José Meseguer

Computer Science Department
University of Illinois at Urbana-Champaign



Formal Methods: What and Why

What is Formal Methods? Why is it needed?

e testing can show errors but not their absence

e software errors in critical systems can cause major
disasters

e mathematics can be used to formally specify a software
system, to state its crucial properties and to prove a
system correct for all behaviors

e we then say that the system has been verified correct



Formal Methods as Mathematical Modeling

All branches of engineering use mathematical modeling as a
crucial design method to validate designs before they are
implemented. For example, civil engineers use mathematical
models based on finite element methods to compute the
structural strength of bridges and buildings. Similarly,
aeronautical engineers use mathematical models of fluid
dynamics to evaluate different aircraft designs.

No serious engineer would build bridges or airplanes without
mathematical modeling, because of the serious risks
involved and the professional irresponsibility that such a
behavior would demonstrate. However, software systems,
although they are among the most complex artifacts we
build, are often still built without mathematical modeling.



Mathematical Modeling: Safety and Efficiency

In all branches of engineering the predictive power of
mathematical modeling of system designs has two
important consequences:

1. Safety: designs are much safer because they have been
subjected to detailed mathematical analysis before they
are deployed.

2. Efficiency: Overall system development is much more
efficient because the most costly system errors are
design errors. The cost of correcting such errors can be
prohibitive once large parts of a system have already
been implemented. Mathematical analysis can uncover
such design errors before a system is built.



By Hand vs. Tool-Assisted Specification and Verification

One can reason mathematically about a software and prove
it correct; this can be done even with pencil and paper.

This is the most important task; it cannot be replaced by
machines for many reasons, including the fact that the
choice of what properties to prove can be an ethical choice.

However, to err is human, and it is a fact of life that even
very experienced engineers make design and programming
mistakes and can similarly make mistakes in:

e sSpecification, i.e., in modeling a system mathematically
(system specification) and/or in stating the properties
to be verified (property specification); and

e proof, i.e., in the actual proof of correctness.



By Hand vs. Tool-Assisted Verification (II)

Tools that mechanize the deduction process can greatly

help in avoiding proof mistakes and, to some extent,
specification mistakes:

e tooOls supporting executable specification can help in
debugging specs; and

e proof assistants and other property verification tools

(for example, model checkers) can ensure proof
correctness.



Limitations of Formal Methods

Exagerated claims about what can be achieved through
formal methods are dangerous: they can lead to a
dangerous overconfidence in a system’s correctness.

We have only limited ways of convincing ourselves that we
have given the right specification: there can be mistakes in
the specification and in capturing the informal requirements.

Even with the right specification, all we can prove at best is
the correctness of a mathematical abstraction, never of the
system running in the real world.

All we can say at best is that if the compiler and the
hardware design are correct, and the hardware behaves
according to its specifications, then the software will
execute correctly.



Limitations of Formal Methods (II)

Of all the above preconditons for correct execution the first
two—-compiler correctness and correctness of the hardware
design—deal after all with properties reducible to
mathematical abstractions and can therefore be included
within the software verification project.

This is because a compiler is just another program; and
because a hardware design, as opposed to a hardware
physical implementation, is just an abstraction that can be
mathematically described just as software can, and at that
level of abstraction the software/hardware distinction
evaporates.



Limitations of Formal Methods (III)

The biggest and most irreducible if is whether the hardware
will happen to behave according to its specifications. And
this for at least two reasons:

e those specifications assume normal operating
conditions which can be violated by a wide range of
accidental causes such as: defects in the materials or in
the fabrication process, cosmic rays, changes in
temperature, power outages, floods, earthquakes, etc.

e the engineering design rules are ultimately based on
physico-mathematical models of the physical world
which are, and always will be, both aspectual and
fallible approximations of reality.



Limitations of Formal Methods (IV)

In spite of the above-mentioned limitations, the use of
formal methods is one of the best engineering ways that we
have of gaining high confidence in the correctness of critical
software systems.

And this for the exact same reason why using mathematical
models is our best way to know what we are doing in
science and engineering.

Due to pragmatic and economic reasons connected with the
labor-intensive nature of software verification, it is often not
feasible to fully verify all systems down to the hardware
design, or even to fully verify just the software.

10



Limitations of Formal Methods (V)

The fact of life is that not all systems are equally critical.
T herefore it is a question of good judgement, and at times
also an ethical question, to decide how much effort should
be spent in software verification.

At one end of the spectrum we have testing, as a weak
form of software validation. At the other end of the
spectrum we have testing plus full software verification, say
down to the hardware design.

In the middle we have a wide range of methods of partial
software verification such as, for example, symbolic
simulation, model checking, and runtime verification. The
key point is that even a modest amount of software
verification can go a long way in increasing correctness.

11



Formal Methods: their Cost and Assurance

Assurance

A

Theorem
Provin
Search Model g
Run-Time & Checking
Ver. & Bounded
Spec.-based Model
Cert. & Checking
Sxec. Scalable
pec. Methods
Testing
Effort

12



Deterministic vs. Concurrent

Programs come in many different languages and styles.
This in fact impacts both the level of difficulty and the
verification techniques suitable in each case.

A first useful distinctions is deterministic vs. concurrent:

e deterministic programs, for each input either yield an
answer or loop; they are usually written in sequential
programming languages and run on sequential
computers, but sometimes they can be parallelized;

e concurrent programs may vield many different answers,
or no answer at all, in the sense of being reactive
systems constantly interacting with their environment;
they usually run simultaneously on different processors.

13



Imperative vs. Declarative

A second useful distinction is imperative vs. declarative:

e imperative programs are those of most conventional
languages; they involve commands changing the state
of the machine to perform a task;

e declarative programs give a mathematical
axiomatization of a problem, as opposed to low-level
instructions on how to solve it; they can be based on
different logical systems.

Of course, the deterministic vs. concurrent and the
imperative vs. declarative are orthogonal distinctions: all
four combinations are possible.

14



The Declarative Advantage

For program reasoning and verification purposes, declarative
programs have the important advantage of being already a
piece of mathematics. Specifically:

e a declarative program P in a language based on a given
logic is typically a logical theory in that logic.

e the properties that we want to verify are satisfied by P
can be stated in another theory @); and

e the satisfaction relation that needs to be verified is a
semantic implication relation P = @ stating that any
model of P is also a model of (.

15



The Imperative Program Verification Game

By contrast, imperative programs are not expressed in the
language of mathematics, but in a conventional
programming language like C, C*t1, Java, or whatever, with
all kinds of idiosyncrasies.

T hefore, the first thing that we crucially need to do in order
to reason about programs in an imperative programming
language L is to define the mathematical semantics of L.

This we can always do in informal mathematics, but for tool
assistance purposes it is advantageous to axiomatize the
semantics of £ as a logical theory T, in a logic.

16



The Imperative Program Verification Game (II)

Then, given a program P in L, the properties we wish to
verify about P can typically be expressed as a logical theory
Q(P), involving somehow the text of P.

In the imperative case the satisfaction relation can again be
understood as a semantic implication between two theories,
namely, the axiomatization of the language and the desired
properties: T, = Q(P).

This is not the conventional way to think of it.
Conventionally, a “logic of programs’ such as Hoare's logic
is used, with triples of the form {A}P{B} with P the
program and A, B formulas. But we shall see that the
conventional approach can be subsumed in the above one.

17



The Equational/Rewriting Logic Framework

A very good and nontrivial question is what logic to use as
the framework logic for program verification. There are
many choices with different tradeoffs.

In this course we will use equational logic to axiomatize the
semantics of (declarative or imperative) deterministic
programs, and rewriting logic to axiomatize the semantics
of (declarative or imperative) concurrent programs.

To axiomatize the properties satisfied by such programs we
will allow more expressive logics, such as full first-order
logic, or even temporal logic (for concurrent programs).

18



The Equational/Rewriting Logic Framework (II)

The above choice has the following advantages:

1. suitable subsets of equational and rewriting logic are
efficiently executable, giving rise, respectively, to a
declarative deterministic functional language, and a
declarative concurrent language;

2. equational logic is very well suited to give executable
axiomatizations of deterministic languages, including
imperative sequential languages;

3. rewriting logic is likewise very well suited to give
executable axiomatization of (declarative or imperative)
concurrent languages;

4. therefore, we can specify all the four kinds of programs
in an executable way within the combined framework.

19



Initiality and Induction

Yet another key advantage is that equational and rewriting
logic theories have initial models. That is, theories in these
logics have an intended or standard model, (also called
initial) which is the one corresponding to our computational
intuitions.

Inductive reasoning principles, such as the different
induction schemes, are then sound principles to infer other
properties satisfied by the standard model of a theory.

The two crucial satisfaction relations for declarative, resp.

imperative, program verification, namely, P = @, resp.

T = Q(P), should be understood as inductive satisfaction

relations, corresponding to the initial model of P, resp. T,.

20



Maude

Maude is a declarative language and high-performance
interpreter based on rewriting logic that is very well suited
for concurrent specification and programming.

Since equational logic is a sublogic of rewriting logic,
Maude has a functional programming sublanguage.

We will use Maude and its tools in the course to experiment
with and verify both determinisitc (functional) and
concurrent declarative programs.

We will also use Maude and its tools to give executable
axiomatizations of imperative sequential and concurrent
programming languages and to verify imperative programs.

21



Course Outline

Equational logic and functional programming in Maude.

. Initiality, induction, and verification of Maude

functional programs.

. Algebraic semantics of a simple sequential imperative
language and verification of its programs.

Rewriting logic and concurrent programming in Maude.

. Verification of Maude concurrent programs and of
imperative concurrent programs.

22



What You Can Get out of this Course

basics of equational logic, rewriting logic, inductive
theorem proving, Hoare logic, temporal logic, and
model checking;

basics of functional and concurrent declarative
programming in Maude;

. equational/rewriting methods for giving executable
semantics to imperative programming languages;

basic program verification principles and experience for

deterministic declarative and imperative programs, and
for concurrent declarative and imperative programs.

23



Set Theory Prerequisites

Set theory is the language of modern mathematics. In some
countries, students are introduced to set-theoretic notation
in high school or even earlier. In some others, even some
graduate students in engineering have somehow been
cheated out of this very basic training and are quite
unfamiliar with even the most elementary set-theoretic
notions.

As for any part of mathematics, also for logic we will need
to use elementary set theory notions (and corresponding
notations) including:

e Set, subset, union, intersection, complement, etc.

e functions, injective, surjective, bijective, etc.

24



Set Theory Prerequisites (II)

ordered pairs and cartesian products

sets of functions from one set to another

binary operations on a set

relations, including reflexive, symmetric, and transitive
relations

equivalence relations, quotient sets, and partitions

25



Set Theory Prerequisites (III)

This is not a remedial course on elementary set theory; it is
a course on program verification. Therefore, all the above
set theory notions and notations will be assumed known by
all the students.

Elementary set theory is not rocket science. It is indeed
quite elementary, so if you were cheated out of this most
basic mathematical training up to now, you can pick it up in
a short time.

In fact, you must pick it up very soon in order for you to be
able to follow the course.

26



[Set Theory Prerequisites (IV)]

To help you in this task, in case you need it, the following
things may be useful and may help you focus your efforts:

1. Study Chapters 1—-4, Sections 5.1-5.3 of Chapter 5
(Sections 5.3.1 and 5.3.2 are not strictly needed) of J.
Mesequer, Set Theory in Computer Science — A Gentle
Introduction. Then do the exercises in homework 1.

2. Read Sections 6.1-6.3, and 6.5—6.6 of Chapter 6, and
Section 8.1 of Chapter 8. Then do the exercises in
homework 2.

27



Other Suggested Readings

Besides the suggested catching up reading on set theory, to
help you with the course itself:

1. browse throgh Chapters 1, 2, and 3 of “All About
Maude” to get a first feeling for the language; in
particular, get Maude itself up and running on your
machine by downloading it from the Maude web page
(http://maude.cs.uiuc.edu)

2. as side reading, you can also benefit all along the
course from Peter Olveczky’s lecture notes at the Univ.
of Oslo, which will be made available in the course web

page.

28



