1 P(Dn)

ρ : R → R where if ρ(r) ⊆ Dn then n = ar(r)

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 5

/ 34



Assignments

V set of variables, D domain of interpretation
An assignment is a function a : V → D
Example:

V = {w , x , y , z}

a = {w 7→ 3.14, x 7→ −2.75, y 7→ 13.9, z 7→ −25.3}

Assignment is a fixed association of values to variables; not
“update-able”

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 6

/ 34



Interpretation of Terms

Fix structure S = (G,D,F , φ,R, ρ) where G = (V ,F , af ,R, ar)

For given assignment a : V → D, the interpretation Ta of a term t is
defined by structural induction on terms:

Ta(v) = a(v) for v ∈ V

Ta(f (t1, . . . , tn)) = φ(f )(Ta(t1), . . . , Ta(tn))

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 7

/ 34



Example of Interpretation

V = {w , x , y , z}, D = R
1, add , abs ∈ F , constant 1, and functions (in F) for addition and
absolute value respectively

a = {w 7→ 3.14, x 7→ −2.75, y 7→ 13.9, z 7→ −25.3}

Ta(add(1, abs(x))) = (Ta(1)) + (Ta(abs(x)))
= 1.0 + (Ta(abs(x)))
= 1.0 + |Ta(x)|
= 1.0 + |a(x)|
= 1.0 + | − 2.75|
= 1.0 + 2.75
= 3.75

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 8

/ 34



First-Order Formulae

First-order formulae built from terms using relations, logical connectives,
quantifiers:

form ::= true | false
| r(t1, . . . , tn) r ∈ R, ti terms, n = ar(r)
| (form) | ¬form
| form ∧ form
| form ∨ form
| form⇒ form
| form⇔ form
| ∀v .form
| ∃v .form

Note: Scope of quantifiers as far to right as possible

∀x .(x > y) ∧ (2 > x) same as ∀x .((x > y) ∧ (2 > x))
not same as (∀x .(x > y)) ∧ (2 > x)

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 9

/ 34



Subformulae

A subformula of formula ψ is a formula that occurs in ψ

More rigorous definition by structural induction on formulae
ψ subformula of ψ
Use proper subformula to exclude ψ

Write
∧

i=1,...,n ψi for ψ1 ∧ . . . ∧ ψn

ψi called a conjunct

Write
∨

i=1,...,n ψi for ψ1 ∨ . . . ∨ ψn

ψi called a disjunct

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 10

/ 34



Free Variables: Terms

Informally: free variables of a expression are variables that have an
occurrence in an expression that is not bound. Written fv(e) for
expression e
Free variables of terms defined by structural induction over terms; written

fv(x) = {x}
fv(f (t1, . . . , tn) =

⋃
i=1,...,n fv(ti )

Note:

Free variables of term just variables occurring in term; no bound
variables

No free variables in constants

Example: fv(add(1, abs(x))) = {x}

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 11

/ 34



Free Variables: Formulae

Defined by structural induction on formulae; uses fv on terms

fv(true) = fv(false) = { }
fv(r(t1, . . . , tn)) =

⋃
i=1,...,n fv(ti )

fv(ψ1 ∧ ψ2) = fv(ψ1 ∨ ψ2) = fv(ψ1 ⇒ ψ2) = fv(ψ1 ⇔ ψ2) =
(fv(ψ1) ∪ fv(ψ2))

fv(∀v . ψ) = fv(∃v . ψ) = (fv(ψ) \ {v})
Variable occurrence at quantifier are binding occurrence
Occurrence that is not free and not binding is a bound occurrence

Example:
fv(x > 3 ∧ (∃y . (∀z . z ≥ (y − x)) ∨ (z ≥ y))) = {x , z}
↑ ↑ ↑

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 12

/ 34



Interpretation of Formulae

Fix structure S = (G,D,F , φ,R, ρ) where G = (V ,F , af ,R, ar)

For given assignment a : V → D, the interpretation Ma of a formula ψ
assigning a value in {T,F} is defined by structural induction on formulae:

Ma(true) = T Ma(false) = F

Ma(r(t1, . . . , tn)) = ρ(r)(Ta(t1), . . . , Ta(tn))

Ma((ψ)) =Ma(ψ)

Ma(¬ψ) = T if Ma(ψ) = F and Ma(¬ψ) = F if Ma(ψ) = T

Ma(ψ1 ∧ ψ2) = T if Ma(ψ1) = T and Ma(ψ2) = T, and
Ma(ψ1 ∧ ψ2) = F otherwise

Ma(ψ1 ∨ ψ2) = T if Ma(ψ1) = T or Ma(ψ2) = T, and
Ma(ψ1 ∨ ψ2) = F otherwise

Ma(ψ1 ⇒ ψ2) = T if Ma(ψ1) = F or Ma(ψ2) = T, and
Ma(ψ1 ⇒ ψ2) = F otherwise

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 13

/ 34



Interpretation of Formulae

Fix structure S = (G,D,F , φ,R, ρ) where G = (V ,F , af ,R, ar)

For given assignment a : V → D, the interpretation Ma of a formula ψ
assigning a value in {T,F} is defined by structural induction on formulae:

Ma(true) = T Ma(false) = F

Ma(r(t1, . . . , tn)) = ρ(r)(Ta(t1), . . . , Ta(tn))

Ma((ψ)) =Ma(ψ)

Ma(¬ψ) = T if Ma(ψ) = F and Ma(¬ψ) = F if Ma(ψ) = T

Ma(ψ1 ∧ ψ2) = T if Ma(ψ1) = T and Ma(ψ2) = T, and
Ma(ψ1 ∧ ψ2) = F otherwise

Ma(ψ1 ∨ ψ2) = T if Ma(ψ1) = T or Ma(ψ2) = T, and
Ma(ψ1 ∨ ψ2) = F otherwise

Ma(ψ1 ⇒ ψ2) = T if Ma(ψ1) = F or Ma(ψ2) = T, and
Ma(ψ1 ⇒ ψ2) = F otherwise

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 13

/ 34



Interpretation of Formulae

Fix structure S = (G,D,F , φ,R, ρ) where G = (V ,F , af ,R, ar)

For given assignment a : V → D, the interpretation Ma of a formula ψ
assigning a value in {T,F} is defined by structural induction on formulae:

Ma(true) = T Ma(false) = F

Ma(r(t1, . . . , tn)) = ρ(r)(Ta(t1), . . . , Ta(tn))

Ma((ψ)) =Ma(ψ)

Ma(¬ψ) = T if Ma(ψ) = F and Ma(¬ψ) = F if Ma(ψ) = T

Ma(ψ1 ∧ ψ2) = T if Ma(ψ1) = T and Ma(ψ2) = T, and
Ma(ψ1 ∧ ψ2) = F otherwise

Ma(ψ1 ∨ ψ2) = T if Ma(ψ1) = T or Ma(ψ2) = T, and
Ma(ψ1 ∨ ψ2) = F otherwise

Ma(ψ1 ⇒ ψ2) = T if Ma(ψ1) = F or Ma(ψ2) = T, and
Ma(ψ1 ⇒ ψ2) = F otherwise

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 13

/ 34



Interpretation of Formulae

Fix structure S = (G,D,F , φ,R, ρ) where G = (V ,F , af ,R, ar)

For given assignment a : V → D, the interpretation Ma of a formula ψ
assigning a value in {T,F} is defined by structural induction on formulae:

Ma(true) = T Ma(false) = F

Ma(r(t1, . . . , tn)) = ρ(r)(Ta(t1), . . . , Ta(tn))

Ma((ψ)) =Ma(ψ)

Ma(¬ψ) = T if Ma(ψ) = F and Ma(¬ψ) = F if Ma(ψ) = T

Ma(ψ1 ∧ ψ2) = T if Ma(ψ1) = T and Ma(ψ2) = T, and
Ma(ψ1 ∧ ψ2) = F otherwise

Ma(ψ1 ∨ ψ2) = T if Ma(ψ1) = T or Ma(ψ2) = T, and
Ma(ψ1 ∨ ψ2) = F otherwise

Ma(ψ1 ⇒ ψ2) = T if Ma(ψ1) = F or Ma(ψ2) = T, and
Ma(ψ1 ⇒ ψ2) = F otherwise

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 13

/ 34



Interpretation of Formulae

Fix structure S = (G,D,F , φ,R, ρ) where G = (V ,F , af ,R, ar)

For given assignment a : V → D, the interpretation Ma of a formula ψ
assigning a value in {T,F} is defined by structural induction on formulae:

Ma(true) = T Ma(false) = F

Ma(r(t1, . . . , tn)) = ρ(r)(Ta(t1), . . . , Ta(tn))

Ma((ψ)) =Ma(ψ)

Ma(¬ψ) = T if Ma(ψ) = F and Ma(¬ψ) = F if Ma(ψ) = T

Ma(ψ1 ∧ ψ2) = T if Ma(ψ1) = T and Ma(ψ2) = T, and
Ma(ψ1 ∧ ψ2) = F otherwise

Ma(ψ1 ∨ ψ2) = T if Ma(ψ1) = T or Ma(ψ2) = T, and
Ma(ψ1 ∨ ψ2) = F otherwise

Ma(ψ1 ⇒ ψ2) = T if Ma(ψ1) = F or Ma(ψ2) = T, and
Ma(ψ1 ⇒ ψ2) = F otherwise

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 13

/ 34



Interpretation of Formulae

Fix structure S = (G,D,F , φ,R, ρ) where G = (V ,F , af ,R, ar)

For given assignment a : V → D, the interpretation Ma of a formula ψ
assigning a value in {T,F} is defined by structural induction on formulae:

Ma(true) = T Ma(false) = F

Ma(r(t1, . . . , tn)) = ρ(r)(Ta(t1), . . . , Ta(tn))

Ma((ψ)) =Ma(ψ)

Ma(¬ψ) = T if Ma(ψ) = F and Ma(¬ψ) = F if Ma(ψ) = T

Ma(ψ1 ∧ ψ2) = T if Ma(ψ1) = T and Ma(ψ2) = T, and
Ma(ψ1 ∧ ψ2) = F otherwise

Ma(ψ1 ∨ ψ2) = T if Ma(ψ1) = T or Ma(ψ2) = T, and
Ma(ψ1 ∨ ψ2) = F otherwise

Ma(ψ1 ⇒ ψ2) = T if Ma(ψ1) = F or Ma(ψ2) = T, and
Ma(ψ1 ⇒ ψ2) = F otherwise

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 13

/ 34



Interpretation of Formulae

Fix structure S = (G,D,F , φ,R, ρ) where G = (V ,F , af ,R, ar)

For given assignment a : V → D, the interpretation Ma of a formula ψ
assigning a value in {T,F} is defined by structural induction on formulae:

Ma(true) = T Ma(false) = F

Ma(r(t1, . . . , tn)) = ρ(r)(Ta(t1), . . . , Ta(tn))

Ma((ψ)) =Ma(ψ)

Ma(¬ψ) = T if Ma(ψ) = F and Ma(¬ψ) = F if Ma(ψ) = T

Ma(ψ1 ∧ ψ2) = T if Ma(ψ1) = T and Ma(ψ2) = T, and
Ma(ψ1 ∧ ψ2) = F otherwise

Ma(ψ1 ∨ ψ2) = T if Ma(ψ1) = T or Ma(ψ2) = T, and
Ma(ψ1 ∨ ψ2) = F otherwise

Ma(ψ1 ⇒ ψ2) = T if Ma(ψ1) = F or Ma(ψ2) = T, and
Ma(ψ1 ⇒ ψ2) = F otherwise

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 13

/ 34



Interpretation of Formulae

Fix structure S = (G,D,F , φ,R, ρ) where G = (V ,F , af ,R, ar)

For given assignment a : V → D, the interpretation Ma of a formula ψ
assigning a value in {T,F} is defined by structural induction on formulae:

Ma(true) = T Ma(false) = F

Ma(r(t1, . . . , tn)) = ρ(r)(Ta(t1), . . . , Ta(tn))

Ma((ψ)) =Ma(ψ)

Ma(¬ψ) = T if Ma(ψ) = F and Ma(¬ψ) = F if Ma(ψ) = T

Ma(ψ1 ∧ ψ2) = T if Ma(ψ1) = T and Ma(ψ2) = T, and
Ma(ψ1 ∧ ψ2) = F otherwise

Ma(ψ1 ∨ ψ2) = T if Ma(ψ1) = T or Ma(ψ2) = T, and
Ma(ψ1 ∨ ψ2) = F otherwise

Ma(ψ1 ⇒ ψ2) = T if Ma(ψ1) = F or Ma(ψ2) = T, and
Ma(ψ1 ⇒ ψ2) = F otherwise

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 13

/ 34



Interpretation of Formulae

Fix structure S = (G,D,F , φ,R, ρ) where G = (V ,F , af ,R, ar)

Let

(

a + [v 7→ d ]

)

(w) =

{
d if w = v
a(w) if w 6= v

Ma(∀v .ψ) = T if for every d ∈ D we have Ma+[v 7→d ](ψ) = T, and
Ma(∀v .ψ) = F otherwise

Ma(∃v .ψ) = T if there exists d ∈ D such that Ma+[v 7→d ](ψ) = T,
and Ma(∀v .ψ) = F otherwise

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 14

/ 34



Interpretation of Formulae

Fix structure S = (G,D,F , φ,R, ρ) where G = (V ,F , af ,R, ar)

Let

(a + [v 7→ d ])(w) =

{
d if w = v
a(w) if w 6= v

Ma(∀v .ψ) = T if for every d ∈ D we have Ma+[v 7→d ](ψ) = T, and
Ma(∀v .ψ) = F otherwise

Ma(∃v .ψ) = T if there exists d ∈ D such that Ma+[v 7→d ](ψ) = T,
and Ma(∀v .ψ) = F otherwise

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 14

/ 34



Interpretation of Formulae

Fix structure S = (G,D,F , φ,R, ρ) where G = (V ,F , af ,R, ar)

Let

(

a + [v 7→ d ]

)

(w) =

{
d if w = v
a(w) if w 6= v

Ma(∀v .ψ) = T if for every d ∈ D we have Ma+[v 7→d ](ψ) = T, and
Ma(∀v .ψ) = F otherwise

Ma(∃v .ψ) = T if there exists d ∈ D such that Ma+[v 7→d ](ψ) = T,
and Ma(∀v .ψ) = F otherwise

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 14

/ 34



Interpretation of Formulae

Fix structure S = (G,D,F , φ,R, ρ) where G = (V ,F , af ,R, ar)

Let

(

a + [v 7→ d ]

)

(w) =

{
d if w = v
a(w) if w 6= v

Ma(∀v .ψ) = T if for every d ∈ D we have Ma+[v 7→d ](ψ) = T, and
Ma(∀v .ψ) = F otherwise

Ma(∃v .ψ) = T if there exists d ∈ D such that Ma+[v 7→d ](ψ) = T,
and Ma(∀v .ψ) = F otherwise

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 14

/ 34



Modeling First-order Formulae

Given structure S = (G,D,F , φ,R, ρ) where G = (V ,F , af ,R, ar)

(S,M) model for first-order language over signature G
Truth of formulae in language over signature G depends on structure
S
Assignment a models ψ, or a satisfies ψ, or a |=S ψ if Ma(ψ) = T

ψ is valid for S if a |=S ψ for some a.

S is a model of ψ, written |=S ψ if every assignment for S satisfies ψ.

ψ is valid, or a tautology if ψ valid for every mode. Write |= ψ

ψ1 logically equivalent to ψ2 if for all structures S and assignments a,
a |=S ψ1 iff a |=S ψ2

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 15

/ 34



Examples

Assignment {x 7→ 0} satisfies ∃y .x < y valid in interval [0, 1];
assignment {x 7→ 1} doesn’t

∀x .∃y .x < y valid in N and R, but not interval [0, 1]

(∃x .∀y .(y ≤ x))⇒ (∀y .∃x .(y ≤ x)) tautology

Why?

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 16

/ 34



Sample Tautologies

All instances of propositional tautologies

|= (∃x .∀y .(y ≤ x))⇒ (∀y .∃x .(y ≤ x))

|= ((∀x .∀y .ψ)⇔ (∀y .∀x .ψ))

|= ((∀x .ψ)⇒ (∃x .ψ))

|= (∀x .ψ1 ∧ ψ2)⇔ ((∀x .ψ1) ∧ (∀x .ψ2))

(∃x .ψ1 ∧ ψ2)⇒ ((∃x .ψ1) ∧ (∃x .ψ2))

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 17

/ 34



Sample Tautologies

All instances of propositional tautologies

|= (∃x .∀y .(y ≤ x))⇒ (∀y .∃x .(y ≤ x))

|= ((∀x .∀y .ψ)⇔ (∀y .∀x .ψ))

|= ((∀x .ψ)⇒ (∃x .ψ))

|= (∀x .ψ1 ∧ ψ2)⇔ ((∀x .ψ1) ∧ (∀x .ψ2))

(∃x .ψ1 ∧ ψ2)⇒ ((∃x .ψ1) ∧ (∃x .ψ2))

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 17

/ 34



Sample Tautologies

All instances of propositional tautologies

|= (∃x .∀y .(y ≤ x))⇒ (∀y .∃x .(y ≤ x))

|= ((∀x .∀y .ψ)⇔ (∀y .∀x .ψ))

|= ((∀x .ψ)⇒ (∃x .ψ))

|= (∀x .ψ1 ∧ ψ2)⇔ ((∀x .ψ1) ∧ (∀x .ψ2))

(∃x .ψ1 ∧ ψ2)⇒ ((∃x .ψ1) ∧ (∃x .ψ2))

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 17

/ 34



Sample Tautologies

All instances of propositional tautologies

|= (∃x .∀y .(y ≤ x))⇒ (∀y .∃x .(y ≤ x))

|= ((∀x .∀y .ψ)⇔ (∀y .∀x .ψ))

|= ((∀x .ψ)⇒ (∃x .ψ))

|= (∀x .ψ1 ∧ ψ2)⇔ ((∀x .ψ1) ∧ (∀x .ψ2))

(∃x .ψ1 ∧ ψ2)⇒ ((∃x .ψ1) ∧ (∃x .ψ2))

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 17

/ 34



Sample Tautologies

All instances of propositional tautologies

|= (∃x .∀y .(y ≤ x))⇒ (∀y .∃x .(y ≤ x))

|= ((∀x .∀y .ψ)⇔ (∀y .∀x .ψ))

|= ((∀x .ψ)⇒ (∃x .ψ))

|= (∀x .ψ1 ∧ ψ2)⇔ ((∀x .ψ1) ∧ (∀x .ψ2))

(∃x .ψ1 ∧ ψ2)⇒ ((∃x .ψ1) ∧ (∃x .ψ2))

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 17

/ 34



Sample Tautologies

All instances of propositional tautologies

|= (∃x .∀y .(y ≤ x))⇒ (∀y .∃x .(y ≤ x))

|= ((∀x .∀y .ψ)⇔ (∀y .∀x .ψ))

|= ((∀x .ψ)⇒ (∃x .ψ))

|= (∀x .ψ1 ∧ ψ2)⇔ ((∀x .ψ1) ∧ (∀x .ψ2))

(∃x .ψ1 ∧ ψ2)⇒ ((∃x .ψ1) ∧ (∃x .ψ2))

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 17

/ 34



Free Variables, Assignments and Interpretation

Theorem

Assume given structure S = (G,D,F , φ,R, ρ), term t over G, and a and b
assignments. If for every x ∈ fv(t) we have a(x) = b(x) then
Ta(t) = cTb(a).

Theorem

Assume given structure S = (G,D,F , φ,R, ρ), formula ψ over G, and a
and b assignments. If for every x ∈ fv(ψ) we have a(x) = b(x) then
Ma(ψ) =Mb(ψ).

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 18

/ 34



Syntactic Substitution versus Assignment Update

When interpreting universal quantification (∀x . ψ), wanted to check
interpretation of every instance of ψ where v was replaced by element
of semantic domain D
How: semantically - interpret ψ with assignment updated by v 7→ d
for every d ∈ D
Syntactically?

Answer: substitution

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 19

/ 34



Substitution in Terms

Substitution of term t for variable x in term s (written s[t/x ]) gotten
by replacing every instance of x in s by t

x called redex; t called residue

Yields instance of s

Nothing

Formally defined by structural induction on terms:

x [t/x ] = t

y [t/x ] = y for variable y where y 6= x

f (t1, . . . , tn)[t/x ] = f (t1[t/x ], . . . , tn[t/x ])

Nothing

Example: (add(1, abs(x)))[add(x , y)/x ] = add(1, abs(add(x , y)))

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 20

/ 34



Substitution in Formulae: Problems

Want to define by structural induction, similar to terms

Quantifiers must be handled with care

Substitution only replaces free occurrences of variable
Example:

(x > 3 ∧ (∃y . (∀z . z ≥ (y − x)) ∨ (z ≥ y)))[x + 2/z ] =
(x > 3 ∧ (∃y . (∀z . z ≥ (y − x)) ∨ (x + 2 ≥ y)))

Need to avoid free variable capture
Example Problem:

(x > 3 ∧ (∃y . (∀z . z ≥ (y − x)) ∨ (z ≥ y)))[x + y/z ] 6=
(x > 3 ∧ (∃y . (∀z . z ≥ (y − x)) ∨ (x + y ≥ y)))

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 21

/ 34



Theorem

Assume given structure S = (G,D,F , φ,R, ρ), variable x, terms s and t
over G, and a assignment. Let b = a[x 7→ Ta(t)]. Then
Ta(s[t/x ]) = Tb(s).

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 22

/ 34



Substitution in Formulae: Two Approaches

When quantifier would capture free variable of redex, can’t substitute
in formula as is

Solution 1: Make substitution partial function – undefined in this case

Solution 2: Define equivalence relation based on renaming bound
variables; define substitution on equivalence classes

Will take Solution 1 here

Still need definition of equivalence up to renaming bound variables

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 23

/ 34



Substitution in Formulae

Defined by structural induction; uses substitution in terms

Read equations below as saying left is not defined if any expression on
right not defined

true[t/x ] = true false[t/x ] = false

r(t1, . . . , tn)[t/x ] = r((t1[t/x ], . . . , tn[t/x ]))

(ψ)[t/x ] = (ψ[t/x ]) (¬ψ)[t/x ] = ¬(ψ[t/x ])

(ψ1 ⊗ ψ2)[t/x ] = (ψ1[t/x ])⊗ (ψ2[t/x ]) for ⊗ ∈ {∧,∨,⇒,⇔}
(Q x . ψ)[t/x ] = Q x . ψ for Q ∈ {∀, ∃}
(Q y . ψ)[t/x ] = Q y . (ψ[t/x ]) if x 6= y and y /∈ fv(t) for Q ∈ {∀,∃}
(Q y . ψ)[t/x ] not defined if x 6= y and y ∈ fv(t) for Q ∈ {∀,∃}

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 24

/ 34



Substitution in Formulae

Examples

(x > 3 ∧ (∃y . (∀z . z ≥ (y − x)) ∨ (z ≥ y)))[x + y/z ] not defined

(x > 3 ∧ (∃w . (∀z . z ≥ (w − x)) ∨ (z ≥ w)))[x + y/z ] =
(x > 3 ∧ (∃w . (∀z . z ≥ (w − x)) ∨ ((x + y) ≥ y)))

Theorem

Assume given structure S = (G,D,F , φ,R, ρ), formula ψ over G, and a
assignment. If ψ[t/x ] defined, then a |=S ψ[t/x ] if and only if
a[x 7→ Ta(t)] |=S ψ

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 25

/ 34



Renaming by Swapping: Terms

Define the swapping of two variables in a term t[x ↔ y ] by structural
induction on terms:

x [x ↔ y ] = y and y [x ↔ y ] = x

z [x ↔ y ] = z for z a variable, z 6= x , z 6= y

f (t1, . . . , tn)[x ↔ y ] = f (t1[x ↔ y ], . . . , tn[x ↔ y ])

Nothing

Examples:

add(1, abs(add(x , y)))[x ↔ y ] = add(1, abs(add(y , x)))
add(1, abs(add(x , y)))[x ↔ z ] = add(1, abs(add(z , y)))

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 26

/ 34



Renaming by Swapping: Terms

Theorem

Assume given structure S = (G,D,F , φ,R, ρ), variables x and y, term t
over G, and a assignment. Let b = a[x 7→ a(y)][y 7→ a(x)]. Then
Ta(t[x ↔ y ]) = Tb(t)

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 27

/ 34



Renaming by Swapping: Terms

Proof.

By structural induction on terms, suffices to show theorem for the case
where t variable, and case t = f (t1, . . . , tn), assuming result for t1, . . . , tn

Case: t variable

Subcase: t = x . Then Ta(x [x ↔ y ]) = Ta(y) = a(y) and
Tb(x) = b(x) = a[x 7→ a(y)][y 7→ a(x)](x) = a[x 7→ Ta(y)](x) = a(y)
so Ta(t[x ↔ y ]) = Tb(t)
Subcase: t = y . Then Ta(y [x ↔ y ]) = Ta(x) = a(x) and
Tb(y) = b(y) = a[x 7→ a(y)][y 7→ a(x)](x) = a(x) so
Ta(t[x ↔ y ]) = Tb(t)
Subcase: t = z variable, z 6= x and z 6= y . Then
Ta(z [x ↔ y ]) = Ta(z) = a(z) and
Tb(z) = b(z) = a[x 7→ a(y)][y 7→ a(x)](z) = a[x 7→ Ta(y)](z) = a(z)
so Ta(t[x ↔ y ]) = Tb(t)

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 28

/ 34



Renaming by Swapping: Terms

Proof.

Case: t = f (t1, . . . , tn). Assume Ta(ti [x ↔ y ]) = Tb(ti ) for
i = 1, . . . , n. Then

Ta(t[x ↔ y ]) = Ta(f (t1, . . . , tn)[x ↔ y ])
= Ta(f (t1[x ↔ y ], . . . , tn[x ↔ y ]))
= φ(f )(Ta(t1[x ↔ y ]), . . . , Ta(tn[x ↔ y ]))
= φ(f )(Tb(t1), . . . , Tb(tn))

since Ta(ti [x ↔ y ]) = Tb(ti ) for i = 1, . . . , n
= Tb(f (t1, . . . , tn))
= Tb(t)

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 29

/ 34



Renaming by Swapping: Formulae

Define the swapping of two variables in a formula ψ[x ↔ y ] by structural
induction, using swapping on terms:

true[x ↔ y ] = true false[x ↔ y ] = false

r(t1, . . . , tn)[x ↔ y ] = r((t1[x ↔ y ], . . . , tn[x ↔ y ]))

(ψ)[x ↔ y ] = (ψ[x ↔ y ]) (¬ψ)[x ↔ y ] = ¬(ψ[x ↔ y ])

(ψ1 ⊗ ψ2)[x ↔ y ] = (ψ1[x ↔ y ])⊗ (ψ2[x ↔ y ]) for
⊗ ∈ {∧,∨,⇒,⇔}
(Q x . ψ)[x ↔ y ] = Q y . (ψ[x ↔ y ]) for Q ∈ {∀, ∃}
(Q y . ψ)[x ↔ y ] = Q y . (ψ[x ↔ y ]) for Q ∈ {∀, ∃}
(Q z . ψ)[x ↔ y ] = Q z . (ψ[x ↔ y ]) for z a variable with z 6= x ,
z 6= y , and Q ∈ {∀, ∃}

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 30

/ 34



Renaming by Swapping: Formulae

Examples

(x > 3 ∧ (∃y . (∀z . z ≥ (y − x)) ∨ (z ≥ y)))[x ↔ y ]
= (y > 3 ∧ (∃x . (∀z . z ≥ (x − y)) ∨ (z ≥ x)))

(x > 3 ∧ (∃y . (∀z . z ≥ (y − x)) ∨ (z ≥ y)))[y ↔ z ]
(x > 3 ∧ (∃y . (∀z . z ≥ (y − x)) ∨ (z ≥ y)))[y ↔ w ]

Theorem

Assume given structure S = (G,D,F , φ,R, ρ), variables x and y, formula
ψ over G, and a assignment. If x /∈ fv(t) and y /∈ fv(t) then
ψ[x ↔ y ] ≡ ψ

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 31

/ 34



α-equivalence

ψ
α≡ ψ

If ψ1
α≡ ψ2 then ψ2

α≡ ψ.

It ψ1
α≡ ψ2 and ψ2

α≡ ψ3 then ψ1
α≡ ψ3

If x /∈ fv(ψ) and y /∈ fv(ψ) then ψ
α≡ ψ[x ↔ y ].

If ψi
α≡ ψ′i for i = 1, 2 then

(ψ1)
α≡ (ψ′

1) ¬ψ1
α≡ ¬ψ′

1

ψ1 ⊗ ψ2
α≡ ψ′

1 ⊗ ψ′
2 for ⊗ ∈ {∧,∨,⇒,⇔}

Q z . ψ1
α≡ Q z . ψ′

1 for Q ∈ {∀,∃}

Nothing

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 32

/ 34



α-equivalence: Example

(x > 3 ∧ (∃y . (∀z . z ≥ (y − x)) ∨ (z ≥ y)))
α≡ (x > 3 ∧ (∃w . (∀z . z ≥ (w − x)) ∨ (z ≥ w)))

(x > 3 ∧ (∃y . (∀z . z ≥ (y − x)) ∨ (z ≥ y)))
α≡ (x > 3 ∧ (∃w . (∀y . y ≥ (w − x)) ∨ (z ≥ w)))

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 33

/ 34



Proof Rules

Natural Deduction rules:
All rules from Propositional Logic included

Γ ` ψ[t/x ]
ExI

Γ ` ∃x .psi

Γ ` ∃x .psi Γ ∪ {(ψ[y/x ])} ` ϕ y /∈ fv(ϕ) ∪ (fv(ψ) \ {x}) ∪
⋃
ψ′ ∈ Γfv(ψ′)

ExE
Γ ` ϕ

Γ ` ψ[y/x ] y /∈ (fv(ψ) \ {x}) ∪
⋃
ψ′ ∈ Γfv(ψ′)

AllI
Γ ` ∀x .ψ

Γ ` ∀x .ψ Γ ∪ {ψ[t/x ]} ` ϕ
AllE

Γ ` ϕ

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 21, 2014 34

/ 34


	First Order Logic
	Substitution

