First Order Logic vs Propositional Logic CS477 Formal Software Development Methods First Order Logic extends Propositional Logic with • Non-boolean constants Elsa L Gunter Variables 2112 SC, UIUC egunter@illinois.edu • Functions and relations (or predicates, more generally) http://courses.engr.illinois.edu/cs477 • Quantification of variables Sample first order formula: $\forall x. \exists y. x < y \land y \le x + 1$ Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha Reference: Peled, Software Reliability Methods, Chapter 3 February 21, 2014 Elsa L Gunter () CS477 Formal Sof CS477 Ec Signatures Terms over Signature Start with signature: Terms t are expressions built over a signature (V, F, af, R, ar) $\mathcal{G} = (V, F, af, R, ar)$ $v \in V$ t ::= v $f(t_1,\ldots,t_n)$ $f \in F$ and n = af(f)• V a countably infinite set of variables • *F* finite set of function symbols • **Example**: add(1, abs(x)) where $add, abs, 1 \in F$; $x \in V$ • *af* : $F \to \mathbb{N}$ gives the *arity*, the number of arguments for each function Constant c is a function symbol of arity 0 (af(c) = 0) • For constant *c* write *c* instead of *c*() • Will write s = t instead of = (s, t)• *R* finite set of relation symbols • $ar: R \to \mathbb{N}$, the arity for each relation symbol Similarly for other common infixes (e.g. +, −, *, <, ≤,...) • Assumes $= \in R$ and ar(=) = 2Elsa L Gunter () lsa L Gunter () Structures Assignments Meaning of terms starts with a structure:

 $\mathcal{S} = (\mathcal{G}, \mathcal{D}, \mathcal{F}, \phi, \mathcal{R}, \rho)$

where

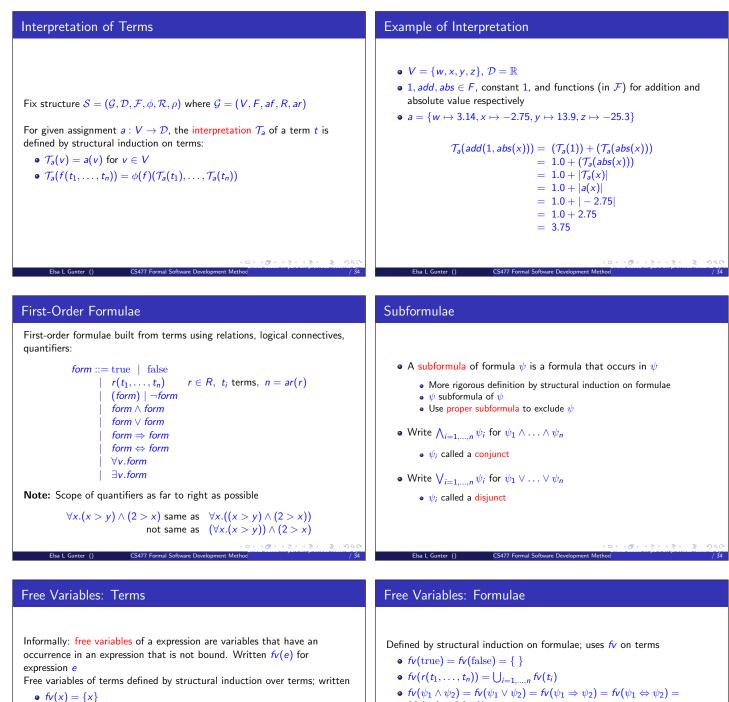
- $\mathcal{G} = (V, F, af, R, ar)$ a signature,
- $\bullet \ \mathcal{D}$ and domain on interpretation
- *F* set of functions over *D*; *F* ⊆ ⋃_{n≥0} *Dⁿ* → *D* Note: *F* can contain elements of *D* since *D* = (*D*⁰ → *D*)
- $\phi: F \to \mathcal{F}$ where if $\phi(f) \in (\mathcal{D}^n \to \mathcal{D})$ then n = af(f)
- \mathcal{R} set of relations over \mathcal{D} ; $\mathcal{R} \subseteq \bigcup_{n \ge 1} \mathcal{P}(\mathcal{D}^n)$
- $\rho: R \to \mathcal{R}$ where if $\rho(r) \subseteq \mathcal{D}^n$ then n = ar(r)

V set of variables, \mathcal{D} domain of interpretation An assignment is a function $a: V \to \mathcal{D}$ Example:

 $V = \{w, x, y, z\}$

$$a = \{w \mapsto 3.14, x \mapsto -2.75, y \mapsto 13.9, z \mapsto -25.3\}$$

• Assignment is a fixed association of values to variables; not "update-able"



 $(fv(\psi_1) \cup fv(\psi_2))$

• $fv(\forall v. \psi) = fv(\exists v. \psi) = (fv(\psi) \setminus \{v\})$

Variable occurrence at quantifier are binding occurrence

Occurrence that is not free and not binding is a bound occurrence

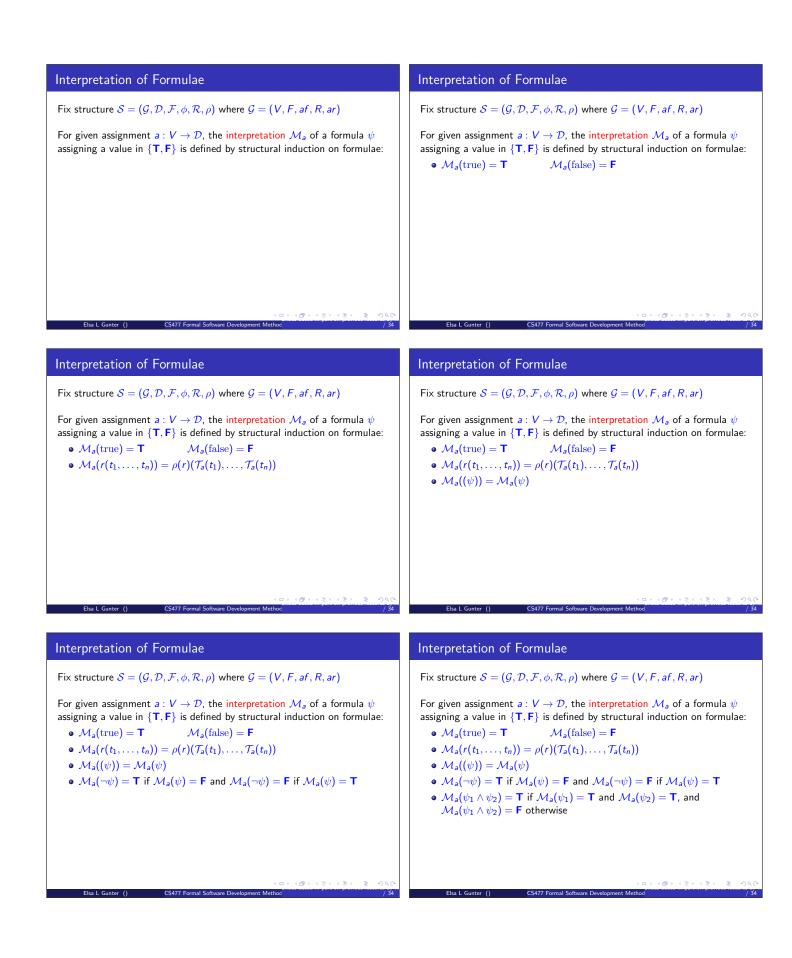
Example: $fv(x > 3 \land (\exists y. (\forall z. z \ge (y - x)) \lor (z \ge y))) = \{x, z\}$

Free variables of terms defined by structural induction over terms; written

- $fv(x) = \{x\}$
- $fv(f(t_1,\ldots,t_n) = \bigcup_{i=1,\ldots,n} fv(t_i)$

Note:

- Free variables of term just variables occurring in term; no bound variables
- No free variables in constants
- Example: $fv(add(1, abs(x))) = \{x\}$



Interpretation of Formulae

Fix structure $S = (G, D, F, \phi, R, \rho)$ where G = (V, F, af, R, ar)

For given assignment $a: V \to D$, the interpretation \mathcal{M}_a of a formula ψ assigning a value in $\{\textbf{T},\textbf{F}\}$ is defined by structural induction on formulae: $\mathcal{M}_a(\text{false}) = \mathbf{F}$

- $\mathcal{M}_a(\text{true}) = \mathbf{T}$
- $\mathcal{M}_a(r(t_1,\ldots,t_n)) = \rho(r)(\mathcal{T}_a(t_1),\ldots,\mathcal{T}_a(t_n))$
- $\mathcal{M}_a((\psi)) = \mathcal{M}_a(\psi)$

Elsa L Gunter ()

- $\mathcal{M}_a(\neg \psi) = \mathbf{T}$ if $\mathcal{M}_a(\psi) = \mathbf{F}$ and $\mathcal{M}_a(\neg \psi) = \mathbf{F}$ if $\mathcal{M}_a(\psi) = \mathbf{T}$
- $\mathcal{M}_{a}(\psi_{1} \wedge \psi_{2}) = \mathsf{T}$ if $\mathcal{M}_{a}(\psi_{1}) = \mathsf{T}$ and $\mathcal{M}_{a}(\psi_{2}) = \mathsf{T}$, and $\mathcal{M}_{a}(\psi_{1} \wedge \psi_{2}) = \mathbf{F}$ otherwise
- $\mathcal{M}_a(\psi_1 \lor \psi_2) = \mathsf{T}$ if $\mathcal{M}_a(\psi_1) = \mathsf{T}$ or $\mathcal{M}_a(\psi_2) = \mathsf{T}$, and $\mathcal{M}_a(\psi_1 \lor \psi_2) = \mathbf{F}$ otherwise

Interpretation of Formulae

Fix structure $S = (G, D, F, \phi, R, \rho)$ where G = (V, F, af, R, ar)

For given assignment $a: V \to D$, the interpretation \mathcal{M}_a of a formula ψ assigning a value in $\{\textbf{T},\textbf{F}\}$ is defined by structural induction on formulae: • $\mathcal{M}_a(\text{true}) = \mathbf{T}$ $\mathcal{M}_a(\text{false}) = \mathbf{F}$

- $\mathcal{M}_a(r(t_1,\ldots,t_n)) = \rho(r)(\mathcal{T}_a(t_1),\ldots,\mathcal{T}_a(t_n))$
- $\mathcal{M}_a((\psi)) = \mathcal{M}_a(\psi)$
- $\mathcal{M}_a(\neg \psi) = \mathbf{T}$ if $\mathcal{M}_a(\psi) = \mathbf{F}$ and $\mathcal{M}_a(\neg \psi) = \mathbf{F}$ if $\mathcal{M}_a(\psi) = \mathbf{T}$
- $\mathcal{M}_a(\psi_1 \wedge \psi_2) = \mathbf{T}$ if $\mathcal{M}_a(\psi_1) = \mathbf{T}$ and $\mathcal{M}_a(\psi_2) = \mathbf{T}$, and $\mathcal{M}_{a}(\psi_{1} \wedge \psi_{2}) = \mathbf{F}$ otherwise

• $\mathcal{M}_a(\psi_1 \Rightarrow \psi_2) = \mathbf{T}$ if $\mathcal{M}_a(\psi_1) = \mathbf{F}$ or $\mathcal{M}_a(\psi_2) = \mathbf{T}$, and $\mathcal{M}_a(\psi_1 \Rightarrow \psi_2) = \mathbf{F}$ otherwise

Elsa L Gunter () CS477 Formal Software Development Met

Interpretation of Formulae

Fix structure
$$S = (G, D, F, \phi, R, \rho)$$
 where $G = (V, F, af, R, ar)$

Let

$$a + [v \mapsto d] (w) = \begin{cases} d & \text{if } w = v \\ a(w) & \text{if } w \neq v \end{cases}$$

Interpretation of Formulae

Fix structure $S = (G, D, F, \phi, R, \rho)$ where G = (V, F, af, R, ar)

Let

$$(a + [v \mapsto d])(w) = \begin{cases} d & \text{if } w = v \\ a(w) & \text{if } w \neq v \end{cases}$$

Interpretation of Formulae

Fix structure $S = (G, D, F, \phi, R, \rho)$ where G = (V, F, af, R, ar)

Let

$$a + [v \mapsto d] (w) = \begin{cases} d & \text{if } w = v \\ a(w) & \text{if } w \neq v \end{cases}$$

• $\mathcal{M}_a(\forall v.\psi) = \mathsf{T}$ if for every $d \in \mathcal{D}$ we have $\mathcal{M}_{a+[v \mapsto d]}(\psi) = \mathsf{T}$, and $\mathcal{M}_a(\forall v.\psi) = \mathbf{F}$ otherwise

Interpretation of Formulae

sa L Gunter ()

Fix structure
$$S = (G, D, F, \phi, R, \rho)$$
 where $G = (V, F, af, R, ar)$

Let

$$a + [v \mapsto d] (w) = \begin{cases} d & \text{if } w = v \\ a(w) & \text{if } w \neq v \end{cases}$$

- $\mathcal{M}_a(\forall v.\psi) = \mathsf{T}$ if for every $d \in \mathcal{D}$ we have $\mathcal{M}_{a+[v \mapsto d]}(\psi) = \mathsf{T}$, and $\mathcal{M}_a(\forall v.\psi) = \mathbf{F}$ otherwise
- $\mathcal{M}_a(\exists v.\psi) = \mathbf{T}$ if there exists $d \in \mathcal{D}$ such that $\mathcal{M}_{a+[v \mapsto d]}(\psi) = \mathbf{T}$, and $\mathcal{M}_a(\forall v.\psi) = \mathbf{F}$ otherwise

mal Software Development Method

< E)

Modeling First-order Formulae

Given structure $S = (G, D, F, \phi, R, \rho)$ where G = (V, F, af, R, ar)

- $(\mathcal{S}, \mathcal{M})$ model for first-order language over signature \mathcal{G}
- $\bullet\,$ Truth of formulae in language over signature ${\cal G}$ depends on structure ${\cal S}$
- Assignment a models ψ , or a satisfies ψ , or a $\models^{S} \psi$ if $\mathcal{M}_{a}(\psi) = \mathsf{T}$
- ψ is valid for S if $a \models^{S} \psi$ for some a.

Elsa L Gunter ()

- S is a model of ψ , written $\models^{S} \psi$ if every assignment for S satisfies ψ .
- ψ is valid, or a tautology if ψ valid for every mode. Write $\models \psi$

CS477 Formal Software Development Me

• ψ_1 logically equivalent to ψ_2 if for all structures S and assignments a, $a \models^S \psi_1$ iff $a \models^S \psi_2$

Examples

• Assignment $\{x \mapsto 0\}$ satisfies $\exists y.x < y$ valid in interval [0, 1]; assignment $\{x \mapsto 1\}$ doesn't

CS477 Formal Software Development Me

- $\forall x. \exists y. x < y$ valid in \mathbb{N} and \mathbb{R} , but not interval [0, 1]
- $(\exists x. \forall y. (y \le x)) \Rightarrow (\forall y. \exists x. (y \le x))$ tautology • Why?

Sample Tautologies
All instances of propositional tautologies
$\models (\exists x. \forall y. (y \le x)) \Rightarrow (\forall y. \exists x. (y \le x))$
(ロ) (日) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2

All instances of prop	positional tautologies		
Þ	$(\exists x. \forall y. (y \leq x)) \Rightarrow ($	$\forall y. \exists x. (y \leq x))$	
	$\models ((\forall x.\forall y.\psi) \Leftrightarrow ($	$\forall y. \forall x. \psi))$	
		 < (1) < (2) < (2) < (2) 	₹ •90

Sample Tautologies

Elsa L Gunter ()

Elsa L Gunter ()

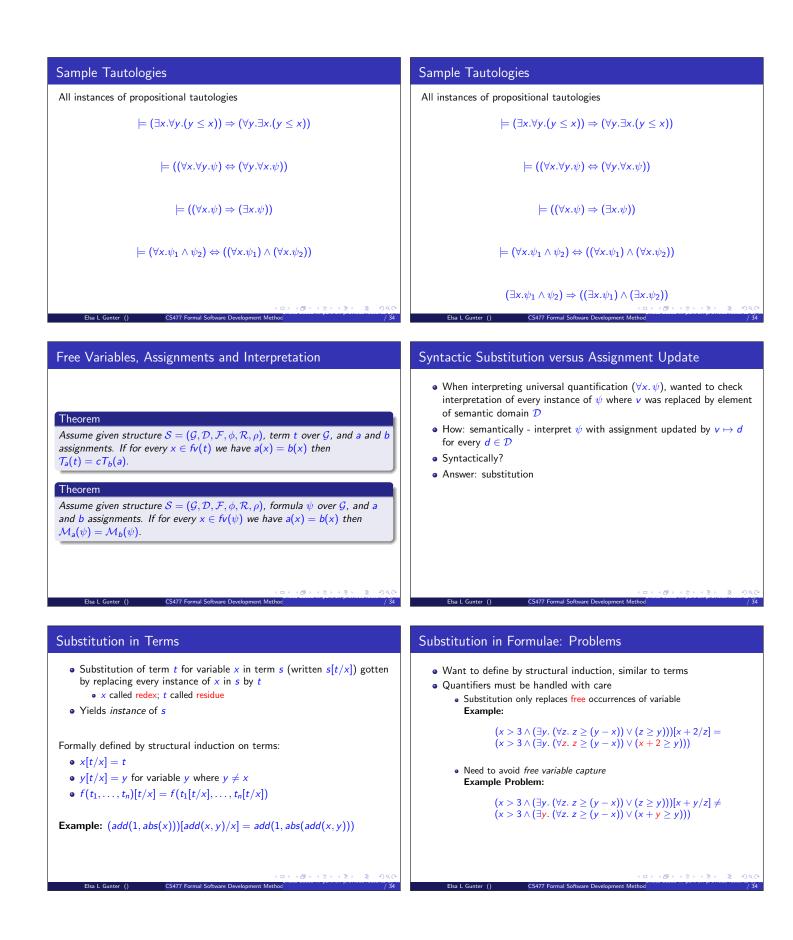
All instances of propositional tautologies

$$\models (\exists x. \forall y. (y \le x)) \Rightarrow (\forall y. \exists x. (y \le x))$$

 $\models ((\forall x.\forall y.\psi) \Leftrightarrow (\forall y.\forall x.\psi))$

 $\models ((\forall x.\psi) \Rightarrow (\exists x.\psi))$

(ロ>(⑦>(ミン(ミン)を、 マン)



Theorem

Assume given structure $S = (G, D, F, \phi, R, \rho)$, variable x, terms s and t over G, and a assignment. Let $b = a[x \mapsto T_a(t)]$. Then $T_a(s[t/x]) = T_b(s)$.

Substitution in Formulae: Two Approaches

- When quantifier would capture free variable of redex, can't substitute in formula as is
- Solution 1: Make substitution partial function undefined in this case
- Solution 2: Define equivalence relation based on renaming bound
- variables; define substitution on equivalence classes

CS477 Formal Soft

- Will take Solution 1 here
- Still need definition of equivalence up to renaming bound variables

Substitution in Formulae

Elsa L Gunter ()

- Defined by structural induction; uses substitution in terms
- Read equations below as saying left is not defined if any expression on right not defined
- true[t/x] = true false[t/x] = false
- $r(t_1,...,t_n)[t/x] = r((t_1[t/x],...,t_n[t/x]))$
- $(\psi)[t/x] = (\psi[t/x])$ $(\neg\psi)[t/x] = \neg(\psi[t/x])$
- $(\psi_1 \otimes \psi_2)[t/x] = (\psi_1[t/x]) \otimes (\psi_2[t/x])$ for $\otimes \in \{\land, \lor, \Rightarrow, \Leftrightarrow\}$
- $(\mathcal{Q} x. \psi)[t/x] = \mathcal{Q} x. \psi$ for $\mathcal{Q} \in \{\forall, \exists\}$
- $(\mathcal{Q} y, \psi)[t/x] = \mathcal{Q} y.(\psi[t/x]) \text{ if } x \neq y \text{ and } y \notin fv(t) \text{ for } \mathcal{Q} \in \{\forall, \exists\}$
- $(\mathcal{Q} y, \psi)[t/x]$ not defined if $x \neq y$ and $y \in fv(t)$ for $\mathcal{Q} \in \{\forall, \exists\}$

CS477 Formal Software Develop

Substitution in Formulae

Elsa I Gunter ()

Examples

 $(x > 3 \land (\exists y. (\forall z. z \ge (y - x)) \lor (z \ge y)))[x + y/z]$ not defined

 $\begin{array}{l} (x > 3 \land (\exists w. (\forall z. z \ge (w - x)) \lor (z \ge w)))[x + y/z] = \\ (x > 3 \land (\exists w. (\forall z. z \ge (w - x)) \lor ((x + y) \ge y))) \end{array}$

Theorem

Assume given structure $S = (\mathcal{G}, \mathcal{D}, \mathcal{F}, \phi, \mathcal{R}, \rho)$, formula ψ over \mathcal{G} , and a assignment. If $\psi[t/x]$ defined, then a $\models^{S} \psi[t/x]$ if and only if $a[x \mapsto \mathcal{T}_{a}(t)] \models^{S} \psi$

Renaming by Swapping: Terms

Elsa L Gunter ()

Define the swapping of two variables in a term $t[x \leftrightarrow y]$ by structural induction on terms:

- $x[x \leftrightarrow y] = y$ and $y[x \leftrightarrow y] = x$
- $z[x \leftrightarrow y] = z$ for z a variable, $z \neq x$, $z \neq y$
- $f(t_1,\ldots,t_n)[x\leftrightarrow y] = f(t_1[x\leftrightarrow y],\ldots,t_n[x\leftrightarrow y])$

Examples:

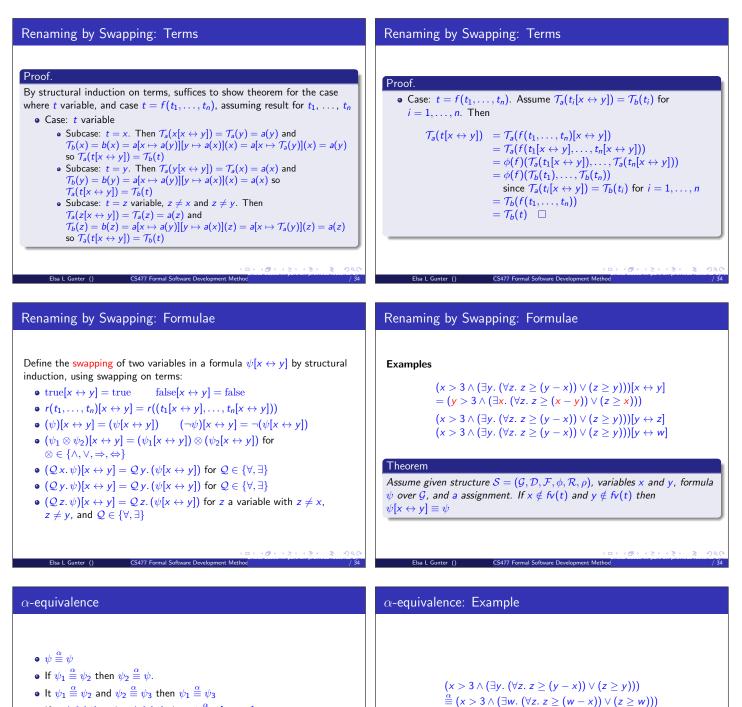
 $\begin{array}{l} \textit{add}(1,\textit{abs}(\textit{add}(x,y)))[x\leftrightarrow y] = \textit{add}(1,\textit{abs}(\textit{add}(y,x)))) \\ \textit{add}(1,\textit{abs}(\textit{add}(x,y)))[x\leftrightarrow z] = \textit{add}(1,\textit{abs}(\textit{add}(z,y))) \end{array}$

Renaming by Swapping: Terms

Elsa L Gunter ()

Theorem

Assume given structure $S = (\mathcal{G}, \mathcal{D}, \mathcal{F}, \phi, \mathcal{R}, \rho)$, variables x and y, term t over \mathcal{G} , and a assignment. Let $b = a[x \mapsto a(y)][y \mapsto a(x)]$. Then $\mathcal{T}_a(t[x \leftrightarrow y]) = \mathcal{T}_b(t)$



- If $x \notin fv(\psi)$ and $y \notin fv(\psi)$ then $\psi \stackrel{\alpha}{\equiv} \psi[x \leftrightarrow y]$.
- If $\psi_i \stackrel{\alpha}{\equiv} \psi'_i$ for i = 1, 2 then
 - $(\psi_1) \stackrel{lpha}{\equiv} (\psi_1') \qquad \neg \psi_1 \stackrel{lpha}{\equiv} \neg \psi_1'$
 - $\psi_1 \otimes \psi_2 \stackrel{\alpha}{\equiv} \psi'_1 \otimes \psi'_2$ for $\otimes \in \{\land, \lor, \Rightarrow, \Leftrightarrow\}$
 - $\mathcal{Q} z. \psi_1 \stackrel{\alpha}{\equiv} \mathcal{Q} z. \psi'_1 \text{ for } \mathcal{Q} \in \{\forall, \exists\}$

ロシュロシュ 明マ キャンド・ロークス

 $(x > 3 \land (\exists y. (\forall z. z \ge (y - x)) \lor (z \ge y)))$

 $\stackrel{\alpha}{\equiv} (x > 3 \land (\exists w. (\forall y. y \ge (w - x)) \lor (z \ge w)))$

Proof Rules	
Natural Deduction rules:	
All rules from Propositional Logic included	
$\frac{\Gamma \vdash \psi[t/x]}{\Gamma \vdash \exists x. psi} Exl$	Γ⊢∃x. <i>psi</i>
$\frac{\Gamma \vdash \psi[y/x] y \notin (fv(\psi) \setminus \{x\}) \cup \bigcup \psi' \in \Gamma fv(\psi')}{F(\psi')} A $	
$F \vdash \forall x.\psi$	
 < □ > < ⑦ 	