
CS477 Formal Software Development Methods

Elsa L Gunter
2112 SC, UIUC

egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and
by Gul Agha
February 12, 2014

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 12, 2014 1

/ 12

mailto:egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Defining Things

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 12, 2014 2

/ 12

Introducing New Types

typedef: Primitive for type definitions; Only real way of introducing
a new type with new properties

Must build a model and prove it nonempty
Probably won’t use in this course

typedecl: Pure declaration; New type with no properties (except
that it is non-empty)

type synonym: Abbreviation - used only to make theory files more
readable

datatype: Defines recursive data-types; solutions to free algebra
specifications

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 12, 2014 3

/ 12

Datatypes: An Example

datatype ’a list = Nil | Cons ’a "’a list"

Type constructors: list of one argument

Term constructors: Nil :: ’a list

Cons :: ’a ⇒ ’a list ⇒ ’a list

Distinctness: Nil 6= Cons x xs

Injectivity:
(Cons x xs = Cons y ys) = (x = y ∧ xs = ys)

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 12, 2014 4

/ 12

Structural Induction on Lists

To show P holds of every list

show P Nil, and
for arbitrary a and list, show P list implies
P (Cons a list)

P Nil

P list
...

P (Cons a list)

P xs
In Isabelle:

[|?P []; Λa list. ?P list =⇒?P (a#list)|] =⇒?P ?list

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 12, 2014 5

/ 12

datatype: The General Case

datatype (α1, . . . , αm)τ = C1 τ1,1 . . . τ1,n1
| ...

| Ck τk,1 . . . τk,nk
Term Constructors:
Ci :: τi ,1 ⇒ . . .⇒ τi ,ni ⇒ (α1, . . . , αm)τ

Distinctness: Ci xi . . . xi ,ni 6= Cj yj . . . yj ,nj if i 6= j

Injectivity: (Ci x1 . . . xni = Ci y1 . . . yni) =
(x1 = y1 ∧ . . . ∧ xni = yni)

Distinctness and Injectivity are applied by simp

Induction must be applied explicitly

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 12, 2014 6

/ 12

Proof Method

Syntax: (induct tac x)

x must be a free variable in the first subgoal
The type of x must be a datatype

Effect: Generates 1 new subgoal per constructor

Type of x determines which induction principle to use

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 12, 2014 7

/ 12

case

Every datatype introduces a case construct, e.g.

(case xs of [] ⇒...| y#ys ⇒ ...y ...ys ...)

In general: case Arbitrarily nested pattern ⇒ Expression using pattern
variables | . . .
Patterns may be non-exhaustive, or overlapping
Order of clauses matters - early clause takes precedence.

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 12, 2014 8

/ 12

HOL Functions are Total

Why nontermination can be harmful:

If f x is undefined, is f x = f x?

Excluded Middle says it must be True or False

Reflexivity says it’s True

How about f x = 0? f x = 1? f x = y?

If f x 6= y then ∀y. f x 6= y.

Then f x 6= f x #

! All functions in HOL must be total !

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 12, 2014 9

/ 12

Function Definition in Isabelle/HOL

Non-recursive definitions with definition

No problem

Well-founded recursion with fun

Proved automatically, but user must take care that recursive calls are
on “obviously” smaller arguments

Well-founded recursion with function

User must (help to) prove termination
(later)

Role your own, via definition of the functions graph
use of choose operator, and other tedious approaches, but can work
when built-in methods don’t.

Shouldn’t need last two in this class

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 12, 2014 10

/ 12

A Recursive Function: List Append

Declaration:

consts app :: "’a list ⇒ ’a list ⇒ ’a list

and definition by recursion:

fun

app Nil ys = ys

app (Cons x xs) ys = Cons x (app xs ys)

Uses heuristics to find termination order
Guarantees termination (total function) if it succeeds

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 12, 2014 11

/ 12

Demo: Another Datatype Example

Elsa L Gunter () CS477 Formal Software Development Methods
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha February 12, 2014 12

/ 12

	Functional Programming in Isabelle

