CS477 Formal Software Development Methods

Elsa L Gunter 2112 SC, UIUC egunter@illinois.edu

http://courses.engr.illinois.edu/cs477

Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha

January 23, 2014

Semantics of Propositional Logic: Model Theory

Model for Propositional Logic has three parts

- Mathematical set of values used as meaning of propositions
- Interpretation function giving meaning to props built from logical connectives, via structural recursion

Standard Model of Propositional Logic

- $\mathcal{B} = \{\text{true}, \text{false}\}$ boolean values
- $v : AP \rightarrow \mathcal{B}$ a valuation
- Interpretation function . . .

Semantics of Propositional Logic: Model Theory

Standard Model of Propositional Logic (cont)

- Standard interpretation \mathcal{I}_{ν} defined by structural induction on formulae:
 - $\mathcal{I}_{\nu}(\mathsf{T}) = \text{true and } \mathcal{I}_{\nu}(\mathsf{F}) = \text{false}$
 - If $a \in AP$ then $\mathcal{I}_{\nu}(a) = \nu(a)$
 - For $p \in PROP$, if $\mathcal{I}_{\nu}(p) = \text{true then } \mathcal{I}_{\nu}(\neg p) = \text{false}$, and if $\mathcal{I}_{\nu}(p) = \text{false then } \mathcal{I}_{\nu}(\neg p) = \text{true}$
 - For $p, q \in PROP$
 - If $\mathcal{I}_{\nu}(p) = \mathrm{true}$ and $\mathcal{I}_{\nu}(q) = \mathrm{true}$, then $\mathcal{I}_{\nu}(p \wedge q) = \mathrm{true}$, else $\mathcal{I}_{\nu}(p \wedge q) = \mathrm{false}$
 - If $\mathcal{I}_{\nu}(p) = \mathrm{true}$ or $\mathcal{I}_{\nu}(q) = \mathrm{true}$, then $\mathcal{I}_{\nu}(p \vee q) = \mathrm{true}$, else $\mathcal{I}_{\nu}(p \vee q) = \mathrm{false}$
 - If $\mathcal{I}_{\nu}(q) = \mathrm{true}$ or $\mathcal{I}_{\nu}(p) = \mathrm{false}$, then $\mathcal{I}_{\nu}(p \Rightarrow q) = \mathrm{true}$, else $\mathcal{I}_{\nu}(p \Rightarrow q) = \mathrm{false}$
 - $\bullet \ \ \mathsf{lf} \ \mathcal{I}_{\nu}(\textbf{\textit{p}}) = \mathcal{I}_{\nu}(\textbf{\textit{q}}) \ \mathsf{then} \ \mathcal{I}_{\nu}(\textbf{\textit{p}} \Leftrightarrow \textbf{\textit{q}}) = \mathsf{true}, \ \mathsf{else} \ \mathcal{I}_{\nu}(\textbf{\textit{p}} \Leftrightarrow \textbf{\textit{q}}) = \mathsf{false}$

p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \Leftrightarrow q$
true	true					
true	false					
false	true					
false	false					

p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \Leftrightarrow q$
true	true	false				
true	false	false				
false	true	true				
false	false	true				

p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \Leftrightarrow q$
true	true	false	true			
true	false	false	false			
false	true	true	false			
false	false	true	false			

p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \Leftrightarrow q$
true	true	false	true	true		
true	false	false	false	true		
false	true	true	false	true		
false	false	true	false	false		

p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \Leftrightarrow q$
true	true	false	true	true	true	
true	false	false	false	true	false	
false	true	true	false	true	true	
false	false	true	false	false	true	

p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \Leftrightarrow q$
true	true	false	true	true	true	true
true	false	false	false	true	false	false
false	true	true	false	true	true	false
false	false	true	false	false	true	true

Modeling Propositional Formulae

- $(\mathcal{B}, \mathcal{I})$ is the standard model of proposition logic
- Given valuation v and proposition $p \in PROP$, write $v \models p$ iff $\mathcal{I}_v(p) = \text{true}$
 - More fully written as $\mathcal{B}, \mathcal{I}, v \models p$
 - Say v satisfies p, or v models p
 - Write $v \not\models p$ if $\mathcal{I}_v(p) = \text{false}$
- p is satisfiable if there exists valuation v such that $v \models p$
- p is valid, a.k.a. a tautology if for every valuation v we have $v \models p$
- p is logically equivalent to q, $p \equiv q$ if for every valuation, v, we have $v \models p$ iff $v \models q$
 - Claim: Logical equivalence is an equivalence relation

$$A \Rightarrow ((A \Rightarrow B) \Rightarrow B)$$

Α	В	$A \Rightarrow B$	$(A \Rightarrow B) \Rightarrow B$	$A \Rightarrow ((A \Rightarrow B) \Rightarrow B)$
true	true			
true	false			
false	true			
false	false			

$$A \Rightarrow ((A \Rightarrow B) \Rightarrow B)$$

Α	В	$A \Rightarrow B$	$(A \Rightarrow B) \Rightarrow B$	$A \Rightarrow ((A \Rightarrow B) \Rightarrow B)$
true	true	true		
true	false	false		
false	true	true		
false	false	true		

$$A \Rightarrow ((A \Rightarrow B) \Rightarrow B)$$

Α	В	$A \Rightarrow B$	$(A \Rightarrow B) \Rightarrow B$	$A \Rightarrow ((A \Rightarrow B) \Rightarrow B)$
true	true	true	true	
true	false	false	true	
false	true	true	true	
false	false	true	false	

$$A \Rightarrow ((A \Rightarrow B) \Rightarrow B)$$

A	В	$A \Rightarrow B$	$(A \Rightarrow B) \Rightarrow B$	$A \Rightarrow ((A \Rightarrow B) \Rightarrow B)$
true	true	true	true	true
true	false	false	true	true
false	true	true	true	true
false	false	true	false	true

Example Tautology – Your Turn

Example: Logical Equivalence

$$A \Rightarrow B \equiv ((\neg A) \lor B)$$

A	В	$A \Rightarrow B$	$\neg A$	$(\neg A) \lor B$
true	true	true	false	true
true	false	false	false	false
false	true	true	true	true
false	false	true	true	true

More Useful Logical Equivalences

$$\neg \neg A \equiv A \qquad \neg \mathbf{T} \equiv \mathbf{F} \qquad \neg \mathbf{F} \equiv \mathbf{T} \\
(A \lor A) \equiv A \qquad (A \lor B) \lor C \equiv A \lor (B \lor C) \\
(A \land A) \equiv A \qquad (A \land B) \land C \equiv A \land (B \land C) \\
A \lor B \equiv B \lor A \qquad \neg (A \lor B) \equiv (\neg A) \land (\neg B) \\
A \land B \equiv B \land A \qquad \neg (A \land B) \equiv (\neg A) \lor (\neg B) \\
(A \land \neg A) \equiv \mathbf{F} \qquad A \lor (B \land C) \equiv (A \lor B) \land (A \lor C) \\
(A \lor \neg A) \equiv \mathbf{T} \qquad (A \land B) \lor C \equiv (A \lor C) \land (B \lor C) \\
(\mathbf{T} \land A) \equiv A \qquad A \land (B \lor C) \equiv (A \land B) \lor (A \land C) \\
(\mathbf{T} \lor A) \equiv \mathbf{T} \qquad (A \land B) \lor C \equiv (A \land C) \lor (B \land C) \\
(\mathbf{F} \land A) \equiv \mathbf{F} \qquad (\mathbf{F} \lor A) \equiv A$$

Logical Equivalence a Structural Congruence

Theorem

Logical equivalence is a structural congruence. That is, if $p \equiv p'$ and $q \equiv q'$ then

Logical Equivalence a Structural Congruence

Proof.

- Assume $p \equiv p'$ and $q \equiv q'$
- **Hyp**: Then for all valuations v, $v \models p$ iff $v \models p'$ and $v \models q$ iff $v \models q'$, i.e. $\mathcal{I}_v(p) = \text{true}$ iff $\mathcal{I}_v(p') = \text{true}$ and $\mathcal{I}_v(q) = \text{true}$ iff $\mathcal{I}_v(q') = \text{true}$
- Case 4: Show $p \Rightarrow q \equiv p' \Rightarrow q'$
 - Other cases done same way
- Need to show for all v, $\mathcal{I}_{v}(p\Rightarrow q)=\mathrm{true}$ iff $\mathcal{I}_{v}(p'\Rightarrow q')=\mathrm{true}$
- Fix v
- Need to show if $\mathcal{I}_{\nu}(p \Rightarrow q) = \mathrm{true}$ then $\mathcal{I}_{\nu}(p' \Rightarrow q') = \mathrm{true}$, and if $\mathcal{I}_{\nu}(p' \Rightarrow q') = \mathrm{true}$ then $\mathcal{I}_{\nu}(p \Rightarrow q) = \mathrm{true}$

Logical Equivalence a Structural Congruence

Proof.

- (⇒)
 - Assume $\mathcal{I}_{\nu}(p \Rightarrow q) = \text{true}$
 - By closure property of inductive definition of \mathcal{I} , either $\mathcal{I}_{\nu}(q) = \text{true}$ or $\mathcal{I}_{\nu}(p) = \text{false}$.
 - Therefore, by **Hyp**, either $\mathcal{I}_{\nu}(q')=\mathrm{true}$ or $\mathcal{I}_{\nu}(p')=\mathrm{false}$
 - ullet since ${\cal B}$ has only two elements, and ${\cal I}_{v}$ total (proof?)
 - ullet By ${\mathcal I}$ def, have ${\mathcal I}_v(p'\Rightarrow q')$
- **●** (←=)

Non-standard Model of Propositional Logic

Other models possible Example:

- $\mathcal{C} = \{\text{true}, \text{false}, \bot\}$
- Valuations assign values in cC to propositional atoms
- If $\mathcal{J}_w(p) = \bot$ then $\mathcal{J}_w(\neg p) = \bot$, otherwise same as for \mathcal{I}
- $\mathcal{J}_w(p) = bot$ or $\mathcal{J}_w(q) = \bot$ then $\mathcal{J}_w(\neg p) = \bot$, $\mathcal{J}_w(p \land q) = \bot$, $\mathcal{J}_w(p \lor q) = \bot$, $\mathcal{J}_w(p \Rightarrow q) = \bot$, and $\mathcal{J}_w(p \Leftrightarrow q) = \bot$; otherwise same as for \mathcal{I}
- Note: $A \lor \neg A \not\equiv \mathbf{T}$

Proofs in Propositional Logic

- Natural Deduction proofs are trees with nodes that are inference rules
- Inference rule has hypotheses and conclusion
- Conclusion a single proposition
- Hypotheses zero or more propositions, possibly with hypotheses
- Two main kinds of inference rules:
 - Introduction says how to conclude proposition made from connective is true
 - Eliminations says how to use a proposition made from connective to prove result
- Inference rules associated with connectives
- Rule with no hypotheses called an axiom

Introduction Rules

Truth Introduction:

And Introduction:

$$\frac{A \quad B}{A \wedge B}$$
 And $A \wedge B$

Or Introduction:

$$\frac{A}{A \vee A \vee B} \operatorname{Or}_{L} I$$

$$\frac{A \vee B}{B \vee A \vee B} \operatorname{Or}_{R} I$$

Not Introduction:

Implication Introduction:

$$\frac{A}{\vdots}$$

$$\frac{B}{A \Rightarrow B} \text{Imp I}$$

No False Introduction

$$A\Rightarrow (B\Rightarrow (A\wedge B))$$

$$\frac{A}{B \Rightarrow (A \land B)}$$

$$A \Rightarrow (B \Rightarrow (A \land B))$$
 Imp I

$$\frac{\frac{A \quad B}{A \wedge B}}{\frac{B \Rightarrow (A \wedge B)}{A \Rightarrow (B \Rightarrow (A \wedge B))}} \operatorname{Imp I}$$

$$\frac{\frac{A \quad B}{A \wedge B} \text{ And I}}{B \Rightarrow (A \wedge B)} \text{ Imp I}$$

$$A \Rightarrow (B \Rightarrow (A \wedge B)) \text{ Imp I}$$

$$\frac{\frac{A \quad B}{A \wedge B} \text{ And I}}{B \Rightarrow (A \wedge B)} \text{ Imp I}$$

$$A \Rightarrow (B \Rightarrow (A \wedge B)) \text{ Imp I}$$

All assumptions discharged; proof complete

$$B \Rightarrow (A \wedge B)$$

$$\frac{\frac{B}{A \wedge B}}{B \Rightarrow (A \wedge B)} \text{Imp I}$$

$$\frac{A \quad B}{A \wedge B} \text{ And I}$$

$$B \Rightarrow (A \wedge B) \quad \text{Imp I}$$

$$\frac{\frac{A?}{A \wedge B} \text{ And I}}{B \Rightarrow (A \wedge B)} \text{ Imp I}$$

$$\frac{A \quad B}{A \wedge B} \text{ And I}$$

$$B \Rightarrow (A \wedge B) \quad \text{Imp I}$$

- Closed proofs must discharge all hypotheses
- Otherwise have theorem relative to / under undischarged hypotheses
- Here have proved "Assuming A, we have $B \Rightarrow (A \land B)$

$$A \Rightarrow (A \wedge A)$$

$$\frac{\frac{A \quad A}{A \wedge A} \text{ And I}}{A \Rightarrow (A \wedge A)} \text{ Imp I}$$

$$\frac{\frac{A \quad A}{A \wedge A} \text{ And I}}{A \Rightarrow (A \wedge A)} \text{ Imp I}$$

• Imp I (and other rules discharging assumptions) may discharge multiple instance of hypothesis

$$\frac{A \quad A}{A \wedge A} \text{ And I}$$

$$A \Rightarrow (A \wedge A) \quad \text{Imp I}$$

$$A \Rightarrow (B \Rightarrow A)$$

 Imp I (and other rules discharging assumptions) may discharge multiple instance of hypothesis

$$\frac{\frac{A \quad A}{A \wedge A} \text{ And I}}{A \Rightarrow (A \wedge A)} \text{ Imp I}$$

$$\frac{A}{B \Rightarrow A} \operatorname{Imp} I$$

$$A \Rightarrow (B \Rightarrow A) \operatorname{Imp} I$$

• Imp I (and other rules discharging assumptions) may discharge multiple instance of hypothesis

$$\frac{\frac{A \quad A}{A \wedge A} \text{ And I}}{A \Rightarrow (A \wedge A)} \text{ Imp I}$$

$$\frac{A}{B \Rightarrow A} \frac{\text{Imp I}}{A \Rightarrow (B \Rightarrow A)} \text{Imp I}$$

 Imp I (and other rules discharging assumptions) may discharge multiple instance of hypothesis

$$\frac{\frac{A \quad A}{A \wedge A} \text{ And I}}{A \Rightarrow (A \wedge A)} \text{ Imp I}$$

$$\frac{A}{B \Rightarrow A} \frac{\text{Imp I}}{A \Rightarrow (B \Rightarrow A)} \text{Imp I}$$

- Imp I (and other rules discharging assumptions) may discharge multiple instance of hypothesis
- Or may discharge none at all
- Every assumption instance discharged only once

Your Turn

$$A \Rightarrow (A \lor B)$$

