CS477 Formal Software Development Methods

Elsa L Gunter
2112 SC, UIUC
egunter@illinois.edu
http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and
by Gul Agha

January 31, 2014

Elsa L Gunter () CS477 Formal Software Development Methoc

Model Checking for Propositions

@ Problem: Would like an efficient way to answer for a given
proposition P:
o Is P a tuatology?
o Is P satisfiable?

o Note: And general algorithm to answer the first can be used to answer
the second and vice versa.

e Does a given valuation satisfy P?
o Difficulty: Answering if P is satisfiable is NP-complete
@ Algorithms exist with good performance in general practice
o BDDs are one such

Elsa L Gunter ()

CS477 Formal Software Development Methoc

Binary Decision Trees Binary Decision Trees

@ Binary decision tree is a (rooted, directected) edge and vertex labeled
tree with two types of verices — internal nodes, and leaves — such

that
o Internal nodes have exactly two out edges
o Leaves have no out edges
o Internal nodes are labeled by atomic propositions (variables)
o Leaves are labeled by true or false.
o Left edges labeled false and right edges labeled true.
o For each path (branch) in the tree, each atomic proposition may label

at most one vertex of that path.

Elsa L Gunter () CS477 Formal Software Development Methoc /11

(AN B)V (=C)

y w
false We % \rue

fals% true fals% true false‘ \true false true

[true] ‘false‘ [true] | false [true] false‘ [true] [true]

Elsa L Gunter ()

CS477 Formal Software Development Methoc

@ Binary decision trees can record the set of all models (and
non-models) of a proposition
e Path records a valuation: out edge label gives value for variable
labeling an internal
Any variable not on path can have any value
o Leaf label says whether a valuation assigning those values to those
variables

o Is a model (true, the tree accepts the valuation)
e Or not a model (false, the tree)
e Each valuation matches exactly one branch
o More than one valuation may (will) match a given branch

Elsa L Gunter () CS477 Formal Software Development Methoc /11

Example: Different Variable Ordering - Different Tree

fal% \t\rue % \true

false true false

true false true

true false

false

[true] [true] [true][true] false‘ ‘false‘ [true]

Elsa L Gunter () CS477 Formal Software Development Methoc

Example: Many Logically Equivalent Trees Alternate Syntax for Propositional Logic

(ANB)V (=C)

false/ true falb% \rue

yrue fals

xrue false y ue

&

false
rue rue false

false true false

Elsa L Gunter ()

sa) CS477 Formal Software Development Methoc

Translating Original Propositions into if_then_else

@ Start with proposition Py with variables vy, ... v,

@ P[c/v] is the proposition resulting from replacing all occurrences of
variable v with constant ¢

o Let P be the result of evaluating every subexpression of P containing
no variables

o Let Py = if vy then Py[T/v1] else Po[F/vi]

o Let P; = if v; then P,',l[T/V,'] elseP,-,l[F/v,-]

@ P, is logically equivalent to P, but only uses if_then_else_.

o Valuation satisfies P if and only if it satisfies P,
e P, depends on the order of variables vy, ... v,
e P, directly corresponds to a binary decision tree

Elsa L Gunter () CS477 Formal Software Development Methoc

@ Still have constants {T,F}

@ Still have countable set AP of propositional variables a.k.a. atomic
propositions

@ Only one ternary connective: the conditional if_then_else_

o First argument only a variable
e Second and third arguments propositions

Elsa L Gunter () CS477 Formal Software Development Methoc /T

P =(ANAB)V(=C), variables {A, B, C}
Py = (A/\ B) \Y (ﬁC)

Elsa L Gunter () CS477 Formal Software Development Methoc /11

(AA B)V (=C), variables {A, B, C}

Po=(AAB)V(=C)
Py = if Athen (T A B)V

(=C) else (F A B) VvV (=C)

Elsa L Gunter ()

CS477 Formal Software Development Methoc

(AN B)V (—C), variables {A, B, C}

Po=(AAB)V (=C)
Py = if Athen (T N B)V
P

(=C) else (F A B) Vv (=C)
if B then (if A then (T A T)V (=C) else (
else (if A then (T N F)V (=C) else (

Elsa L Gunter () CS477 Formal Software Development Methoc

P = (AAB)V (—C), variables {A, B, C} P = (AAB)V (—C), variables {A, B, C}
Po=(AAB)V (ﬂC) Po=(AAB)V (~C)
Py = if Athen (T N B)V (~C)else (F A B)V (—|C) Py = if Athen (T N B)V (—C)else (F A B)V (~C)
P, = if B then (if A then (T N T)V (=C) else (F A T)V (~C)) P, = if B then (if A then (T A T)V (~C)else (F A T)V (—C))
else (if A then (T A F)V (=C) else (F A F)V (—C)) else (if A then (T N F)V (=C) else (F A F)V (=C))
P> = if B then (if A then TV (=C) else FV (=C)) P> = if B then (if A then TV (=C) else FV (=C))
else (if A then FV (=C)

else F Vv (=C)) else (if A then FV (=C) else F Vv (—C))
Py = if C then (if B then (if A then TV (=T) else FV (—T))
else (if A then FV (=T) else F Vv (—T)))
else (if B then (if A then TV (—F) else F V (=F))
else (if A then FV (—=F) else FV (=F)))

CS477 Formal Software Development Methoc Elsa L Gunter () CS477 Formal Software Development Methoc

Elsa L Gunter ()

(AN B)V (—C), variables {A, B, C}
P3 = if C then (if B then (if A then T else F)
Po=(AnNB)V(~C) else (if A then F else F))
Py = if Athen (T A B)Vv(=C)else (F A B)V(=C) else (if B then (if A then T else T)
Py = if B then (if A then (T A T)V (=C) else (F A T) Vv (=C)) else (if A then T else T))
else (if A then (T A F)V (=C) else (F A F)V (—C))
Py = if B then (if A then TV (~C) else FV (~C)) P53 corresponds to second binary decision tree given earlier
else (if A then FV (=C) else FV (=C)) @ Any proposition is strict if_then_else_ form corresponds directly to a
P; = if C then (if B then (if A then TV (=T) else FV (=T)) binary decision tree that accepts exactly the valuations that satisfy
else (if A then F\ (—T) else F Vv (=T))) (model) the proposition.
else (if B then (if A then TV (—F) else FV (=F))
else (if A then F\ (—F) else F\/ (=F)))
= if C then (if B then (if A then T else F)
else (if A then F else F))
else (if B then (if A then T else T)
else (if A then T else T))

Binary decision trees may contain (much) redundancy

acyclic graphs
@ Require all other conditions still hold
@ Generalization of binary decision trees
o Allows for sharing of common subtrees.

Accepts / rejects valuations as with binary decision trees.

Elsa L Gunter ()

CS477 Formal Software Development Methoc

Binary Decision Diagram (BDD): Replace trees by (rooted) directed

Elsa L Gunter () CS477 Formal Software Development Methoc

Reduced Ordered Binary Decision Diagrams Achieving Canonical Form

@ Problem: given proposition may correspond to many different BDDs @ Start with an Ordered BDD (all edges in correct order)
o How to create a (compact) canonical BDD for a proposition such @ Repeat following until none apply
that two different propositions are logically equivalent if and only if o Remove duplicate leaves: Eliminate all but one leaf with a given label
they have the same (isomorphic) canonical BDD and redirect all edges to the eliminated leaves to the remaining one
o Start: order propositional variables v; < v;. @ Remove duplicate nonterminals: If node n and m have the same
@ Bryant showed you can obtain such a canonical BDD by requiring variable label, their left edges point to the same node and their right
o Variables should appear in order on each path for root to leaf edges point to the same node, remove one and redirect edges that
o No distinct duplicate (isomorphic) subtrees (including leaves) pointed to it to the other

@ Remove redundant tests: If both out edges node n point to node m,
eliminate n and redirect all edges coming in to n to m

@ Bryant gave procedure to do the above that terminates in linear time

Elsa L Gunter () CS477 Formal Software Development Methoc / Elsa L Gunter () CS477 Formal Software Development Methoc

Elsa L Gunter () CS477 Formal Software Development Methoc /11

