CS477 Formal Software Development Methods

Elsa L Gunter
2112 SC, UIUC
egunterQ@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and
by Gul Agha

February 6, 2014

Elsa L Gunter () CS477 Formal Software Development Method / 26

mailto:egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Getting Started with Isabelle

@ Choice

o Use Isabelle on EWS
e Install on your machine
o Both

e On EWS
e Assuming you are running an X client, log in to EWS:
ssh -Y <netid>@remlnx.ews.illinois.edu
@ -Y used to forward X packets securely
o To start Isabelle with jedit
/class/cs477/bin/isabelle jedit

o Older versions of Isabelle used emacs and ProofGeneral
o Will assume jedit here

Elsa L Gunter () CS477 Formal Software Development Method / 26

My First Theory File

File name: my_theory.thy
Contents:

theory my_theory
imports Main
begin

thm impI

lemma trivial: "A — A"
apply (rule impI)

apply assumption

done (* of lemma *)

thm trivial

end (* of theory file *)

Elsa L Gunter () CS477 Formal Software Development Method / 26

Overview of Isabelle/HOL

HOL = Higher-Order Logic
HOL = Types 4+ Lambda Calculus + Logic

@ HOL has

o datatypes
e recursive functions
o logical operators (A, V, =, —, ¥, 3, ...)

Contains propositional logic, first-order logic
HOL is very similar to a functional programming language
Higher-order = functions are values, too!

We'll start with propositional and first order logic

Elsa L Gunter () CS477 Formal Software Development Method / 26

Formulae (first Approximation)

@ Syntax (in decreasing priority):

form = (form) | term = term
| —form | form A form
| formV form | form — form
| Vx. form | 3x. form

and some others

@ Scope of quantifiers: as far to the right as possible

Elsa L Gunter () CS477 Formal Software Development Method / 26

e ‘AANBVC=((-A)AB)VvC

e AAB=C=AA(B=CQ)

o Vx. PxAQx=Wx. (PxAQx)

o Vx.Iy. PxyAQx=Wx.(Jy. (P xyAQx))

Elsa L Gunter () CS477 Formal Software Development Method / 26

Proofs

General schema:

lemma name: "..."
apply (...)

done

First ... theorem statement

(...) are proof methods

Elsa L Gunter () CS477 Formal Software Development Method / 26

Top-down Proofs

sorry

e “completes” any proof (by giving up, and accepting it)
@ Suitable for top-down development of theories:

@ Assume lemmas first, prove them later.

Only allowed for interactive proof!

Elsa L Gunter () CS477 Formal Software Development Method / 26

Isabelle Syntax

@ Distinct from HOL syntax
@ Contains HOL syntax within it

@ Also the same as HOL - need to not confuse them

Elsa L Gunter () CS477 Formal Software Development Method / 26

Theory = Module

Syntax:
theory MyTh
imports ImpThy ... ImpTh,
begin
declarations, definitions, theorems, proofs, . ..
end

@ MyTh: name of theory being built. Must live in file MyTh.thy.

@ ImpTh;: name of imported theories. Importing is transitive.

Elsa L Gunter () CS477 Formal Software Development Method / 26

Meta-logic: Basic Constructs

Implication: — (==>)
For separating premises and conclusion of theorems / rules

Equality: = (==)
For definitions

Universal Quantifier: A (!!)
Usually inserted and removed by Isabelle automatically

Do not use inside HOL formulae

Elsa L Gunter () CS477 Formal Software Development Method / 26

Rule/Goal Notation

[IA1; .. 5A]l =B

abbreviates
Al— ... — A, — B

and means the rule (or potential rule):

s~ “and”

Note: A theorem is a rule; a rule is a theorem.

Elsa L Gunter () CS477 Formal Software Development Method / 26

The Proof/Goal State

1.Ax1 ... Xm. [1A1; ... Al = B

X1 ... Xm Local constants (fixed variables)
Al.. A, Local assumptions
B Actual (sub)goal

Elsa L Gunter () CS477 Formal Software Development Method / 26

o lIsabelle uses Natural Deduction proofs
o Uses (modified) sequent encoding

@ Rule notation:

Rule Sequent Encoding
Ay A
% JAs, ... Ay = A
B

|]A1,...,B2>Ai,...,An[|:>A

Elsa L Gunter () CS477 Formal Software Development Method / 26

Natural Deduction

For each logical operator &, have two kinds of rules:

Introduction: How can | prove A& B?
?
A® B
Elimination: What can | prove using A ® B?

A®B...
?

Elsa L Gunter () CS477 Formal Software Development Method

/ 26

Operational Reading

Ai...Ap

A
Introduction rule:
To prove A it suffices to prove A; ... A,.

Elimination rule:

If we know A; and we want to prove A
it suffices to prove Ay ... A,

Elsa L Gunter () CS477 Formal Software Development Method / 26

A B

conjI
ANB

A B

AVB AVB

disjI1/2

A—B
impI
A—B

A — False

notI
—A

Elsa L Gunter ()

AAB[AB] = C

conjE
C

AVBA=— CB=—C

disjE
C

A—BAB=—C

impE
C

—-A A

notE

CS477 Formal Software Development Method

Natural Deduction for Propositional Logic

/ 26

Natural Deduction for Propositional Logic

A=— B B=—A A=B A
iffl —— iffD1
A= B
A=B B
iffD2
A

Elsa L Gunter () CS477 Formal Software Development Method / 26

More Rules

AAB AAB
conjunctl conjunct?2
A—B A
B

Compare to elimination rules:

AAB[A Bl =C A—BAB=C
conjE c impE
C

Elsa L Gunter () CS477 Formal Software Development Method / 26

“Classical” Rules

A = False A=A
—— ccontr ——— classical
A A

@ ccontr and classical are not derivable from the Natural Deduction
rules.

@ They make the logic “classical”, i.e. “non-constructive or
“non-intuitionistic”.

Elsa L Gunter () CS477 Formal Software Development Method / 26

Proof by Assumption

@ Proof method: assumption
o Use:

apply assumption
@ Proves:

[A1;...; Ay = A

by unifying A with one of the A;

Elsa L Gunter () CS477 Formal Software Development Method / 26

Rule Application: The Rough Idea

Applying rule |As;...; Ay] = A to subgoal C:
e Unify Aand C
@ Replace C with n new subgoals: A} ... A},
Backwards reduction, like in Prolog
Example: rule: [7P;?Q] =7PA?Q
subgoal: 1. AAB
Result: 1. A2. B

Elsa L Gunter () CS477 Formal Software Development Method

/ 26

Rule Application: More Complete Idea

Applying rule |As;...; Ay] = A to subgoal C:
e Unify A and C with (meta)-substitution o
@ Specialize goal to o(C)
@ Replace C with n new subgoals: o(A;1) ... o(An)

Note: schematic variables in C treated as existential variables
Does there exist value for ?X in C that makes C true?
(Still not the whole story)

Elsa L Gunter () CS477 Formal Software Development Method / 26

Application

Rule: [A1;.. . Al = A
Subgoal: 1. [Bi;...;Bn]| = C
Substitution: ¢(A) = o(C)

New subgoals: 1. [o(B1);...;0(Bm)| = o(A1)

n. [o(Bi);...;0(Bm)] = o(An)
Proves: [o(B1);...;0(Bm)] = o(C)
Command: apply (rule <rulename>)

Elsa L Gunter () CS477 Formal Software Development Method / 26

Applying Elimination Rules

apply (erule <elim-rule>)
Like rule but also

@ Unifies first premise of rule with an assumption

@ Eliminates that assumption instead of conclusion

Elsa L Gunter () CS477 Formal Software Development Method / 26

Rule: [?PA?Q; [7P; 7Q] =7R] ="R
Subgoal: 1. [X;AANB; Y] =Z
Unification: T/PN\PQ=AANBand?R=Z7
New subgoal: 1. [X;Y] = [A;B] = Z

Same as: 1% YA B = Z

Elsa L Gunter () CS477 Formal Software Development Method / 26

	Introduction to Isabelle

