
Formal Methods: Lecture 1

José Meseguer

Computer Science Department

University of Illinois at Urbana-Champaign

1



Formal Methods: What and Why

What is Formal Methods? Why is it needed?

• testing can show errors but not their absence

• software errors in critical systems can cause major

disasters

• mathematics can be used to formally specify a software

system, to state its crucial properties and to prove a

system correct for all behaviors

• we then say that the system has been verified correct

2



Formal Methods as Mathematical Modeling

All branches of engineering use mathematical modeling as a

crucial design method to validate designs before they are

implemented. For example, civil engineers use mathematical

models based on finite element methods to compute the

structural strength of bridges and buildings. Similarly,

aeronautical engineers use mathematical models of fluid

dynamics to evaluate different aircraft designs.

No serious engineer would build bridges or airplanes without

mathematical modeling, because of the serious risks

involved and the professional irresponsibility that such a

behavior would demonstrate. However, software systems,

although they are among the most complex artifacts we

build, are often still built without mathematical modeling.

3



Mathematical Modeling: Safety and Efficiency

In all branches of engineering the predictive power of

mathematical modeling of system designs has two

important consequences:

1. Safety: designs are much safer because they have been

subjected to detailed mathematical analysis before they

are deployed.

2. Efficiency: Overall system development is much more

efficient because the most costly system errors are

design errors. The cost of correcting such errors can be

prohibitive once large parts of a system have already

been implemented. Mathematical analysis can uncover

such design errors before a system is built.

4



By Hand vs. Tool-Assisted Specification and Verification

One can reason mathematically about a software and prove

it correct; this can be done even with pencil and paper.

This is the most important task; it cannot be replaced by

machines for many reasons, including the fact that the

choice of what properties to prove can be an ethical choice.

However, to err is human, and it is a fact of life that even

very experienced engineers make design and programming

mistakes and can similarly make mistakes in:

• specification, i.e., in modeling a system mathematically

(system specification) and/or in stating the properties

to be verified (property specification); and

• proof, i.e., in the actual proof of correctness.

5



By Hand vs. Tool-Assisted Verification (II)

Tools that mechanize the deduction process can greatly

help in avoiding proof mistakes and, to some extent,

specification mistakes:

• tools supporting executable specification can help in

debugging specs; and

• proof assistants and other property verification tools

(for example, model checkers) can ensure proof

correctness.

6



Limitations of Formal Methods

Exagerated claims about what can be achieved through

formal methods are dangerous: they can lead to a

dangerous overconfidence in a system’s correctness.

We have only limited ways of convincing ourselves that we

have given the right specification: there can be mistakes in

the specification and in capturing the informal requirements.

Even with the right specification, all we can prove at best is

the correctness of a mathematical abstraction, never of the

system running in the real world.

All we can say at best is that if the compiler and the

hardware design are correct, and the hardware behaves

according to its specifications, then the software will

execute correctly.

7



Limitations of Formal Methods (II)

Of all the above preconditons for correct execution the first

two—compiler correctness and correctness of the hardware

design—deal after all with properties reducible to

mathematical abstractions and can therefore be included

within the software verification project.

This is because a compiler is just another program; and

because a hardware design, as opposed to a hardware

physical implementation, is just an abstraction that can be

mathematically described just as software can, and at that

level of abstraction the software/hardware distinction

evaporates.

8



Limitations of Formal Methods (III)

The biggest and most irreducible if is whether the hardware

will happen to behave according to its specifications. And

this for at least two reasons:

• those specifications assume normal operating

conditions which can be violated by a wide range of

accidental causes such as: defects in the materials or in

the fabrication process, cosmic rays, changes in

temperature, power outages, floods, earthquakes, etc.

• the engineering design rules are ultimately based on

physico-mathematical models of the physical world

which are, and always will be, both aspectual and

fallible approximations of reality.

9



Limitations of Formal Methods (IV)

In spite of the above-mentioned limitations, the use of

formal methods is one of the best engineering ways that we

have of gaining high confidence in the correctness of critical

software systems.

And this for the exact same reason why using mathematical

models is our best way to know what we are doing in

science and engineering.

Due to pragmatic and economic reasons connected with the

labor-intensive nature of software verification, it is often not

feasible to fully verify all systems down to the hardware

design, or even to fully verify just the software.

10



Limitations of Formal Methods (V)

The fact of life is that not all systems are equally critical.

Therefore it is a question of good judgement, and at times

also an ethical question, to decide how much effort should

be spent in software verification.

At one end of the spectrum we have testing, as a weak

form of software validation. At the other end of the

spectrum we have testing plus full software verification, say

down to the hardware design.

In the middle we have a wide range of methods of partial

software verification such as, for example, symbolic

simulation, model checking, and runtime verification. The

key point is that even a modest amount of software

verification can go a long way in increasing correctness.

11



Formal Methods: their Cost and Assurance

Assurance

Effort

6

-
Testing

Exec.

Spec.

Run-Time

Ver. &

Spec.-based

Cert. &

Scalable

Methods

Search

&

Bounded

Model

Checking

Model

Checking

Theorem

Proving

12



Deterministic vs. Concurrent

Programs come in many different languages and styles.

This in fact impacts both the level of difficulty and the

verification techniques suitable in each case.

A first useful distinctions is deterministic vs. concurrent:

• deterministic programs, for each input either yield an

answer or loop; they are usually written in sequential

programming languages and run on sequential

computers, but sometimes they can be parallelized;

• concurrent programs may yield many different answers,

or no answer at all, in the sense of being reactive

systems constantly interacting with their environment;

they usually run simultaneously on different processors.

13



Imperative vs. Declarative

A second useful distinction is imperative vs. declarative:

• imperative programs are those of most conventional

languages; they involve commands changing the state

of the machine to perform a task;

• declarative programs give a mathematical

axiomatization of a problem, as opposed to low-level

instructions on how to solve it; they can be based on

different logical systems.

Of course, the deterministic vs. concurrent and the

imperative vs. declarative are orthogonal distinctions: all

four combinations are possible.

14



The Declarative Advantage

For program reasoning and verification purposes, declarative

programs have the important advantage of being already a

piece of mathematics. Specifically:

• a declarative program P in a language based on a given

logic is typically a logical theory in that logic.

• the properties that we want to verify are satisfied by P

can be stated in another theory Q; and

• the satisfaction relation that needs to be verified is a

semantic implication relation P |= Q stating that any

model of P is also a model of Q.

15



The Imperative Program Verification Game

By contrast, imperative programs are not expressed in the

language of mathematics, but in a conventional

programming language like C, C++, Java, or whatever, with

all kinds of idiosyncrasies.

Thefore, the first thing that we crucially need to do in order

to reason about programs in an imperative programming

language L is to define the mathematical semantics of L.

This we can always do in informal mathematics, but for tool

assistance purposes it is advantageous to axiomatize the

semantics of L as a logical theory TL in a logic.

16



The Imperative Program Verification Game (II)

Then, given a program P in L, the properties we wish to

verify about P can typically be expressed as a logical theory

Q(P ), involving somehow the text of P .

In the imperative case the satisfaction relation can again be

understood as a semantic implication between two theories,

namely, the axiomatization of the language and the desired

properties: TL |= Q(P ).

This is not the conventional way to think of it.

Conventionally, a “logic of programs” such as Hoare’s logic

is used, with triples of the form {A}P{B} with P the

program and A, B formulas. But we shall see that the

conventional approach can be subsumed in the above one.

17



The Equational/Rewriting Logic Framework

A very good and nontrivial question is what logic to use as

the framework logic for program verification. There are

many choices with different tradeoffs.

In this course we will use equational logic to axiomatize the

semantics of (declarative or imperative) deterministic

programs, and rewriting logic to axiomatize the semantics

of (declarative or imperative) concurrent programs.

To axiomatize the properties satisfied by such programs we

will allow more expressive logics, such as full first-order

logic, or even temporal logic (for concurrent programs).

18



The Equational/Rewriting Logic Framework (II)

The above choice has the following advantages:

1. suitable subsets of equational and rewriting logic are

efficiently executable, giving rise, respectively, to a

declarative deterministic functional language, and a

declarative concurrent language;

2. equational logic is very well suited to give executable

axiomatizations of deterministic languages, including

imperative sequential languages;

3. rewriting logic is likewise very well suited to give

executable axiomatization of (declarative or imperative)

concurrent languages;

4. therefore, we can specify all the four kinds of programs

in an executable way within the combined framework.

19



Initiality and Induction

Yet another key advantage is that equational and rewriting

logic theories have initial models. That is, theories in these

logics have an intended or standard model, (also called

initial) which is the one corresponding to our computational

intuitions.

Inductive reasoning principles, such as the different

induction schemes, are then sound principles to infer other

properties satisfied by the standard model of a theory.

The two crucial satisfaction relations for declarative, resp.

imperative, program verification, namely, P |= Q, resp.

TL |= Q(P ), should be understood as inductive satisfaction

relations, corresponding to the initial model of P , resp. TL.

20



Maude

Maude is a declarative language and high-performance

interpreter based on rewriting logic that is very well suited

for concurrent specification and programming.

Since equational logic is a sublogic of rewriting logic,

Maude has a functional programming sublanguage.

We will use Maude and its tools in the course to experiment

with and verify both determinisitc (functional) and

concurrent declarative programs.

We will also use Maude and its tools to give executable

axiomatizations of imperative sequential and concurrent

programming languages and to verify imperative programs.

21



Course Outline

1. Equational logic and functional programming in Maude.

2. Initiality, induction, and verification of Maude

functional programs.

3. Algebraic semantics of a simple sequential imperative

language and verification of its programs.

4. Rewriting logic and concurrent programming in Maude.

5. Verification of Maude concurrent programs and of

imperative concurrent programs.

22



What You Can Get out of this Course

1. basics of equational logic, rewriting logic, inductive

theorem proving, Hoare logic, temporal logic, and

model checking;

2. basics of functional and concurrent declarative

programming in Maude;

3. equational/rewriting methods for giving executable

semantics to imperative programming languages;

4. basic program verification principles and experience for

deterministic declarative and imperative programs, and

for concurrent declarative and imperative programs.

23



Set Theory Prerequisites

Set theory is the language of modern mathematics. In some

countries, students are introduced to set-theoretic notation

in high school or even earlier. In some others, even some

graduate students in engineering have somehow been

cheated out of this very basic training and are quite

unfamiliar with even the most elementary set-theoretic

notions.

As for any part of mathematics, also for logic we will need

to use elementary set theory notions (and corresponding

notations) including:

• set, subset, union, intersection, complement, etc.

• functions, injective, surjective, bijective, etc.

24



Set Theory Prerequisites (II)

• ordered pairs and cartesian products

• sets of functions from one set to another

• binary operations on a set

• relations, including reflexive, symmetric, and transitive

relations

• equivalence relations, quotient sets, and partitions

25



Set Theory Prerequisites (III)

This is not a remedial course on elementary set theory; it is

a course on program verification. Therefore, all the above

set theory notions and notations will be assumed known by

all the students.

Elementary set theory is not rocket science. It is indeed

quite elementary, so if you were cheated out of this most

basic mathematical training up to now, you can pick it up in

a short time.

In fact, you must pick it up very soon in order for you to be

able to follow the course.

26



Set Theory Prerequisites (IV)

To help you in this task, in case you need it, the following

things may be useful and may help you focus your efforts:

1. Study Chapters 1–4, Sections 5.1–5.3 of Chapter 5

(Sections 5.3.1 and 5.3.2 are not strictly needed) of J.

Meseguer, Set Theory in Computer Science – A Gentle

Introduction. Then do the exercises in homework 1.

2. Read Sections 6.1–6.3, and 6.5–6.6 of Chapter 6, and

Section 8.1 of Chapter 8. Then do the exercises in

homework 2.

27



Other Suggested Readings

Besides the suggested catching up reading on set theory, to

help you with the course itself:

1. browse throgh Chapters 1, 2, and 3 of “All About

Maude” to get a first feeling for the language; in

particular, get Maude itself up and running on your

machine by downloading it from the Maude web page

(http://maude.cs.uiuc.edu)

2. as side reading, you can also benefit all along the

course from Peter Ölveczky’s lecture notes at the Univ.

of Oslo, which will be made available in the course web

page.

28


