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Semantics of Propositional Logic: Model Theory

Model for Propositional Logic has three parts

Mathematical set of values used as meaning of propositions

Interpretation function giving meaning to props built from logical
connectives, via structural recursion

Standard Model of Propositional Logic

B = {true, false} boolean values

v : AP → B a valuation

Interpretation function . . .
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Semantics of Propositional Logic: Model Theory

Standard Model of Propositional Logic (cont)

Standard interpretation Iv defined by structural induction on
formulae:

Iv (T) = true and Iv (F) = false
If a ∈ AP then Iv (a) = v(a)
For p ∈ PROP, if Iv (p) = true then Iv (¬p) = false, and if
Iv (p) = false then Iv (¬p) = true
For p, q ∈ PROP

If Iv (p) = true and Iv (q) = true, then Iv (p ∧ q) = true, else
Iv (p ∧ q) = false
If Iv (p) = true or Iv (q) = true, then Iv (p ∨ q) = true, else
Iv (p ∨ q) = false
If Iv (q) = true or Iv (p) = false, then Iv (p ⇒ q) = true, else
Iv (p ⇒ q) = false
If Iv (p) = Iv (q) then Iv (p ⇔ q) = true, else Iv (p ⇔ q) = false
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Truth Tables

Interpretation function often described by truth table

p q ¬p p ∧ q p ∨ q p ⇒ q p ⇔ q

true true

false true true true true

true false

false false true false false

false true

true false true true false

false false

true false false true true
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Modeling Propositional Formulae

(B, I) is the standard model of proposition logic

Given valuation v and proposition p ∈ PROP, write v |= p iff
Iv (p) = true

More fully written as B, I, v |= p
Say v satisfies p, or v models p
Write v 6|= p if Iv (p) = false

p is satisfiable if there exists valuation v such that v |= p

p is valid, a.k.a. a tautology if for every valuation v we have v |= p

p is logically equivalent to q, p ≡ q if for every valuation, v , we have
v |= p iff v |= q

Claim: Logical equivalence is an equivalence relation
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Example Tautology

A⇒ ((A⇒ B)⇒ B)

A B A⇒ B (A⇒ B)⇒ B A⇒ ((A⇒ B)⇒ B)

true true

true true true

true false

false true true

false true

true true true

false false

true false true
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Example Tautology – Your Turn
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Example: Logical Equivalence

A⇒ B ≡ ((¬A) ∨ B)

A B A⇒ B ¬A (¬A) ∨ B

true true true false true

true false false false false

false true true true true

false false true true true
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More Useful Logical Equivalences

¬¬A ≡ A ¬T ≡ F ¬F ≡ T
(A ∨ A) ≡ A (A ∨ B) ∨ C ≡ A ∨ (B ∨ C )
(A ∧ A) ≡ A (A ∧ B) ∧ C ≡ A ∧ (B ∧ C )
A ∨ B ≡ B ∨ A ¬(A ∨ B) ≡ (¬A) ∧ (¬B)
A ∧ B ≡ B ∧ A ¬(A ∧ B) ≡ (¬A) ∨ (¬B)

(A ∧ ¬A) ≡ F A ∨ (B ∧ C ) ≡ (A ∨ B) ∧ (A ∨ C )
(A ∨ ¬A) ≡ T (A ∧ B) ∨ C ≡ (A ∨ C ) ∧ (B ∨ C )

(T ∧ A) ≡ A A ∧ (B ∨ C ) ≡ (A ∧ B) ∨ (A ∧ C )
(T ∨ A) ≡ T (A ∧ B) ∨ C ≡ (A ∧ C ) ∨ (B ∧ C )
(F ∧ A) ≡ F (F ∨ A) ≡ A
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Logical Equivalence a Structural Congruence

Theorem

Logical equivalence is a structural congruence. That is, if p ≡ p′ and
q ≡ q′ then

1 ¬p ≡ ¬p′

2 p ∧ q ≡ p′ ∧ q′

3 p ∨ q ≡ p′ ∨ q′

4 p ⇒ q ≡ p′ ⇒ q′

5 p ⇔ q ≡ p′ ⇔ q′
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Logical Equivalence a Structural Congruence

Proof.

Assume p ≡ p′ and q ≡ q′

Hyp: Then for all valuations v , v |= p iff v |= p′ and v |= q iff
v |= q′, i.e. Iv (p) = true iff Iv (p′) = true and Iv (q) = true iff
Iv (q′) = true

Case 4: Show p ⇒ q ≡ p′ ⇒ q′

Other cases done same way

Need to show for all v , Iv (p ⇒ q) = true iff Iv (p′ ⇒ q′) = true

Fix v

Need to show if Iv (p ⇒ q) = true then Iv (p′ ⇒ q′) = true, and if
Iv (p′ ⇒ q′) = true then Iv (p ⇒ q) = true
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Logical Equivalence a Structural Congruence

Proof.

(=⇒)

Assume Iv (p ⇒ q) = true
By closure property of inductive definition of I, either Iv (q) = true or
Iv (p) = false.
Therefore, by Hyp, either Iv (q′) = true or Iv (p′) = false

since B has only two elements, and Iv total (proof?)

By I def, have Iv (p′ ⇒ q′)

(⇐=)
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Non-standard Model of Propositional Logic

Other models possible
Example:

C = {true, false,⊥}
Valuations assign values in cC to propositional atoms

If Jw (p) = ⊥ then Jw (¬p) = ⊥, otherwise same as for I
Jw (p) = bot or Jw (q) = ⊥ then Jw (¬p) = ⊥, Jw (p ∧ q) = ⊥,
Jw (p ∨ q) = ⊥, Jw (p ⇒ q) = ⊥, and Jw (p ⇔ q) = ⊥; otherwise
same as for I
Note: A ∨ ¬A 6≡ T
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Proofs in Propositional Logic

Natural Deduction proofs are trees with nodes that are inference rules

Inference rule has hypotheses and conclusion

Conclusion a single proposition

Hypotheses zero or more propositions, possibly with hypotheses

Two main kinds of inference rules:

Introduction – says how to conclude proposition made from connective
is true
Eliminations – says how to use a proposition made from connective to
prove result

Inference rules associated with connectives

Rule with no hypotheses called an axiom
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Introduction Rules

Truth Introduction: And Introduction:

T I
T

A B
And I

A ∧ B
A ∧ B

Or Introduction:

A
OrL I

A ∨ A ∨ B

A ∨ B
OrR I

B ∨ A ∨ B

Not Introduction: Implication Introduction:

A...
F

Not I
¬A

A...
B

Imp I
A⇒ B

No False Introduction
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Example Proof 1

A B
And I

A ∧ B

Imp I
B ⇒ (A ∧ B)

Imp I

A⇒ (B ⇒ (A ∧ B))

All assumptions discharged; proof complete
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Example Proof 2

A

?

B
And I

A ∧ B
Imp I

B ⇒ (A ∧ B)

Closed proofs must discharge all hypotheses

Otherwise have theorem relative to / under undischarged hypotheses

Here have proved “Assuming A, we have B ⇒ (A ∧ B)
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Discharging Hypothesis

A A

And I

A ∧ A
Imp I

A⇒ (A ∧ A)

A
Imp I

B ⇒ A
Imp I

A⇒ (B ⇒ A)

Imp I (and other rules discharging assumptions) may discharge
multiple instance of hypothesis

Or may discharge none at all

Every assumption instance discharged only once
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Your Turn

A⇒ (B ⇒ (A ∨ B))
Imp I

A⇒ (A ∨ B)

Some Space

Some Space

Some Space
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