CS477 Formal Software Development Methods

Elsa L Gunter
2112 SC, UIUC
egunterQ@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and
by Gul Agha

February 21, 2014

Elsa L Gunter () CS477 Formal Software Development Method / 34

mailto:egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

First Order Logic vs Propositional Logic

First Order Logic extends Propositional Logic with
@ Non-boolean constants
@ Variables
@ Functions and relations (or predicates, more generally)
@ Quantification of variables

Sample first order formula:
Vxdyx<yANy<x+1

Reference: Peled, Software Reliability Methods, Chapter 3

Elsa L Gunter () CS477 Formal Software Development Method / 34

Start with signature:
G=(V,F,af,R,ar)

V' a countably infinite set of variables

°

@ F finite set of function symbols

e af : F — N gives the arity, the number of arguments for each
function Constant c is a function symbol of arity 0 (af(c) = 0)

@ R finite set of relation symbols

@ ar: R — N, the arity for each relation symbol

o Assumes = € R and ar(=) =2

Elsa L Gunter () CS477 Formal Software Development Method / 34

Terms over Signature

Terms t are expressions built over a signature (V, F, af, R, ar)

ti=v veV
| f(t1,...,tn) f € F and n= af(f)

e Example: add(1, abs(x)) where add, abs,1 € F; x € V
e For constant ¢ write ¢ instead of c()
e Will write s = t instead of = (s, t)
o Similarly for other common infixes (e.g. +, —, *, <, <,...)

Elsa L Gunter () CS477 Formal Software Development Method / 34

Meaning of terms starts with a structure:
S = (g7D7f7¢7R7p)

where
e G=(V,F,af,R, ar) a signature,
@ D and domain on interpretation
@ F set of functions over D; F C |J,~,P" — D
o Note: F can contain elements of D since D = (D° — D)
@ ¢: F — F where if ¢(f) € (D" — D) then n = af(f)
e R set of relations over D; R C |J,~; P(D")
@ p: R — R where if p(r) C D" then n= ar(r)

Elsa L Gunter () CS477 Formal Software Development Method / 34

V set of variables, D domain of interpretation
An assignment is a function a: V — D
Example:

V={w,x,y,z}

a={ww— 314, x— —2.75,y — 13.9, z — —25.3}

@ Assignment is a fixed association of values to variables; not
“update-able”

Elsa L Gunter () CS477 Formal Software Development Method / 34

Interpretation of Terms

Fix structure S = (G, D, F, ¢, R, p) where G = (V, F,af R, ar)

For given assignment a: V — D, the interpretation 7T, of a term t is
defined by structural induction on terms:

o T,(v)=a(v) forveV
o To(f(tr,... tn)) = d(F)(Ta(tr), ..., Ta(tn))

Elsa L Gunter () CS477 Formal Software Development Method / 34

Example of Interpretation

o V=A{w,x,y,z}, D=R
e 1, add, abs € F, constant 1, and functions (in F) for addition and
absolute value respectively

@ a={w— 314, x— —275y+— 13.9,z — —25.3}

Ta(add(1,abs(x))) = (7(1)) + (Ta(abs(x)))
= 1.0+ (7Ta(abs(x)))
— 1.0+ |T(x)
= 1.0+ |a(x)|
= 1.0+ | —2.75|
= 1.0+275
= 3.75

Elsa L Gunter () CS477 Formal Software Development Method / 34

First-Order Formulae

First-order formulae built from terms using relations, logical connectives,

quantifiers:

form ::= true | false

r(ti, ..., tn) r € R, tj terms, n= ar(r)
(form) | —~form

form A form

form \/ form

form = form

form < form

Vv.form

dv.form

Note: Scope of quantifiers as far to right as possible

Vx.(x > y) A (2> x) same as Vx.((x > y) A (2 > X))

Elsa L Gunter ()

not same as (Vx.(x > y)) A (2 > x)

CS477 Formal Software Development Method / 34

Subformulae

@ A subformula of formula % is a formula that occurs in 1

e More rigorous definition by structural induction on formulae
e v subformula of ¢

o Use proper subformula to exclude v

o Write A\,_; ,viforg A... A,
e 1; called a conjunct

o Write \/,_; ,¢iforir V...V,

e 1); called a disjunct

Elsa L Gunter () CS477 Formal Software Development Method

/ 34

Free Variables: Terms

Informally: free variables of a expression are variables that have an
occurrence in an expression that is not bound. Written fv(e) for
expression e

Free variables of terms defined by structural induction over terms; written
e fv(x) = {x}
o fu(f(tr,....tn) =Uj=q _, fv(ti)

Note:

@ Free variables of term just variables occurring in term; no bound
variables

@ No free variables in constants
e Example: fv(add(1, abs(x))) = {x}

Elsa L Gunter () CS477 Formal Software Development Method / 34

Free Variables: Formulae

Defined by structural induction on formulae; uses fv on terms
o fv(true) = fv(false) = { }
o fv(r(ty,...,ty)) = Ui:l,...,n fv(t;)

o fv(y1 AN2) = fv(h1 Vo) = fv(h1 = 1) = vt &) =
(fv(v1) U fv(2))

o fu(vv.y) = Av(3v.) = (A(¥) \ {v})

Variable occurrence at quantifier are binding occurrence
Occurrence that is not free and not binding is a bound occurrence

Example: VX > 3N G- (V2. 22 (¥ =x) V(2 2))) = {x. 2}

T T

Elsa L Gunter () CS477 Formal Software Development Method / 34

Interpretation of Formulae
Fix structure S = (G, D, F, ¢, R, p) where G = (V, F,af R, ar)

For given assignment a: V — D, the interpretation M, of a formula v
assigning a value in {T,F} is defined by structural induction on formulae:

Elsa L Gunter () CS477 Formal Software Development Method

/ 34

Interpretation of Formulae
Fix structure S = (G, D, F, ¢, R, p) where G = (V, F,af R, ar)

For given assignment a: V — D, the interpretation M, of a formula v
assigning a value in {T,F} is defined by structural induction on formulae:
o M,(true) =T M (false) = F

Elsa L Gunter () CS477 Formal Software Development Method

/ 34

Interpretation of Formulae
Fix structure S = (G, D, F, ¢, R, p) where G = (V, F,af R, ar)

For given assignment a: V — D, the interpretation M, of a formula v
assigning a value in {T,F} is defined by structural induction on formulae:
o M,(true) =T M (false) = F

o Ma(r(tlﬂ SR t,,)) = p(r)(ﬂ(tl), e ,7;(1‘,7))

Elsa L Gunter () CS477 Formal Software Development Method

/ 34

Interpretation of Formulae

Fix structure S = (G, D, F, ¢, R, p) where G = (V, F,af R, ar)

For given assignment a: V — D, the interpretation M, of a formula v
assigning a value in {T,F} is defined by structural induction on formulae:

o M,(true) =T M, (false) = F
o My(r(ty, ... tn)) = p(r)(Ta(tr), ..., Ta(tn))
o My((¥)) = Ma(v)

Elsa L Gunter () CS477 Formal Software Development Method / 34

Interpretation of Formulae

Fix structure S = (G, D, F, ¢, R, p) where G = (V, F,af R, ar)

For given assignment a: V — D, the interpretation M, of a formula v
assigning a value in {T, F} is defined by structural induction on formulae:

true) = M (false) = F
r(ty, ...,)) = p(r)(Ta(tr), - - - Ta(tn))

() = Ma(¥)

Ma(
Ma(
Ma(
Ma(=¢) =T if M,y(4p) = F and Mu(—¢) =Fif M,(¢) =T

Elsa L Gunter () CS477 Formal Software Development Method / 34

Interpretation of Formulae

Fix structure S = (G, D, F, ¢, R, p) where G = (V, F,af R, ar)

For given assignment a: V — D, the interpretation M, of a formula v
assigning a value in {T, F} is defined by structural induction on formulae:

M (true) = M (false) = F

Ma(r(tr; ..,)) = p(r)(Ta(t1), -, Ta(tn))

Ma((9)) = Ma(¥)

Ma(=p) = T if Ma(v) = F and M,(~¢) = F if M,(¢p) =T
Ma(y
Ma(

1 A2) =T if Ma(p1) =T and My(y2) = T, and
2(Y1 A 12) = F otherwise

Elsa L Gunter () CS477 Formal Software Development Method / 34

Interpretation of Formulae
Fix structure S = (G, D, F, ¢, R, p) where G = (V, F,af R, ar)

For given assignment a: V — D, the interpretation M, of a formula v
assigning a value in {T, F} is defined by structural induction on formulae:

M (true) = M (false) = F
Ma(r(ty, ...,)) = p(r)(Ta(tr), - -, Ta(tn))
Ma((¥)) = Ma(¥)
/\/la(—|) =T if Ma(v)) =F and My(—¢) =F if M,y(¢) =T
o My(th1 ANh) =T if My(¢1) =T and M,(¢2) =T, and
M (Y1 A 1p2) = F otherwise
) Ma(l/Jl V "Lﬂg) Tif Ma(wl) =Tor Ma(’(/Jz) =T, and
M, (1 V 1b2) = F otherwise

Elsa L Gunter () CS477 Formal Software Development Method

/ 34

Interpretation of Formulae
Fix structure S = (G, D, F, ¢, R, p) where G = (V, F,af R, ar)

For given assignment a: V — D, the interpretation M, of a formula v
assigning a value in {T, F} is defined by structural induction on formulae:

M (true) = M (false) = F
M(r(ty, ...,)) = p(r)(Ta(t1) - Ta(tn))
Ma((¥)) = Ma(v)
Ma(ﬁ) = T if My(¥) = F and M,y(—¢)) = Fif My(¢)) =T
o My(th1 ANh) =T if My(¢1) =T and M,(¢2) =T, and
M (Y1 A 1p2) = F otherwise
° Ma(l/Jl V "Lﬂg) Tif M (wl) =T or Ma(’(/Jz) =T, and
M, (1 V 1b2) = F otherwise
@ My(vh1 = 2) =T if Ma(¢1) =F or My(v2) =T, and
M (101 = 102) = F otherwise

Elsa L Gunter () CS477 Formal Software Development Method

/ 34

Interpretation of Formulae

Fix structure S = (G, D, F, ¢, R, p) where G = (V, F,af /R, ar)

Let _
a+lvd] (W)_{ Z(W) HZZ

Elsa L Gunter () CS477 Formal Software Development Method / 34

Interpretation of Formulae

Fix structure S = (G, D, F, ¢, R, p) where G = (V, F,af /R, ar)

Let
(a+[v s d])(w) = { Z(W) :: .

Elsa L Gunter () CS477 Formal Software Development Method / 34

Interpretation of Formulae

Fix structure S = (G, D, F, ¢, R, p) where G = (V, F,af /R, ar)

Let
d ifw=v
a+lvd] (W){ a(w) ifw#v
o My(Vv.yp) =T if for every d € D we have M, [, ,q(¢)) =T, and
M, (Vv.1p) = F otherwise

Elsa L Gunter () CS477 Formal Software Development Method / 34

Interpretation of Formulae

Fix structure S = (G, D, F, ¢, R, p) where G = (V, F,af /R, ar)

Let _
a+lvd] (W)_{ Z(W) HZZ

o My(Vv.yp) =T if for every d € D we have M, [, ,q(¢)) =T, and
M, (Vv.1p) = F otherwise

® M,(3v.yp) = T if there exists d € D such that M, [.q(¥) =T,
and M ,(Vv.¢) = F otherwise

Elsa L Gunter () CS477 Formal Software Development Method / 34

Modeling First-order Formulae

Given structure S = (G, D, F, ¢, R, p) where G = (V, F,af R, ar)

e (S, M) model for first-order language over signature G

@ Truth of formulae in language over signature G depends on structure
S

o Assignment a models v, or a satisfies ¥, or a = ¢ if M,(¢¥) =T

e ¢ is valid for S if a =5 1 for some a.

o S is a model of v, written =5) if every assignment for S satisfies).
@ ¢ is valid, or a tautology if ¢ valid for every mode. Write |= 1

@ 1 logically equivalent to %) if for all structures S and assignments a,

a):S @01 iff a ':S 1/}2

Elsa L Gunter () CS477 Formal Software Development Method / 34

@ Assignment {x — 0} satisfies Jy.x < y valid in interval [0, 1];
assignment {x — 1} doesn't
e Vx.dy.x < y valid in N and R, but not interval [0, 1]
o (Ix.Vy.(y <x))= (Vy.3x.(y < x)) tautology
o Why?

Elsa L Gunter () CS477 Formal Software Development Method / 34

Sample Tautologies

All instances of propositional tautologies

Elsa L Gunter () CS477 Formal Software Development Method / 34

Sample Tautologies

All instances of propositional tautologies

= (3xVy.(y < X)) = (V. 3x(y < X))

Elsa L Gunter () CS477 Formal Software Development Method / 34

Sample Tautologies

All instances of propositional tautologies

= (3xVy.(y < X)) = (V. 3x(y < X))

= ((Vx.Vy.9) & (Vy.Vx4))

Elsa L Gunter () CS477 Formal Software Development Method / 34

Sample Tautologies

All instances of propositional tautologies

= (3xVy.(y < X)) = (V. 3x(y < X))
= (VxVyap) & (Vy.vx.0)

= ((vx.¢) = (3x.¢))

Elsa L Gunter () CS477 Formal Software Development Method / 34

Sample Tautologies

All instances of propositional tautologies

= (3xVy.(y < X)) = (V. 3x(y < X))
= (VxVyap) & (Vy.vx.0)
= ((Vx) = (3x0))

): (VX.?,/)l A 1/)2) & ((VXT/Jl) AN (VX?,D2))

Elsa L Gunter () CS477 Formal Software Development Method / 34

Sample Tautologies

All instances of propositional tautologies

= (@xy.(y < x) = (vy.3x(y <))
= ((Tx¥yap) & (Fy.vxa))
= (V) = (3x.0)
= (Vb Atiz) & ((Yxain) A (Vxaia))

(3x.01 Ahn) = ((3x.401) A (Bx.4h))

Elsa L Gunter () CS477 Formal Software Development Method

Free Variables, Assignments and Interpretation

Theorem

Assume given structure S = (G, D, F, ¢, R, p), term t over G, and a and b
assignments. If for every x € fv(t) we have a(x) = b(x) then

7;(1‘) = ch(a).

Theorem

| \

Assume given structure S = (G, D, F, ¢, R, p), formula 1) over G, and a
and b assignments. If for every x € fv(v)) we have a(x) = b(x) then

M (¥) = Mp(1h).

\

Elsa L Gunter () CS477 Formal Software Development Method / 34

Syntactic Substitution versus Assignment Update

@ When interpreting universal quantification (Vx. 1)), wanted to check

interpretation of every instance of 1) where v was replaced by element
of semantic domain D

@ How: semantically - interpret ¥ with assignment updated by v — d
for every d € D

@ Syntactically?

@ Answer: substitution

Elsa L Gunter () CS477 Formal Software Development Method

/ 34

Substitution in Terms

@ Substitution of term t for variable x in term s (written s[t/x]) gotten
by replacing every instance of x in s by t

o x called redex; t called residue

@ Yields instance of s

Formally defined by structural induction on terms:
o x[t/x] =t
@ y[t/x] =y for variable y where y # x
o f(ty,...,tn)[t/x] = f(t1[t/x], ..., ta[t/x])

Example: (add(1, abs(x)))[add(x,y)/x| = add(1, abs(add(x,y)))

Elsa L Gunter () CS477 Formal Software Development Method / 34

Substitution in Formulae: Problems

@ Want to define by structural induction, similar to terms
@ Quantifiers must be handled with care

o Substitution only replaces free occurrences of variable
Example:

(x>3ANEy.Vz.z>(y —x))V(z>y))x+2/z] =
(x>3ANE3y.(Vz.z>(y —x))V(x+2>y)))

o Need to avoid free variable capture
Example Problem:

(x>3ANEFy. (Vz.z>2 (y = x))V(z2y)x +y/z] #
(x>3A3y. (Vz.z> (y —x))V (x+y >V)))

Elsa L Gunter () CS477 Formal Software Development Method / 34

Assume given structure S = (G, D, F, ¢, R, p), variable x, terms s and t
over G, and a assignment. Let b = a[x — T,(t)]. Then
Ta(slt/x]) = Ts(s).

Elsa L Gunter () CS477 Formal Software Development Method / 34

Substitution in Formulae: Two Approaches

@ When quantifier would capture free variable of redex, can't substitute
in formula as is

@ Solution 1: Make substitution partial function — undefined in this case

@ Solution 2: Define equivalence relation based on renaming bound
variables; define substitution on equivalence classes

@ Will take Solution 1 here

@ Still need definition of equivalence up to renaming bound variables

Elsa L Gunter () CS477 Formal Software Development Method / 34

Substitution in Formulae

Defined by structural induction; uses substitution in terms

Read equations below as saying left is not defined if any expression on
right not defined

true[t/x] = true false[t/x]| = false

r(ty, ..., tn)[t/x] = r((ta[t/x], ..., ta[t/x]))

(¢)[t/X] (Wlt/x]) (=)t/x] = ~(¢[t/x])

(Y1 @ ha)[t/x] = (¥u[t/x]) @ (¥2[t/x]) for @ € {A,V, =, <}
(Qx P)[t/x] = Qx.¢ for Q € {V,3}

(Qy-)[t/x] = Qy. (4[t/x]) if x #y and y ¢ fu(t) for Q € {V, 3}
(Qy ¥)[t/x] not defined if x # y and y € fv(t) for Q € {V,3}

Elsa L Gunter () CS477 Formal Software Development Method

Substitution in Formulae

Examples

(x >3A3y. (Vz.z> (y —x))V(z > y)))[x + y/z] not defined

(x>3AN@Ew. (Vz.z> (w—x))V(z>w
(x>3AN3w. (Vz.z> (w—x))V((x+y)>y))

Assume given structure S = (G, D, F, ¢, R, p), formula 1) over G, and a
assignment. If 1)[t/x] defined, then a =5 1[t/x] if and only if
a[x = Ta(t)] F° ¢

Elsa L Gunter () CS477 Formal Software Development Method / 34

Renaming by Swapping: Terms

Define the swapping of two variables in a term t[x <> y] by structural
induction on terms:

@ x[x <> y]l]=yand y[x < y] = x
@ z[x <> y|] = z for z a variable, z # x, z# y

o f(t,....th)[x = y]l="~(ti[x < y],.... ta[x < y])
Examples:

add(1, abs(add(x,y)))[x <+ y] = add(1, abs(add(y, x)))
add(1, abs(add(x,y)))[x <> z] = add(1, abs(add(z,y)))

Elsa L Gunter () CS477 Formal Software Development Method

/ 34

Renaming by Swapping: Terms

Assume given structure S = (G, D, F, ¢, R, p), variables x and y, term t

over G, and a assignment. Let b= a[x — a(y)][y — a(x)]. Then
Ta(tlx < y]) = To(t)

Elsa L Gunter () CS477 Formal Software Development Method

Renaming by Swapping: Terms

(Proof |

By structural induction on terms, suffices to show theorem for the case
where t variable, and case t = f(t1,. .., t,), assuming result for t, ..., t,
@ Case: t variable

o Subcase: t = x. Then T,(x[x <> y]) = Ta(y) = a(y) and
To(x) = b(x) = alx = a(y)]ly = a(x)](x) = alx = TI(x) = a(y)
so To(t[x < yl) = Tu(t)
e Subcase: t =y. Then T,(y[x <> y]) = Ta(x) = a(x) and
Taly) = bly) = alx = 2Ly = a()|(x) = a(x) 50
Ta(tlx <> y]) = Ts(t)
e Subcase: t = z variable, z # x and z # y. Then
Ta(z[x < y]) = Ta(z) = a(z) and
To(2) = b(2) = alx = a(y)]ly = a(x)](z) = alx = Ta(y)(z) = a(2)
so To(t[x < y]) = Tu(t)

Elsa L Gunter () CS477 Formal Software Development Method / 34

Renaming by Swapping: Terms

o Case: t = f(t1,...,tn). Assume T,(ti[x <> y]) = Tp(t;) for
i=1,...,n. Then

Ta(tlx < y]) = Ta(f(t1, . ta)lx < y])
=Tf(t1[x < y], ..., ta[x <> ¥]))
= () (Ta(trlx < y1), ..., Ta(ta[x < y1))
= o(F)(T(t1), - -, To(tn))
since TL(ti[x <> y]) = Tp(t;) for i =1,...,n
= Tp(f(t1,...,tn))
=Tp(t) O

Elsa L Gunter () CS477 Formal Software Development Method / 34

Renaming by Swapping: Formulae

Define the swapping of two variables in a formula ¥ [x <> y| by structural
induction, using swapping on terms:

@ true[x <> y] = true false[x <> y] = false

o r(tr,....th)[x < y] =r((ti[x < y],..., ta[x <> ¥]))

°o (Px e yl=Wkeyl) ()x e y]=kx < y])

o (Y18 Ua)lix > y] = (d1lx ¢ y]) ® (alx 45 y]) for
® € {AV,=, &}

° (@x-Y)lx eyl =Qy. (V[x < y]) for Q€ {¥,3}

o (Qy.¥)lx < y]=Qy.(Y[x < y]) for Q € {V, 3}

0 (Qz.Y)[x <> y] = Qz. (Y[x <> y]) for z a variable with z # x,
z#y,and Q € {V,3}

Elsa L Gunter () CS477 Formal Software Development Method

Renaming by Swapping: Formulae

Examples
(x>3AQEy. (V2.2 (y = x)) V(z 2 y)))[x < y]
=(>3AN(3x. (Vz.z2>(x—y)) V(z>x)))

(x>3A(3y. (V2. 2> (y —x)) V(z 2 y)))ly < 2]
(x>3A(Ey.(Vz. 22 (y = x)) V(z 2 ¥)))ly ¢ w]

Assume given structure S = (G, D, F,$, R, p), variables x and y, formula
Y over G, and a assignment. If x ¢ fv(t) and y ¢ fv(t) then

Yx <yl =9

Elsa L Gunter () CS477 Formal Software Development Method / 34

a-equivalence

R

If 11 = 1) then 1y = .

It 1 = 1bp and o = 13 then 1 = 13

If x ¢ fv(p) and y & fu(zp) then 1 = [x <> y].
If b = Y for i = 1,2 then

o (1) = (W) =Yy
o Y1 @i =P, @Y for @ € {A,V, =, =}
o Qz.py = Qz. 4} for Q € {V,3}

Elsa L Gunter () CS477 Formal Software Development Method / 34

a-equivalence: Example

(ax>3/\(3y. (Vz.z>(y—x))V(z>y)))
=(x>3ANEw. (Vz.z> (w —x)) V (z > w)))

(x>3N3y. Vz.z>(y —x))V(z>Yy)))
= (x>3AAw. (Vy. y > (w — x)) V(2 > w)))

Elsa L Gunter () CS477 Formal Software Development Method / 34

Proof Rules

Natural Deduction rules:
All rules from Propositional Logic included

M= [t/x] £ I 3x.psi
I+ 3x.psi

MEoly/x] vy g (@) \ i) ul e e Ty
[Vx4

Alll

Elsa L Gunter () CS477 Formal Software Development Method / 34

	First Order Logic
	Substitution

