Set Theory and Algebra in Computer Science

A Gentle Introduction to Mathematical Modeling

José Meseguer
University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

© José Meseguer, 2008-2013; all rights reserved.

August 28, 2013

Contents

(I Basic Set Theory]|

=

Set Theory as an Axiomatic Theory|

3 The Empty Set, Extensionality, and Separation|
3.1 The Empty Set]
(3.2 Extensionality|
(3.3 The Failed Attempt of Comprehension| 0 0oL,

i SePAration] e e e e e e e e e

|4 Pairing, Unions, Powersets, and Infinity|

[Relations, Functions, and Function Sefs|

5.1 Relations and Functions|.
[5.2 Formula, Assignment, and Lambda Notations|
...
[5.4 Composing Relations and Functions| 00000
[5.5 Abstract Products and Disjoint Unions|
[5.6 Relating Function Sets| Lo

6 Simple and Primitive Recursion, and the Peano Axioms|
[6.1 Simple Recursion|

7 Binary Relations on a Set|
[7/.1 Directed and Undirected Graphs| oL,
(7.2 Transition Systems and Automatal
[7.3 Relation Homomorphisms and Simulations|
74 Ordersl L e
[7.5 Sups and Infs, Complete Posets, Lattices, and Fixpoints|
[7.6 Equivalence Relations and Quotients| L.
(7.7 Constructing Zand Q|

11

15
15
15
16
17

19
19
21
24
26

29
29
30
32
33
37
39

43
43
45
47

49
49
51
52
54
57
59
63

9 Indexed Sets! 67

[9.1 Indexed Sets are Surjective Functions| 0L 67

. onstructing Indexed Sets from other Indexed Sets|o 71

0.3 Indexed Relations and FUNCHONS] + .+ + « « v v v v v v e e e e e e e e e 72

110 From Indexed Sets to Sets, and the Axiom of Choice| 75
10.1 Some Constructions Associating a Set to an Indexed Setf 75
[0.2 _The Axiom of Choice 79

11 Well-Founded Relations, and Well-Founded Induction and Recursion| 83
(1.1 Well-Founded Relations| 83
[IT.1.1 Constructing Well-Founded Relations| 84

(1.2 Well-Founded Inductionl i 85
(1.3 Well-Founded Recursionl e 86
[11.3.1 Examples of Well-Founded Recursion| 86

[IT.3:2” Well-Founded Recursive Definitions: Step Functions 86

Ore 88

(I Universal Algebra, Equational Logic and Term Rewriting| 89
[T Algebrag 91
1 Unsorted X-Algebras| 92

122 Many-Sorted =-Algebras| 93

3 Order-Sorted ¥-Algebras| 94

124 Terms and Term Algebras|. 96
12.5 A Set-Theoretic Construction of Term Algebras| 97

. ore on Order-Sorted Signatures|. L L 99
[13_Term Rewriting and Equational Logic| 103
............................ 103
.................................... 104

1. quational Proofs|. 105

132 Term Rewriting and Equational Reasoning Modulo Axioms]. 106

.3 Sort-Decreasingness, Confluence, and Termination| 108

13.4 Canonical Term Algebras| 111
135 Sufficient Completeness|. v o v v v et e e 112
[14_Conditional Rewriting and Conditional Equational Logic| 115
.................... 11s
A1 C) e 116

117

120

.3 Executability Conditions for Conditional Rewrite Theories| 121
[14.3.1 Confluence and the Church-Rosser Property in the Conditional Case] 121

[T43.2 Operational Termination] v v v v v v e e e e 122

Part 1

Basic Set Theory

Chapter 1

Introduction to Part I

“«

. we cannot improve the language of any science without at the same time improving the
science itself; neither can we, on the other hand, improve a science, without improving the
language or nomenclature which belongs to it.”

(Lavoisier, 1790, quoted in Goldenfeld and Woese [23]])

I found the inadequacy of language to be an obstacle; no matter how unwieldly the expressions
Iwas ready to accept, I was less and less able, as the relations became more and more complex,
to attain the precision that my purpose required. This deficiency led me to the idea of the
present ideography. . .. I believe that I can best make the relation of my ideography to ordinary
language clear if [compare it to that which the microscope has to the eye. Because of the range
of its possible uses and the versatility with which it can adapt to the most diverse circumstances,
the eye is far superior to the microscope. Considered as an optical instrument, to be sure, it
exhibits many imperfections, which ordinarily remain unnoticed only on account of its intimate
connection with our mental life. But, as soon as scientific goals demand great sharpness of
resolution, the eye proves to be insufficient. The microscope, on the other hand, is prefectly
suited to precisely such goals, but that is just why it is useless for all others.

(Frege, 1897, Begriffsschrift, in [47], 5-6)

Language and thought are related in a deep way. Without any language it may become impossible to
conceive and express any thoughts. In ordinary life we use the different natural languages spoken on the
planet. But natural language, although extremely flexible, can be highly ambiguous, and it is not at all well
suited for science. Imagine, for example, the task of professionally developing quantum mechanics (itself
relying on very abstract concepts, such as those in the mathematical language of operators in a Hilbert
space) in ordinary English. Such a task would be virtually impossible; indeed, ridiculous: as preposterous
as trying to build the Eiffel tower in the Sahara desert with blocks of vanilla ice cream. Even the task of
popularization, that is, of explaining informally in ordinary English what quantum mechanics is, is highly
nontrivial, and must of necessity remain suggestive, metaphorical, and fraught with the possibility of gross
misunderstandings.

The point is that without a precise scientific language it becomes virtually impossible, or at least enor-
mously burdensome and awkward, to think scientifically. This is particularly true in mathematics. One
of the crowning scientific achievements of the 20th century was the development of set theory as a pre-
cise language for all of mathematics, thanks to the efforts of Cantor, Dedekind, Frege, Peano, Russell and
Whitehead, Zermelo, Fraenkel, Skolem, Hilbert, von Neumann, Godel, Bernays, Cohen, and others. This
achievement has been so important and definitive that it led David Hilbert to say, already in 1925, that “no
one will drive us from the paradise which Cantor created for us” (see [47]], 367-392, pg. 376). It was of

7

course possible to think mathematically before set theory, but in a considerably more awkward and quite
restricted way, because the levels of generality, rigor and abstraction made possible by set theory are much
greater than at any other previous time. In fact, many key mathematical concepts we now take for granted,
such a those of an abstract group or a topological space, could only be formulated after set theory, precisely
because the language needed to conceive and articulate those concepts was not available before.

Set theory is not really the only rigorous mathematical language. The languages of set theory and of
mathematical logic were developed together, so that, as a mathematical discipline, set theory is a branch of
mathematical logic. Technically, as we shall see shortly, we can view the language of set theory as a special
sublanguage of first-order logic. Furthermore, other theories such as category theory and intuitionistic type
theory have been proposed as alternatives to set theory to express all of mathematics.

There are various precise logical formalisms other than set theory which are particularly well-suited to
express specific concepts in a given domain of thought. For example, temporal logic is quite well-suited to
express properties satisfied by the dynamic behavior of a concurrent system; and both equational logic and
the lambda calculus are very well suited to deal with functions and functional computation. However, set
theory plays a privileged role as a mathematical language in which all the mathematical structures we need
in order to give a precise meaning to the models described by various other logical languages, and to the
satisfaction of formulas in such languages, can be defined.

All this has a direct bearing on the task of formal software specification and verification. Such a task
would be meaningless, indeed utter nonsense and voodoo superstition, without the use of mathematical
models and mathematical logic. And it is virtually impossible, or extremely awkward, to even say what
needs to be said about such mathematical models and logical properties without a precise mathematical
language. More importantly, it becomes virtually impossible to think properly without the conceptual tools
provided by such a language. Either set theory or some comparable language become unavoidable: it is
part of what any well educated computer scientist should be conversant with, like the air one breathes.

These notes include a review of basic set theory concepts that any well educated computer scientist
should be familiar with. Although they go beyond reviewing basic knowledge in various ways, nothing
except basic acquaintance with the use of logical connectives and of universal and existential quantification
in logic is assumed: the presentation is entirely self-contained, and many exercises are proposed to help
the reader sharpen his/her understanding of the basic concepts. The exercises are an essential part of these
notes, both because they are used in proofs of quite a few theorems, and because by solving problems in a
mathematical theory one avoids having a superficial illusion of understanding, and gains real understanding.
For those already well-versed in elementary set theory, these notes can be read rather quickly. However,
some topics such as well-founded relations, well-founded induction, well-founded recursive functions, and
I-indexed sets may be less familiar. Also, already familiar notions are here presented in a precise, axiomatic
way. This may help even some readers already thoroughly familiar with “naive” set theory gain a more
detailed understanding of it as a logically axiomatized theory. Becoming used to reason correctly within
an axiomatic theory —Euclidean geometry is the classical example, and axiomatic set theory follows the
same conceptual pattern— is the best way I know of learning to think in a precise, mathematical way.
Furthermore, a number of useful connections between set theory and computer science are made explicit in
these notes; connections that are usually not developed in standard presentations of set theory.

I should add some final remarks on the style of these notes. There are three particular stylistic features
that I would like to explain. First, these notes take the form of an extended conversation with the reader, in
which I propose and discuss various problems, why they matter, and throw out ideas on how to solve such
problems. This is because I believe that science itself is an ongoing critical dialogue, and asking questions
in a probing way is the best way to understand anything. Second, I do not assume the proverbial mathemat-
ical maturity on the part of the reader, since such maturity is precisely the quod erat demonstrandum, and
bringing it about is one of the main goals of these notes: I am convinced that in the 21st century mathemati-
cal maturity is virtually impossible without mastering the language of set theory. On the contrary, I assume
the potential mathematical immaturity of some readers. This means that, particularly in the early chapters,
there is a generous amount of what might be called mathematical spoon feeding, hand holding, and even
a few nursery tales. This does not go on forever, since at each stage I assume as known all that has been
already presented, that is, the mastery of the language already covered, so that in more advanced chapters,
although the conversational style, examples, and motivation remain, the discourse gradually becomes more
mature.

The third stylistic feature I want to discuss is that the mindset of category theory, pervasive in modern
mathematics, is present everywhere in these notes, but in Parts I and II this happens in a subliminal way.
Categories and functors will be defined in Part III; but they are present from the beginning like a hidden mu-
sic. And functorial constructions make early cameo appearances in Part I (very much like Alfred Hitchcock
in his own movies) in several exercises.

10

Chapter 2

Set Theory as an Axiomatic Theory

In mathematics all entities are studied following a very successful method, which goes back at least to
Euclid, called the axiomatic method. The entities in question, for example, points, lines, and planes (or
numbers, or real-valued functions, or vector spaces), are characterized by means of axioms that are postu-
lated about them. Then one uses logical deduction to infer from those axioms the properties that the entities
in question satisfy. Such properties, inferred from the basic axioms, are called theorems. The axioms,
together with the theorems we can prove as their logical consequences, form a mathematical, axiomatic
theory. It is in this sense that we speak of group theory, the theory of vector spaces, probability theory,
recursion theory, the theory of differentiable real-valued functions, or set theory.

The way in which set theory is used as a language for mathematics is by expressing or translating other
theories in terms of the theory of sets. In this way, everything can be reduced to sets and relations between
sets. For example, a line can be precisely understood as a set of points satisfying certain properties. And
points themselves (for example, in 3-dimensional space) can be precisely understood as triples (another
kind of set) of real numbers (the point’s coordinates). And real numbers themselves can also be precisely
understood as sets of a different kind (for example as “Dedekind cuts”). In the end, all sets can be built out
of the empty set, which has no elements. So all of mathematics can in this way be constructed, as it were,
ex nihilo.

But sets themselves are also mathematical entities, which in this particular encoding of everything as
sets we happen to take as the most basic entitiesE] This means that we can study sets also axiomatically, just
as we study any other mathematical entity: as things that satisfy certain axioms. In this way we can prove
theorems about sets: such theorems are the theorems of set theory. We shall encounter some elementary set
theory theorems in what follows. Since set theory is a highly developed field of study within mathematics,
there are of course many other theorems which are not discussed here: our main interest is not in set theory
itself, but in its use as a mathematical modeling language, particularly in computer science.

Mathematical logic, specifically the language of first-order logic, allows us to define axiomatic theories,
and then logically deduce theorems about such theories. Each first-order logic theory has an associated
formal language, obtained by specifying its constants (for example, 0) and function symbols (for example,
+ and - for the theory of numbers), and its predicate symbols (for example, a strict ordering predicate >).
Then, out of the constants, function symbols, and variables we build terms (for example, (x + 0) - y, and
(x+y)-zare terms). By plugging terms as arguments into predicate symbols, we build the atomic predicates
(for example, (x + y) > 0 is an atomic predicate). And out of the atomic predicates we build formulas by
means of the logical connectives of conjunction (A), disjunction (V), negation (—), implication (=), and
equivalence (<); and of universal (V) and existential () quantification, to which we also add the “there
exists a unique” (3!) existential quantification variant. For example, the formula

MVMx)(x>0= (x+x) > Xx)

says that for each element x strictly greater than 0, x + x is strictly greater than x. This is in fact a theorem

"What things to take as the most basic entities is itself a matter of choice. All of mathematics can be alternatively developed in the
language of category theory (another axiomatic theory); so that sets themselves then appear as another kind of entity reducible to the
language of categories, namely, as objects in the category of sets (see, e.g., [291130] and [32] VI.10).

11

for the natural numbers. Similarly, the formula

V>0 = (Alp@AIN(x=G-g) +r) A > 1))

says that for all x and y, if y > O then there exist unique g and r such that x = (y-¢g) + r and y > r. This
is of course also a theorem for the natural numbers, where we determine the unique numbers called the
quotient ¢ and the remainder r of dividing x by a nonzero number y by means of the division algorithm. In
first-order logic it is customary to always throw in the equality predicate (=) as a built-in binary predicate
in the language of formulas, in addition to the domain-specific predicates, such as >, of the given theory.
This is indicated by speaking about first-order logic with equality.

In the formal language of set theory there are no function symbols and no constants, and only one
domain-specific binary predicate symbol, the € symbol, read belongs to, or is a member of, or is an element
of, which holds true of an element x and a set X, written x € X, if and only if x is indeed an element of
the set X. This captures the intuitive notion of belonging to a “set” or “collection” of elements in ordinary
language. So, if Joe Smith is a member of a tennis club, then Joe Smith belongs to the set of members of that
club. Similarly, 2, 3, and 5 are members of the set Prime of prime numbers, so we can write 2, 3,5 € Prime
as an abbreviation for the logical conjunction (2 € Prime) A (3 € Prime) A (5 € Prime). The language of
first-order formulas of set theory has then an easy description as the set of expressions that can be formed
out of a countable set of variables x,y,z, x’,y’,7/,... and of smaller formulas ¢, ¢’, etc., by means of the
following BNF-like grammar:

xey|lx=yl@Ae) | (eVe) l@=¢) (@) | | (Ve | Axe | Ax)e

where we allow some abbreviations: —(x = y) can be abbreviated by x # y; =(x € y) can be abbreviated
by x € y; ~((3x)p) can be abbreviated by (Ax)¢ (and is logically equivalent to (Yx)=(p)); (Vx1)...(¥x.)e,
respectively (dx)...(3x,)e, can be abbreviated by (Vxi, ..., x,)p, respectively (Ixy,...,x,)p; and x; €
¥y A ... A X, €ycan be abbreviated by xj,...,x, € y.

As in any other first-order language, given a formula ¢ we can distinguish between variables that are
quantified in ¢, called bound variables, unquantified variables, called free variables. For example, in the
formula (3x) x € y, x is bound by the 3 quantifier, and y is free. More precisely, for x and y any two
variables (including the case when x and y are the same variable):

e x and y are the only free variablesin x e yandinx =y
e xis a free variable of —(¢) iﬂﬂx is a free variable of ¢

e xis a free variable of ¢ A ¢’ (resp. ¢ V ¢’, ¢ = ¢, ¢ © ¢) iff x is a free variable of ¢ or x is a free
variable of ¢’

e x is neither a free variable of (Vx)¢, nor of (dx)¢, nor of (A!x)p; we say that x is bound in these
quantified formulas.

For example, in the formula (Vx)(x = y = x ¢ y) the variable x is bound, and the variable y is free, so y is
the only free variable.

Set theory is then specified by its axioms, that is, by some formulas in the above language that are
postulated as true for all sets. These are the axioms (@), (Ext), (Sep), (Pair), (Union), (Pow), (Inf), (AC),
(Rep), and (Found). All of them, except for (Rep) and (Found), will be stated and explained in the following
chapters. The above set of axioms is usually denoted ZFC (Zermelo Fraenkel set theory with Choice).
ZFC minus the Axiom of Choice (AC) is denoted ZF. As the axioms are introduced, we will derive some
theorems that follow logically as consequences from the axioms. Other such theorems will be developed in
exercises left for the reader.

The above set theory language is what is called the language of pure set theory, in which all elements of
a set are themselves simpler sets. Therefore, in pure set theory quantifying over elements and quantifying
over sets is exactly the same thingE] which is convenient. There are variants of set theory where primitive
elements which are not sets (called aroms or urelements) are allowed (this is further discussed in §?7?).

2Here and everywhere else in these notes, “iff” is always an abbreviation for “if and only if.”

30f course, this would not be the same thing if we were to quantify only over the elements of a fixed set, say A, as in a formula such
as (Vx € A) x # @. But note that, strictly speaking, such a formula does not belong to our language: it is just a notational abbreviation
for the formula (Vx) ((x € A) = (x # ©)), in which x is now universally quantified over all sets.

12

Let us now consider the process of logical deduction. Any first-order logic theory is specified by the
language L of its formulas (in our case, the above language of set theory formulas), and by a set I' of
axioms, that is, by a set I' of formulas in the language £, which are adopted as the axioms of the theory
(in our case, I is the set ZFC of Zermelo-Fraenkel axioms). Given any such theory with axioms I, first-
order logic provides a finite set of logical inference rules that allow us to derive all true theorems (and only
true theorems) of the theory I'. Using these inference rules we can construct proofs, which show how we
can reason logically from the axioms I to obtain a given theorem ¢ by finite application of the rules. If a
formula ¢ can be proved from the axioms I' by such a finite number of logical steps, we use the notation
I+ ¢, read, I proves (or entails) ¢, and call ¢ a theorem of T'. For example, the theorems of set theory are
precisely the formulas ¢ in the above-defined language of set theory such that ZFC + ¢. Similarly, if GP is
the set of axioms of group theory, then the theorems of group theory are the formulas ¢ in GP’s language
such that GP + ¢.

A very nice feature of the logical inference rules is that they are entirely mechanical, that is, they
precisely specify concrete, syntax-based steps that can be carried out mechanically by a machine such as a
computer program. Such computer programs are called theorem provers (or sometimes proof assistants);
they can prove theorems from I either totally automatically, or with user guidance about what logical
inference rules (or combinations of such rules) to apply to a given formula. For example, one such inference
rule (a rule for conjunction introduction) may be used when we have already proved theorems I ¢, and
I + ¢, to obtain the formula ¢ A ¢ as a new theorem. Such a logical inference rule is typically written

|) I'ry
F'rony

where I, ¢, ¥, are completely generic; that is, the above rule applies to the axioms I" of any theory, and
to any two proofs I' + ¢ and I' + ¢ of any formulas ¢ and ¢ as theorems from I’; it can then be used to
derive the formula ¢ A ¢ as a new theorem of I'. Therefore, the collection of proofs above the vertical bar
of such inference rules tells us what kinds of theorems we have already derived, and then what is written
below an horizontal bar yields a new theorem, which we can derive as a logical consequence of theorems
already derived. There are several logical inference systems, that is, several collections of logical inference
rules for first-order logic, all of equivalent proving power (that is, all prove the same theorems, and exactly
the true theorems); however, some inference systems are easier to use by humans than others. A very good
discussion of such inference systems, and of first-order logic, can be found in [3]].

In actual mathematical practice, proofs of theorems are not fully formalized; that is, an explicit con-
struction of a proof as the result of a mechanical inference process from the axioms I is typically not given;
instead, and informal but rigorous high-level description of the proof is given. This is because a detailed
formal proof may involve a large amount of trivial details that are perfectly fine for a computer to take care
of, but would make a standard hundred-page mathematical book run for many thousands of pages. How-
ever, the informal mathematical proofs are only correct provided that in principle, if the proponent of the
proof is challenged, he or she could carry out a detailed formal, and machine verifiable proof leading to the
theorem from the axioms by means of the rules of logical deduction. In Part[l| we will follow the standard
mathematical practice of giving rigorous but informal proofs. However, in Part[II proofs in equational logic
(a sublogic of first-order logic) will be fully formalized, and the soundness and completeness of equational
logic (the fact that it can prove only true theorems, and all true theorems) will be proved in detail.

13

14

Chapter 3

The Empty Set, Extensionality, and
Separation

3.1 The Empty Set

The simplest, most basic axiom, the empty set axiom, can be stated in plain English by saying:
There is a set that has no elements.

This can be precisely captured by the following set theory formula, which we will refer to as the (@) axiom:

(@) @AMy yéx

It is very convenient to introduce an auxiliary notation for such a set, which is usually denoted by @. Since
sets are typically written enclosing their elements inside curly brackets, thus {1, 2, 3} to denote the set whose
elements are 1, 2, and 3, a more suggestive notation for the empty set would have been {}. That is, we can
think of the curly brackets as a “box” in which we store the elements, so that when we open the box {} there
is nothing in it! However, since the @ notation is so universally accepted, we will stick with it anyway.

3.2 Extensionality

At this point, the following doubt could arise: could there be several empty sets? If that were the case, our
@ notation would be ambiguous. This doubt can be put to rest by a second axiom of set theory, the axiom
of extensionality, which allows us to determine when two sets are equal. In plain English the extensionality
axiom can be stated as follows:

Two sets are equal if and only if they have the same elements.

Again, this can be precisely captured by the following formula in our language, which we will refer to as
the (Ext) axiom:
(Ext) (Vx,y)((V)zexozey)=x=Y)

where it is enough to have the implication = in the formula, instead of the equivalence <, because if two
sets are indeed equal, then logical reasoning alone ensures that they must have the same elements, that is,
we get the other implication « for free, so that it needs not be explicitly stated in the axiom. Note that, as
already mentioned, extensionality makes sure that our @ notation for the empty set is unambiguous, since
there is only one such set. Indeed, suppose that we were to have two empty sets, say @; and @,. Then since
neither of them have any elements, we of course have the equivalence (Vz)(z € @ & z € @,). But then
(Ext) forces the equality @, = @,.

The word “extensionality” comes from a conceptual distinction between a formula as a linguistic de-
scription and its “extension” as the collection of elements for which the formula is true. For example, in the

15

theory of the natural numbers, x > 0 and x + x > x are different formulas, but they have the same exten-
sion, namely, the nonzero natural numbers. Extension in this sense is distinguished from “intension,” as the
conceptual, linguistic description. For example, x > 0 and x + x > x are in principle different conceptual
descriptions, and therefore have different “intensions.” They just happen to have the same extension for
the natural numbers. But they may very well have different extensions in other models. For example, if
we interpret + and > on the set {0, 1} with + interpreted as exclusive or, 1 > 0 true, and x > y false in the
other three cases, then the extension of x > 0 is the singleton set {1}, and the extension of x + x > x is the
empty set. As we shall see shortly, in set theory we are able to define sets by different syntactic expressions
involving logical formulas. But the extension of a set expression is the collection of its elements. The
axiom of extensionality axiomatizes the obvious, intuitive truism that two set expressions having the same
extension denote the same set.

The axiom of extensionality is intimately connected with the notion of a subset. Given two sets, A and
B, we say that A is a subset of B, or that A is contained in B, or that B contains A, denoted A C B, if and
only if every element of A is an element of B. We can precisely define the subset concept in our formal
language by means of the defining equivalence:

xCy © (Vzex=zey).

Using this abbreviated notation we can then express the equivalence (VYz)(z € x & z € y) as the conjunction
(x €y A y € x). This allows us to rephrase the (Ext) axiom as the implication:

Mx, xSy AyCx)=x=y)

which gives us a very useful method for proving that two sets are equal: we just have to prove that each is
contained in the other.

We say that a subset inclusion A C B is strict if, in addition, A # B. We then use the notation A C B.
That is, we can define x C y by the defining equivalence

xCy & (x£zy AN Vzex=z€ey)).
Exercise 1 Prove that for any set A, A C A; and that for any three sets A, B, and C, the following implications hold:

(ACBABCC)= ACC (ACBABcCC)= AcC.

3.3 The Failed Attempt of Comprehension

Of course, with these two axioms alone we literally have almost nothing! More precisely, they only guar-
antee the existence of the empty set @, which itself has nothing in itE] The whole point of set theory as a
language for mathematics is to have a very expressive language, in which any self-consistent mathematical
entity can be defined. Clearly, we need to have other, more powerful axioms for defining sets.

One appealing idea is that if we can think of some logical property, then we should be able to define
the set of all elements that satisfy that property. This idea was first axiomatized by Gottlob Frege at the
end of the 19th century as the following axiom of comprehension, which in our contemporary notation can
be described as follows: given any set theory formula ¢ whose only free variable is x, there is a set whose
elements are those sets that satisfy ¢. We would then denote such a set as follows: {x | ¢}. In our set theory
language this can be precisely captured, not by a single formula, but by a parametric family of formulas,

! Tt is like having just one box, which when we open it happens to be empty, in a world where two different boxes always contain
different things (extensionality). Of course, in the physical world of physical boxes and physical objects, extensionality is always true
for nonempty boxes, since two physically different nonempty boxes, must necessarily contain different physical objects. For example,
two different boxes may each just contain a dollar bill, but these must be different dollar bills. The analogy of a set as box, and of the
elements of a set as the objects contained inside such a box (where those objects might sometimes be other (unopened) boxes) can be
helpful but, although approximately correct, it is not literally true and could sometimes be misleading. In some senses, the physical
metaphor is foo loose; for example, in set theory there is only one empty set, but in the physical world we can have many empty boxes.
In other senses the metaphor is too restrictive; for example, physical extensionality for nonempty boxes means that no object can be
inside two different boxes, whereas in set theory the empty set (and other sets) can belong to (“be inside of”’) several different sets
without any problem.

16

called an axiom scheme. Specifically, for each formula ¢ in our language whose only free variable is x, we
would add the axiom

AMEx)(x ey & ¢)

and would then use the notation {x | ¢} as an abbreviation for the unique y defined by the formula ¢. For
example, we could define in this way the sef of all sets, let us call it the universe and denote it 7/, as the set
defined by the formula x = x, that is, 2 = {x | x = x}. Since obviously % = %, we have % € % . Let us
call a set A circular iff A € A. In particular, the universe % is a circular set.

Unfortunately for Frege, his comprehension axiom was inconsistent. This was politely pointed out in
1902 by Bertrand Russell in a letter to Frege (see [47], 124—125). The key observation of Russell’s was
that we could use Frege’s comprehension axiom to define the set of noncircular sets as the unique set NC
defined by the formula x ¢ x. That is, NC = {x | x ¢ x}. Russell’s proof of the inconsistency of Frege’s
system, his “paradox,” is contained in the killer question: is NC itself noncircular? That is, do we have
NC € NC? Well, this is just a matter of testing whether NC itself satisfies the formula defining NC, which
by the comprehension axiom gives us the equivalence:

NCeNC o NC¢NC

a vicious contradiction dashing to the ground the entire system built by Frege. Frege, who had invested
much effort in his own theory and can be considered, together with the Italian Giuseppe Peano and the
American Charles Sanders Peirce, as one of the founders of what later came to be known as first-order logic,
was devastated by this refutation of his entire logical system and never quite managed to recover from it.
Russell’s paradox (and similar paradoxes emerging at that time, such as the Burali-Forti paradox (see [47],
104-112), showed that we shouldn’t use set theory formulas to define other sets in the freewheeling way
that the comprehension axiom allows us to do: the concept of a set whose elements are those sets that are
not members of themselves is inconsistent; because if such a set belongs to itself, then it does not belong to
itself, and vice versa. The problem with the comprehension axiom is its unrestricted quantification over all
sets x satisfying the property ¢(x).

Set theory originated with Cantor (see [9] for an excellent and very readable reference), and Dedekind.
After the set theory paradoxes made the “foundations problem” a burning, life or death issue, all subsequent
axiomatic work in set theory has walked a tight rope, trying to find safe restrictions of the comprehension
axiom that do not lead to contradictions, yet allow us as much flexibility as possible in defining any self-
consistent mathematical notion. Russell proposed in 1908 his own solution, which bans sets that can be
members of themselves by introducing a theory of types (see [47], 150-182). A simpler solution was given
the same year by Zermelo (see [47], 199-215), and was subsequently formalized and refined by Skolem
(see [47], 290-301), and Fraenkel (see [47], 284-289), leading to the so-called Zermelo-Fraenkel set theory
(ZFC). ZF C should more properly be called Zermelo-Skolem-Fraenkel set theory and includes the already-
given axioms (@) and (Ext). In ZFC the comprehension axiom is restricted in various ways, all of them
considered safe, since no contradiction of ZF'C has ever been found, and various relative consistency results
have been proved, showing for various subsets of axioms I' ¢ ZFC that if I is consistent (i.e., has no
contradictory consequences) then ZFC is also consistent.

3.4 Separation

The first, most obvious restriction on the comprehension axiom is the so-called axiom of separation. The
restriction imposed by the separation axiom consists in requiring the quantification to range, not over all
sets, but over the elements of some existing set. If A is a set and ¢ is a set theory formula having x as its only
free variable, then we can use ¢ to define the subset B of A whose elements are all the elements of A that
satisfy the formula ¢. We then describe such a subset with the notation {x € A | ¢}. For example, we can
define the set {x € @ | x ¢ x}, and this is a well-defined set (actually equal to @) involving no contradiction
in spite of the dangerous-looking formula x ¢ x.

Our previous discussion of extensionality using the predicates x > 0 and x + x > x can serve to illustrate
an interesting point about the definition of sets using the separation axiom. Assuming, as will be shown
later, that the set of natural numbers is definable as a set N in set theory, that any natural number is itself a set,
and that natural number addition + and strict ordering on numbers > can be axiomatized in set theory, we

17

can then define the sets {x € N | x > 0} and {x € N | x+ x > x}. Note that, although as syntactic descriptions
these expressions are different, as sets, since they have the same elements, the (Ext) axiom forces the set
equality {x e N| x > 0} = {x € N | x + x > x}. That is, we use a syntactic description involving the syntax
of a formula to denote an actual set, determined exclusively by its elements. In particular, formulas ¢ and
¢’ that are logically equivalent (for example, (¢ = ¢’) and (—(¢) V ¢’) are logically equivalent formulas)
always define by separation the same subset of the given set A, that is, if ¢ and ¢’ are logically equivalent
we always have the equality of sets {x € A | ¢} = {x € A | ¢'}.
We can describe informally the separation axiom in English by saying:

Given any set A and any set theory formula ¢(x) having x as its only free variable, we can
define a subset of A consisting of all elements x of A such that ¢(x) is true.

The precise formalization of the separation axiom is as an axiom scheme parameterized by all set theory
formulas ¢ whose only free variable is x. For any such ¢ the separation axiom scheme adds the formula

Sep) (V)AD)(Vx)(xez & (xey A).

The unique set z asserted to exist for each y by the above formula is then abbreviated with the notation
{x € y | ¢}. But this notation does not yet describe a concrete set, since it has the variable y as parameter.
That is, we first should choose a concrete set, say A, as the interpretation of the variable y, so that the
expression {x € A | ¢} then defines a corresponding concrete set, which is a subset of A. For this reason, the
separation axiom is sometimes called the subset axiom.

Jumping ahead a little, and assuming that we have already axiomatized the natural numbers in set theory
(so that all number-theoretic notions and operations have been reduced to our set theory notation), we can
illustrate the use of the (Sep) axiom by choosing as our ¢ the formula (dy)(x = 3 - y). Then, denoting by N
the set of natural numbers, the set {x € N | (Ay) (y € N) A (x = 3 - y)} is the set of all multiples of 3.

Exercise 2 Assuming that the set N of natural numbers has been fully axiomatized in set theory, and in particular that
all the natural numbers 0, 1, 2, 3, etc., and the multiplication operatiorﬂ,- _on natural numbers have been axiomatized
in this way, write a formula that, using the axiom of separation, can be used to define the set of prime numbers as a
subset of N.

Russell’s Paradox was based on the argument that the notion of a set NC of all noncircular sets is
inconsistent. Does this also imply that the notion of a set % that is a universe, that is, a set of all sets is also
inconsistent? Indeed it does.

Theorem 1 There is no set % of all sets. That is, the formula
AUYx) x € U
is a theorem of set theory.

Proof. We reason by contradiction. Suppose such a set 7 exists. Then we can use (Sep) to define the set of
noncircular sets as NC = {x € % | x ¢ x}, which immediately gives us a contradiction because of Russell’s
Paradox. O

2Here and in what follows, I will indicate where the arguments of an operation like - or + appear by underbars, writing, e.g., - _ or
_+ _. The same convention will be followed not just for basic operations but for more general functions; for example, multiplication
by 2 may be denoted 2 - _.

18

Chapter 4

Pairing, Unions, Powersets, and Infinity

Although the separation axiom allows us to define many sets as subsets of other sets, since we still only
have the empty set, and this has no other subsets than itself, we clearly need other axioms to get the whole
set theory enterprise off the ground. The axioms of pairing, union, powerset, and infinity allow us to build
many sets out of other sets, and, ultimately, ex nihilo, out of the empty set.

4.1 Pairing

One very reasonable idea is to consider sets whose only element is another set. Such sets are called singleton
sets. That is, if we have a set A, we can “put it inside a box” with curly brackets, say, {A}, so that when we
open the box there is only one thing in it, namely, A. The set A itself may be big, or small, or may even be
the empty set; but this does not matter: each set can be visualized as a “closed box,” so that when we open
the outer box {A} we get only one element, namely, the inner box A. As it turns out, with a single axiom,
the axiom of pairing explained below, we can get two concepts for the price of one: singleton sets and
(unordered) pairs of sets. That is, we can also get sets whose only elements are other sets A and B. Such
sets are called (unordered) pairs, and are denoted {A, B}. The idea is the same as before: we now enclose A
and B (each of which can be pictured as a closed box) inside the outer box {A, B}, which contains exactly
two elements: A and B, provided A # B. What about {A, A}? That is, what happens if we try to enclose
A twice inside the outer box? Well, this set expression still contains only one element, namely A, so that,
by extensionality, {A, A} = {A}. That is, we get the notion of a singleton set as a special case of the notion
of a pair. But this is all still just an intuitive, pretheoretic motivation: we need to define unordered pairs
precisely in our language.
In plain English, the axiom of pairing says:

Given sets A and B, there is a set whose elements are exactly A and B.

In our set-theory language this is precisely captured by the formula:
(Pair) (¥x,y)Al2)Vu)uezeo u=x V u=y)).

We then adopt the notation {x,y} to denote the unique z claimed to exist by the axiom, and call it the
(unordered) pair whose elements are x and y. Of course, by extensionality, the order of the elements does
not matter, so that {x, y} = {y, x}, which is why these pairs are called unordered. We then get the singleton
concept as the special case of a pair of the form {x, x}, which we abbreviate to {x}.

Pairing alone, even though so simple a construction, already allows us to get many interesting sets. For
example, from the empty set we can get the following, interesting sequence of sets, all of them, except @,
singleton sets:

That is, we enclose the empty set into more and more “outer boxes,” and this gives rise to an unending
sequence of different sets. We could actually choose these sets to represent the natural numbers in set
theory, so that we could define: 0 = @, 1 = {@},2 = {{®}}, ..., n+ 1 = {n}, In this representation we

19

could think of a number as a sequence of nested boxes, the last of which is empty. The number of outer
boxes we need to open to reach the empty box is precisely the number 7 that the given singleton set in the
above sequence represents. Of course, if there are no outer boxes to be opened, we do not have a singleton
set but the empty set @, representing 0. This is a perfectly fine model of the natural numbers in set theory,
due to Zermelo (see [47], 199-215). But it has the drawback that in this representation the number n + 1 has
a single element. As we shall see shortly, there is an alternative representation of the natural numbers, due
to John von Neumann[/|in which the natural number 7 is a set with exactly n elements. This is of course a
more appealing representation, particularly because it is the basis of a wonderful analogy (and more than
an analogy: a generalization!) between computing with numbers and computing with sets.

What about ordered pairs? For example, in the plane we can describe a point as an ordered pair (x,y)
of real numbers, corresponding to its coordinates. Can pairs of this kind be also represented in set theory?
The answer is yes. Following an idea of Kuratowski, we can define an ordered pair (x, y) as a special kind
of unordered pair by means of the defining equation

(x,y) = {{x}, {x, y})

The information that in the pair (x,y) x is the first element of the pair and y the second element is here
encoded by the fact that when x # y we have {x} € (x,y), but {y} ¢ (x,y), since {y} # {x} and we have a
proper inclusion {y} C {x,y}. Of course, when x = y we have (x, x) = {{x}, {x, x}} = {{x}, {x}} = {{x}}. That
is, the inclusion {y} C {x, y} becomes an equality iff x = y, and then x is both the first and second element of
the pair (x, x). For example, in the above, Zermelo representation of the natural numbers, the ordered pair
(1,2) is represented by the unordered pair {{{@}}, {2}, {{@}}}}, and the ordered pair (1, 1) by the unordered
pair {{{2}}, ({2}, {2}}} = {{{a}), {{2}}} = {{{2}}}, which is of course a singleton set.
A key property of ordered pairs is a form of extensionality for such pairs, namely, the following

Lemma 1 (Extensionality of Ordered Pairs). For any sets x, X', y, ¥, the following equivalence holds:
() =&,y) e (x=x Ay=Y).

Proof. The implication (<) is obvious. To see the implication (=) we can reason by cases. In case x # y
and x* # ¥, we have (x,y) = {{x},{x,y}} and (x',y") = {{x'},{x’,y’}}, with the subset inclusions {x} C
{x,y} and {x’} C {x’,y}, both strict, so that neither {x, y} nor {x’,y’} are singleton sets. By extensionality,
(x,y) = (x¥',y") means that as sets they must have the same elements. This means that the unique singleton
set in (x,y), namely {x}, must coincide with the unique singleton set in (x’,y’), namely {x’}, which by
extensionality applied to such singleton sets forces x = x’. As a consequence, we must have {x, y} = {x,y’},
which using again extensionality, plus the assumptions that x # y and x # y’, forces y = y’. The cases
x =yand x’ #)y, or x # y and x’ = y’, are impossible, since in one case the ordered pair has a single
element, which is a singleton set, and in the other it has two different elements. This leaves the case x = y
and x’ = y’, in which case we have (x,x) = {{x}}, and (x’, x") = {{x'}}. Extensionality applied twice then
forces x = x’, as desired. O

One could reasonably wish to distinguish between the abstract concept of an ordered pair (x,y), and a
concrete representation of that concept, such as the set {{x}, {x, y}}. Lemma gives strong evidence that this
particular choice of representation faithfully models the abstract notion. But we could choose many other
representations for ordered pairs (for two other early representations of ordered pairs, due to Wiener and to
Hausdorft, see [47] 224-227). One simple alternative representation is discussed in ExerciseE] (1). Further
evidence that the above definition provides a correct set-theoretic representation of ordered pairs, plus a
general way of freeing the abstract notion of ordered pair of any “representation bias,” is given in Exercise
[29] and in §5.5]after that exercise.

Exercise 3 Prove the following results:
1. The alternative definition of an ordered pair as:
(x,y) = {{x»}L B

provides a different, correct representation of ordered pairs, in the sense that it also satisfies the extensionality
property stated in Lemma

!Yes, the same genius who designed the von Neumann machine architecture! This should be an additional stimulus for computer
scientists to appreciate set theory.

20

2. The extensionality property of ordered pairs does not hold for unordered pairs. That is, show that there exists an
instantiation of the variables x,y, x',y’ by concrete sets such that the formula

yp={xy} o (x=x" Ay=))

is false of such an instantiation.

4.2 Unions

Another reasonable idea is that of gathering together the elements of various sets into a single set, called
their union, that contains exactly all such elements. In its simplest version, we can just consider two sets,
A and B, and define their union A U B as the set containing all the elements in A or in B. For example, if
A={1,2,3}and B = {3,4,5},then AU B = {1,2,3,4,5}. One could consider giving an axiom of the form

MV, ARD)Muw(uez o (MEX V uEY))

and then define x U y as the unique z claimed to exist by the existential quantifier, and this would be entirely
correct and perfectly adequate for finife unions of sets.

However, the above formula can be generalized in a very sweeping way to allow forming unions not
of two, or three, or n sets, but of any finite or infinite collection of sets, that is, of any set of sets. The
key idea for the generalization can be gleaned by looking at the union of two sets in a somewhat different
way: we can first form the pair {A, B}, and then “open” the two inner boxes A and B by “dissolving”
the walls of such boxes. What we get in this way is exactly A U B. For example, for A = {1,2,3} and
B = {3,4,5}, if we form the pair {A, B} = {{1, 2, 3},{3,4,5}} and then “dissolve” the walls of A and B we
get: {1,2,3,3,4,5} = {1,2,3,4,5} = AU B. But {A, B} is just a set of sets, which happens to contain two
sets. We can, more generally, consider any (finite or infinite) set of sets (and in pure set theory any set
is always a set of sets), say {A, Ay, As,...}, and then form the union of all those sets by “dissolving” the
walls of the A, A;, A3, In plain English, such a union of all the sets in the collection can be described
informally by the following union axiom:

Given any collection of sets, there is a set such that an element belongs to it if and only if it
belongs to some set in the collection.

This can be precisely captured by the following set theory formula:
(Union) (Vx)@AWW)V2)(zey e (Qu)(u € x A z € u)).

We introduce the notation) x to denote the unique set y claimed to exist by the above formula, and call it
the union of the collection of sets x. For example, for X = {{1,2,3},{2,4,5},{2,3,5,7, 8}} we have

UX={1,2,3,4,5,7,8}.

Of course, when X is an unordered pair of the form {A, B}, we abbreviate | J{A, B} by the notation A U B.

Once we have unions, we can define other boolean operations as subsets of a union, using the axiom of
separation (Sep). For example, the intersection () x of a set x of sets is of course the set of elements that
belong to all the elements of x, provided x is not the empty set (if x = @, the intersection is not defined).
We can define it using unions and (Sep) as the set

mxz{yEle(Vzex)yez}.

For example, for X = {{1,2,3},{2,4,5},{2,3,5,7,8}}, we have (| X = {2}.

Note that, as with union, this is a very general operation, by which we can intersect all the sets in a
possibly infinite set of sets. In the case when we intersect an unordered pair of sets, we adopt the usual no-
tation ({A, B} = AN B, and the above, very general definition specializes to the simpler, binary intersection
definition

ANB={xeAUB|x€A A x€ B}.

21

Exercise 4 Prove that | | @ = @, and that for any nonempty set x we have the identities: | J{x} = ({x} = x.

Given two sets A and B, we say that they are disjoint if and only if A N B = @. For an arbitrary set of
setﬂ X, the corresponding, most useful notion of disjointness is not just requiring () X = @, but something
much stronger, namely, pairwise disjointness. A set of sets X is called a collection of pairwise disjoint sets
if and only if for any x,y € X, we have the implication x # y = x Ny = @. In particular, partitions are
pairwise disjoint sets of sets obeying some simple requirements.

Definition 1 Let X be a collection of pairwise disjoint sets and let Y = | J X. Then X is called a partition of
Y iff either (i) X =Y = @; or (ii) X # @ A @ ¢ X. That is, a partition X of Y = |J X is either the empty
collection of sets when Y = @, or a nonempty collection of pairwise disjoint nonempty sets whose union is
Y.

For example the set U = {{1,2, 3},{2,4,5},{3,5,7, 8}}, even though (\ U = @, is not a collection of pairwise
disjoint sets, because {1,2,3} N {2,4,5} = {2}, {2,4,5} N {3,5,7,8} = {5}, and {1,2,3} N {3,5,7,8} = {3}.
Instead, the set Z = {{1,2, 3}, {4},{5,7, 8}} is indeed a collection of pairwise disjoint sets, and, furthermore,
it is a partition of | JZ = {1,2,3,4,5,7,8}. A partition X divides the set | J X into pairwise disjoint pieces,
just like a cake can be partitioned into pieces. For example, the above set Z = {{1, 2, 3}, {4}, {5, 7, 8}} divides
the set | JZ ={1,2,3,4,5,7, 8} into three pairwise disjoint, nonempty pieces.

Exercise 5 Given a set A of n elements, let k = 1 if n = 0, and assume 1 < k < nifn > 1. Prove that the number
of different partitions of A into k mutually disjoint subsets, denoted S (n, k), satisfies the following recursive definition:
$0,1) =1;S(n,n) =Sn,1)=1forn > 1;and forn >k > 1, S(n,k) = S(n-1,k-1) + (k- S(n-1,k)). That is, you
are asked to prove that such a recursive formula for S (n, k) is correct for all natural numbers n and all k satisfying the
already mentioned constraints.

Exercise 6 Jumping ahead a little, let N denote the set of all natural numbers for which we assume that multiplication
_- _has already been defined. For eachn € N, n > 1, define the set n of multiples of n as the set n= {x e N| 3Fk)k €
N A x =n-k)}. Then for 1 < j <n—1 consider the sets 1 +j={xeN|@yye nA x= y + j)}. Prove that the set
of sets N/n = {1.1, n+l,...,n +(n — 1)} is pairwise disjoint, so that it provides a partition of N into n disjoint subsets,
called the residue classes modulo n.

The last exercise offers a good opportunity for introducing two more notational conventions. The point
is that, although in principle everything can be reduced to our basic set theory language, involving only the €
and = symbols and the logical connectives and quantifiers, notational conventions allowing the use of other
symbols such as @, U, N, etc., and abbreviating the description of sets, are enormously useful in practice.
Therefore, provided a notational convention is unambiguous, we should feel free to introduce it when this
abbreviates and simplifies our descriptions. The first new notational convention, called quantification over
a set, is to abbreviate a formula of the form (Vy)((y € x) = ¢) by the formula (Vy € x) ¢. Similarly, a
formula of the form (y)((y € x) A ¢) is abbreviated by the formula (dy € x) ¢, where in both cases we

assume that x is not a free variable of ¢. With this abbreviation the setn = {(xeN|@k)keN A x=n-k)}

can be written in a more succinct way asn = {x e N| (Jk e N) x = n - k}.
The second notational convention, which can be called separation with functional expressions, abbrevi-

ates an application of the (Sep) axiom defining a set of the form {x € Z | (Axy,..., x,)(x = exp(xy,...,X,) A
¢)}, where x is not a free variable of ¢, by the more succinct notation {exp(xi,...,x,) € Z | ¢}, where
exp(xy, ..., Xx,) is a functional expression which uniquely defines a set in terms of the sets xy, ..., x,. Using

this convention, we can further abbreviate the description of the setn = {xe N|(Jk e N)x =n -k} tojust
n= {n-k € N | k e N}. Similarly, we can simplify the description of the set 1 +j={xeN|@yQy €
nA x:y+j}tojust;t+j:{y+jeN|ye;1}.

So far, we have seen how intersections can be obtained from unions. Using the (Sep) axiom, we can
likewise define other boolean operations among sets. For example, the set difference A — B of two sets, that
is, the set whose elements are exactly those elements of A that do not belong to B, is defined using union
and the (Sep) axiom as the set

A-B={x€eAUB|xe€A AN x¢B}.

2In pure set theory, since the elements of a set are always other sets, all sets are sets of sets. The terminology, “set of sets,” or
“collection of sets” is just suggestive, to help the reader’s intuition.

22

Similarly, the symmetric difference of two sets A B B can be defined by the equation
ABB=(A-B)U(B-A).

Exercise 7 Prove that the binary union operation A U B satisfies the equational axioms of: (i) associativity, that is, for
any three sets A, B, C, we have the set equality

(AUB)UC=AU(BUO)
(ii) commutativity, that is, for any two sets A and B, we have the set equality
AUB=BUA
(iii) the empty set @ acts as an identity element for union, that is, for any set A, we have the equalities
AU =A PUA=A
and (iv) idempotency, that is, for any set A, we have the set equality
AUA =A.
Furthermore, given any two sets A and B, prove that the following equivalence always holds:

ACB © AUB=B

Exercise 8 Prove that the binary intersection operation A N B satisfies the equational axioms of: (i) associativity, (ii)
commutativity; and (iii) idempotency. Prove also that union and intersection satisfy the two following distributivity
equations (of N over U, resp., of U over N):

ANBUC)=(ANB)UMANC)

AUBNC)=(AUBNAUC)
plus the following two absorption equations:
ANAUC)=A AUMANC)=A
plus the equation
AN =@a.

Furthermore, given any two sets A and B, prove that the following equivalence always holds:

ACB & ANnB=A.

Exercise 9 Prove that the symmetric difference operation A B B satisfies the equational axioms of associativity and
commutativity plus the axioms:

ABo=A

ABA=0

and that, furthermore, it satisfies the following equation of distributivity of N over @:

ANBEC)=(ANB)B(ANC).

Note that, because of the associativity and commutativity of binary union, binary intersection, and
symmetric difference, we can extend those operations to n sets, for any natural number n > 2, by writing
AlU...UA,,AiN...NA,,and A| B...HA,, respectively, with no need for using parentheses, and where
the order chosen to list the sets Ay, ..., A, is immaterial.

Of course, with set union, as well as with the other boolean operations we can define based on set union
by separation, we can construct more sets than those we could build with pairing, separation, and the empty
set axiom alone. For example, we can associate to any set A another set s(A), called its successor, by
defining s(A) as the set s(A) = A U {A}. In particular, we can consider the sequence of sets

2 s(2) s(s(@) s(s(s(2)))

23

which is the sequence of von Neumann natural numbers. This is an alternative representation for the natural
numbers within set theory, in which we define 0 = @, and n+1 = s(n) = nU{n}. If we unpack this definition,
the von Neumann natural number sequence looks as follows:

0=0, I={2}={0}, 2={a.{a}}=1{0.1}, 3={2.{2}.{2.{a}}} =1{0,1,2},

giving us the general pattern: n + 1 = {0,1,...,n}. That is, each number is precisely the set of all the
numbers before it. Two important features of this representation of numbers as sets are: (i) unlike the
case for the Zermelo representation in @ now the number 7 is a set with exactly n elements, which are
precisely the previous numbers; and (ii) n < m iff n € m. These are two very good properties of the von
Neumann representation, since it is very intuitive to characterize a number as a set having as many elements
as that number, and to think of a bigger number as a set containing all the smaller numbers.

4.3 Powersets

Yet another, quite reasonable idea to build new sets out of previously constructed ones is to form the set of
all subsets of a given set A, called its powerset, and denoted P(A). For example, given the set 3 = {0, 1,2},
its subsets are: itself, {0, 1,2}, the empty set @, the singleton sets {0}, {1}, {2}, and the unordered pairs {0, 1},
{0,2}, and {1, 2}. That is,

$3) = {2,{0}, {1},{2},{0, 1}, {0, 2}, {1, 2},{0, 1, 2}}.

This gives us a total of 2° = 8 subsets. The existence of a power set P(A) for any given set A is postulated
by the powerset axiom, which in English can be informally stated thus:

Given any set, the collection of all its subsets is also a set.
This can be captured precisely in our formal set theory language by the formula
(Pow) (Vx)@AW)(V2)(zey © zC x).

We then use the notation P(x) to denote the unique set y postulated to exist, given x, by this formula.

It is trivial to show thatif U,V € P(X),then UU V, U NV, U - V,U BV € P(X), that is, P(X) is closed
under all boolean operations. Furthermore, there is one more boolean operation not defined for sets in
general, but defined for sets in P(X), namely, complementation. Given U € P(X), its complement, denoted
U, is, by definition, the set U = X — U. As further developed in Exercises and P(X) satisfies both
the equations of a boolean algebra, and, in an alternative formulation, those of a boolean ring.

Note that this closure under boolean operations can be extended to arbitrary unions and arbitrary in-
tersections. To define such arbitrary unions and intersections, we need to consider sets of sets U whose
elements are subsets of a given set X. But what are such sets? Exactly the elements of P(P(X)). Given
U € P(P(X)), its union is always a subset of X, that is, | JU C X, or, equivalently, U € P(X). If
U € P(P(X)) is a nonempty set of subsets of X, then we likewise have (U C X, or, equivalently,
NU € P(X). Recall that when U = @, the intersection (| U is not defined. However, we can in the
context of P(X) extend the intersection operation also to the empty family by fiat, defining it as: (@ = X.
Intuitively, the more sets we intersect, the smaller the intersection:

Nwr2(w.viz(wv.wi2...

Following this reasoning, since for any U C X we have @ C {U}, we should always have (@ 2 "{U} = U.
Since we know that the biggest set in P(X) is X itself, it is then entirely natural to define (@ = X, as we
have done.

Exercise 10 Prove that, besides the equational laws for union and intersection already mentioned in Exercises[/|and
[8l for any U,V € P(X), the following additional complement laws hold:

UnU=0 UuU=X
and also the following two De Morgan’s laws:
vuv=UnV UnvV=UUV.

The equations in Exercises[/land[8] plus the above equations make P(X) into a boolean algebra.

24

Exercise 11 Prove that, besides the equations for 8 already mentioned in Exercise[9] plus the equations of associativity,
commutativity, and idempotency of N and the equation U N @ = @ in Exercise[§ for any U € P(X), the following
additional equational law holds:

UnX=U.
These laws make P(X) into a boolean ring, with & as the addition operation having @ as its identity element, and with
N as the multiplication operation having X as its identity element.

Prove that the operations of union and complementation on P(X) can be defined in terms of these, boolean ring
operations as follows:
vuv=UnV)B(UmYV)
U=UsX.

That is, instead of adopting U, N, and complementation as our basic operations on P(X), we may alternatively choose
B and N as the basic operations.

Exercise 12 Describe in detail the sets P(2), P(P(2)), and P(P(P(D))).
Prove that if A is a ﬁnit{] set with n elements, then P(A) has 2" elements.

Exercise 13 Prove that for any sets A and B, and set of sets X, we have:
ACB = PA)CPDB)

PA)UP(B) CP(AUB)
P(A) N P(B) = P(A N B)
Uew eped Jxn1xexicr| Jx)

(P er@(Jx) 1 xex)=2()x).

Once we have powersets, we can define many other interesting sets. For example, given sets A and B,
we can define the set A ® B of all unordered pairs {a, b} with a € A and b € B as the set

A®B={{x,y)€P(AUB)| (x€A A y€ B)}.

Similarly, we can define the set A X B of all ordered pairs (a, b) with a € A and b € B, called the cartesian
product of A and B, as the set

AXB={{{x},{x,y}} e PP(AUB)) | (x€ A A y€ B)}.

Given sets Ay, ...,A,, with n > 2, we define their cartesian product A;x .". XA, as the iterated binary
cartesian product A} X (A2 X (... X (A,—1 X A,)...)); and given x| € Ay,...,x, € A,, we define the n-tuple
(X1,...,x,) € A;X .". X A, as the element (x1, (x2, (..., (X-1,X,)...))). When A} = A, =...=A, = A, we
further abbreviate Ax .. X A to A".

Using cartesian products, we can also construct the disjoint union of two sets A and B. The idea of the
disjoint union is to avoid any overlaps between A and B, that is, to force them to be disjoint before building
their union. Of course, A and B may not be disjoint. But we can make them so by building “copies” of A
and B that are disjoint. This is what the cartesian product construction allows us to do. We can form a copy
of A by forming the cartesian product A X {0}, and a disjoint copy of B by forming the cartesian product
B x {1}. These sets are respectively just like A or B, except that each element a € A has now an extra
marker “0” and is represented as the ordered pair (a, 0); and each b € B has now an extra marker “1” and is
represented as the ordered pair (b,). Then, by using either Lemma[I]or Exercise [I5]below, it is immediate
to check that (A x {0}) N (B x {1}) = @. We then define the disjoint union of A and B as the set

A®B=(Ax{0})Uu(Bx{l1)).

3We say that a set A is finite iff either A = @, or A is a finite union of singleton sets, that is, there are singleton sets {a;},.. ., {a,},
such that A = {a;}U...U{a,}, where by the associativity and commutativity of set union (see Exercise the order and the parentheses
between the different union operators are immaterial. We then use the notation A = {ay,..., a,} for such a set. Of course, by
extensionality we remove repeated elements. For example, if a; = a>, we would have A = {ay, a2, ...,a,} = {az, ..., a,}. The number
of elements of A is of course the number of different elements in A. For an equivalent definition of finite set later in these notes see

Deﬁnition@]in @

25

Exercise 14 Prove that for A, B, C, and D any sets, the following formulas hold:

A®B = B®A
AR = ©
A®BUC) = (A®BUMARC(0)

(ACBACCD) = A®CCB®D.

Exercise 15 Prove that for A, B, C, and D any sets, the following formulas hold:

AX® = OxXA=0
AX(BUC) = (AXB)UM@AXO)
(AUB)XC = (AXC)U(BXCO)

ANB)X(CND) = (AXC)N(BxD)
AX(B-C) = (AxXB-(AXC)
A-B)XC = (AXC)—(BXC)

(ACBACCD) = AxCCBXxD.

Exercise 16 Prove that if A and B are finite sets, with A having n elements and B m elements, then:
e A X B has n - m elements, and
o A ® B has n+ m elements.

This shows that the notations A X B and A ® B are well-chosen to suggest multiplication and addition, since cartesian
product and disjoint union generalize to arbitrary sets the usual notions of number multiplication and addition.

4.4 Infinity

The set theory axioms we have considered so far only allow us to build finite sets, like the numbelﬂ 7, the
powersets P(7) and P(P(7)), the sets P(7) x 7, and P(7) ® 7, and so on. It is of course very compelling to
think that, if we have all the natural numbers 1, 2, 3, ..., n, ..., as finite sets, there should exist an infinite
set containing exactly those numbers, that is, the set of all natural numbers. Note that this set, if it exists,
satisfies two interesting properties: (i) 0 = @ belongs to it; and (ii) if x belongs to it, then s(x) = x U {x}
also belongs to it. We call any set satisfying conditions (i) and (ii) a successor set. Of course, the set of
natural numbers, if it exists, is obviously a successor set; but one can construct other sets bigger than the
set of natural numbers that are also successor sets.

Even though in a naive, unreflective way of doing mathematics the existence of the natural numbers
would be taken for granted, in our axiomatic theory of sets it must be explicitly postulated as a new axiom,
called the axiom of infinity, which can be informally stated in English as follows:

There is a successor set.

This can be precisely formalized in our set theory language by the axiom:

(Unf) (@)@ ey A (Yxey)((xU{x}h e y)).

Note that the successor set y asserted to exist by this axiom is not unique: there can be many successor
sets. So this axiom does not directly define for us the natural numbers. However, it does define the natural
numbers indirectly. To see why, first consider the following facts:

Exercise 17 Prove that:
o [fS and S’ are successor sets, then S US’ and S N S’ are also successor sets.
o [fS is a successor set, then the set of all successor sets S’ such that S C S can be precisely defined as the

following subset of P(S):

(S"ePS)| @eS" A (VxeS)(xU{x})eS)).

“4In what follows, all numbers will always be understood to be represented as sets in the von Neumann representation.

26

This set is of course nonempty (S belongs to it) and its intersection
()8 ePS) @S A (VxeS)(xU(x)eS))
is a successor set.

Exercise 18 Prove that if X is a set having an element z € X such that for all x € X we have 7 C x, then X = z.

We can then use these easy facts to define the set N of natural numbers. Let S be a successor set, which
we know it exists because of the (Inf) axiom. We define N as the intersection:

N= ﬂ{S’eP(S)l(@eS' A (Yx € S)((xU{x}) € S)}

which we know is a successor set because of Exercise 171

The key question, of course, is the uniqueness of this definition. Suppose we had chosen a different
successor set T and had used the same construction to find its smallest successor subset. Can this intersec-
tion be different from the set N that we just defined for S ? The answer is emphatically no! It is the same!
Why is that? Because by Exercise for any successor set 7, S N T is also a successor set. And, since
S NT C S, this implies that N € (S N T) C T. That is, any successor set contains N as a subset. Then,
using Exercise[T8] we get that for any successor set 7'

N = ﬂ{T' ePM)|(@eT A (MxeT)(xU{x})eT))

as claimed. The fact that any successor set contains N as a subset has the following well-known induction
principle as an immediate consequence:

Theorem 2 (Peano Induction) If T C N is a successor set, then T = N.

The above induction principle is called Peano Induction after Giuseppe Peano, who first formulated it in
his logical axiomatization of the natural numbersE] It is an indispensable reasoning principle used routinely
in many mathematical proofs: to prove that a property P holds for all natural numbers, we consider the
subset 7' C N for which P holds; then, if we can show that P(0) (that is, that O € T") and that for each n € N
we have the implication P(n) = P(s(n)) (thatis, thatn € T = s(n) € T), then we have shown that P holds
for all n € N. Why? Because this means that we have proved that T is a successor set, and then by Peano
Induction we must have 7 = N.

Note that, although a successor set must always contain all the natural numbers, in general it could also
contain other elements that are not natural numbers. The set N we have defined, by being the smallest
successor set possible, contains all the natural numbers and only the natural numbers.

Exercise 19 Recall that in the von Neumann natural numbers we have n < m iff n € m. Use Peano induction to prove
that the < relation is a “linear order” on N, that is, to prove the formula

Vn,meN)n<mV m<nVn=m.

(Hint: Note that the property P(n) stated by the formula (Nm e N)n <m V m <n V n = m, defines a subset T C N of
the natural numbers).

SPeano’s axioms are discussed in

27

28

Chapter 5

Relations, Functions, and Function Sets

Relations and functions are pervasive, not just in mathematics but in natural language and therefore in
ordinary life: we cannot open our mouth for very long without invoking a relation or a function. When
someone says, “my mother is Judy Tuesday,” that person is invoking a well-known function that assigns
to each non-biologically-engineered human being his or her natural mother. Likewise, when someone says
“our four grandparents came for dinner,” he/she is invoking a well-known relation of being a grandparent,
which holds between two human beings x and z iff z is a child of some y who, in turn, is a child of x. One
of the key ways in which set theory is an excellent mathematical modeling language is precisely by how
easily and naturally relations and functions can be represented as sets. Furthermore, set theory makes clear
how relations and functions can be composed, giving rise to new relations and functions.

5.1 Relations and Functions

How does set theory model a relation? Typically there will be two sets of entities, say A and B, so that the
relation “relates” some elements of A to some elements of B. In some cases, of course, we may have A = B.
For example, in the “greater than” relation, >, between natural numbers, we have A = B = N; but in general
A and B may be different sets.

So, what is a relation? The answer is quite obvious: a relation is exactly a set of ordered pairs in some
cartesian product. That is, a relation is exactly a subset of a cartesian product A X B, that is, an element of
the powerset P(A x B) for some sets A and B. We typically use capital letters like R, G, H, etc., to denote
relations. By convention we write R : A = B as a useful, shorthand notation for R € P(A X B), and say
that “R is a relation from A to B,” or “R is a relation whose domairﬂ is A and whose codomairﬂ (or range)
is B.” Sometimes, instead of writing (a, b) € R to indicate that a pair (a, b) is in the relation R, we can use
the more intuitive infix notation a R b. This infix notation is quite common. For example, we write 7 > 5,
to state that 7 is greater than 5, instead of the more awkward (but equivalent) notation (7,5) € >.

Note that given a relation R C A x B we can define its inverse relation R™! C B X A as the set
R™" = {(,x) € BXxA | (x,y) € R). The idea of an inverse relation is of course pervasive in natural
language: “grandchild” is the inverse relation of “grandparent,” and “child” is the inverse relation of “par-
ent.” Sometimes an inverse relation R~! is suggestively denoted by the mirror image of the symbols for R.
For example, >~! is denoted <, and >~' is denoted <. It follows immediately from this definition that for
any relation R we have, (R"H' =R

What is a function? Again, typically a function f will map an element x of a set A to corresponding
elements f(x) of a set B. So the obvious answer is that a function is a special kind of relation. Which kind?
Well, a function f is a relation that must be defined for every element x € A, and must relate each element
x of A to a unique element f(x) of B. This brings us to the following question: we know that, given sets
A and B, the set of all relations from A to B is precisely the powerset P(A X B). But what is the set of all
functions from A to B? Obviously a subset of P(A X B), which we denote [A— B] and call the function set

I'This does not necessarily imply that R is “defined” for all a € A, that is, we do not require that (Ya € A)(b € B)(a,b) € R.
2This does not necessarily imply that for each b € B there is an a € A with (a, b) € R.

29

from A to B. Can we define [A—B] precisely? Yes, of course:
[A-Bl={f e P(AXB)| YacA)@A!b e B) (a,b) € f}.

We can introduce some useful notation for functions. Typically (but not always) we will use lower case
letters like f, g, h, and so on, to denote functions. By convention, we write f : A — B as a shorthand
notation for f € [A—B]. We thenread f : A — B as “f is a function from A to B,” or “f is a function
whose domain is A, and whose codomain (also called range) is B.” Also, if f : A — B and a € A, the
unique b € B such thata f b is denoted f(a). This is of course the standard notation for function application,
well-known in algebra and calculus, where we write expressions such as sin(r), factorial(7), 2 + 2 (which
in the above prefix notation would be rendered +(2, 2)), and so on.

Exercise 20 Let A and B be finite sets. If A has n elements and B has m elements, how many relations are there from
A to B? And how many functions are there from A to B? Give a detailed proof of your answers.

5.2 Formula, Assignment, and Lambda Notations

This is all very well, but how can we specify in a precise way a given relation or function we want to use?
If set theory is such a good modeling language, it should provide a way to unambiguously specify whatever
concrete relation or function we want to define. The fact that we know that the set of all relations from A to
B is the powerset P(A X B), and that the set of all functions from A to B is the set [A—B] is well and good;
but that does not tell us anything about how to specify any concrete relation R € P(A X B), or any concrete
function f € [A-B].

Essentially, there are two ways to go: the hard way, and the easy way. The hard way only applies under
some finiteness assumptions. If A and B are finite sets, then we know that A X B is also a finite set; and then
any R € P(A X B), that is, any subset R C A X B is also finite. So we can just /ist the elements making up the
relation R, say, R = {(a, by),...,(ay, b,)}. This is exactly the way a finite relation is stored in a relational
data base, namely, as the set of fuples in the relationE] For example, a university database may store the
relationship between students and the courses each student takes in a given semester in exactly this way: as
a finite set of pairs. In reality, we need not require A and B to be finite sets in order for this explicit listing
of R to be possible: it is enough to require that R itself is a finite set. Of course, for finite functions f we
can do just the same: we can specify f as the set of its pairs f = {(aj, by),. .., (a,, b,)}. However, since a
function f : A — B must be defined for all a € A, it follows trivially that f is finite iff A is finite.

So long for the hard way. How about the easy way? The easy way is to represent relations and functions
symbolically, or, as philosophers like to say, intensionally. That is, by a piece of language, which is always
finite, even though what it describes (its “extension”) may be infinite. Of course, for this way of specifying
relations and functions to work, our language must be completely precise, but we are in very good shape in
this regard. Isn’t set theory a precise formal language for all of mathematics? So we can just agree that a
precise linguistic description of a relation R is just a formula ¢ in set theory with exactly two free variables,
x and y. Then, given domain and codomain sets A and B, this formula ¢ unambiguously defines a relation
R C A X B, namely, the relation

R={(x,y) € AXB| ¢}

For example, the greater than relation, >, on the von Neumann natural numbers can be specified by the set
theory formula y € x, since we have,

>={(x,y) e NXN|ye€ x}.

Similarly, the square root relation on real numbers is specified by the formuleﬂ y? = x, defining for us the set
of pairs SORT = {(x,y) € R? | y?> = x}, which geometrically is a parabola. Note that what we are exploiting
here is the axiom scheme (Sep) of separation, which endows set theory with enormous expressive power to

3The fact that the tuples or “records,” may have more than two elements in them does not really matter for our modeling purposes,
since we can view, say, a triple (a, b, ¢) as a pair (a, (b, ¢)), and, similarly, and n-tuple (ay, ..., a,) as a pair (ar, (a2, . . ., an)).

4 Admittedly, the expression y? for squaring a real number does not belong to our basic set theory language; however, as explained
in what follows, such a language can be extended so that it does belong to an extended set theory language. Such language extensions
are the natural result of modeling all of mathematics within set theory, and are also very useful for set theory itself.

30

use its own “metalanguage” in order to specify sets. Let us call this syntactic way of defining relations the
formula notation.

How can we likewise define functions symbolically? Since functions are a special kind of relation, we
can also use the above formula notation to specify functions; but this is not always a good idea. Why not?
Because just from looking at a formula ¢(x, y) we may not have an obvious way to know that for each x there
will always be a unique y such that ¢(x, y) holds, and we need this to be the case if ¢(x, y) is going to define
a function. A better way is to use a set-theoretic ferm or expression to define a function. For example, we
can use the set-theoretic expression xU{x} to define the successor function s : N — N on the von Neumann
natural numbers. We can do this using two different notations, called, respectively, the assignment notation
and the lambda notation. In the assignment notation we write, for example, s : N — N : x = x U {x} to
unambiguously define the successor function. More generally, if #(x) is a set-theoretic term or expression
having a single variable x (or having no variable at all), then we can write f : A — B : x — #(x) to define
the function f. In which sense is f defined? That is, how is f specified as a set? Of course it is specified as
the set

f={xy) e AXB|y=1tx)}

Ok, but how do we know that such a set is a function? Well, we do not quite know. There is a possibility
that the whole thing is nonsense and we have not defined a function. Certainly the above set is a relation
from A to B. Furthermore, we cannot have (a, b), (a,b”) € f with b # b’, since #(x) is a term, and this forces
b = t(a) = b’. The rub comes from the fact that we could have a € A but t(a) ¢ B. In such a case f will
not be defined for all a € A, which it must be in order for f to be a function. In summary, the assignment
notation, if used senselessly, may not define a function, but only what is called a partial function. In order
for this notation to really define a function from A to B, we must furthermore check that for each a € A the
element #(a) belongs to the set B. An alternative, quite compact variant of the assignment notation is the
notation A 3 x — #(x) € B.

What about the lambda notation? This notation is also based on the idea of symbolically specifying
a function by means of a term #(x). It is just a syntactic variant of the assignment notation. Instead of
writing x — #(x) we write Ax. #(x). To make explicit the domain A and codomain B of the function so
defined we should write Ax € A. #(x) € B. Again, this could fail to define a function if for some a € A we
have #(a) ¢ B, so we have to check that for each a € A we indeed have #(a) € B. For example, assuming
that we have already defined the addition function + on the natural numbers, we could define the function
double : N — N by the defining equality double = Ax € N. x + x € N. A good point about the lambda
notation Ax. #(x) is that the 4 symbol makes explicit that it is used as a “binder” or “quantifier” that binds
its argument variable x. This means that the particular choice of x as a variable is immaterial. We could
instead write Ay. #(y) and this would define the same function. Of course, this also happens for the assigment
notation: we can write A 3 y — #(y) € Binstead of A > x — #(x) € B, since both notations will define the
same function.

Both the assignment and the lambda notations have easy generalizations to notations for defining func-
tions of several arguments, that is, functions of the form f : A} X...xXA, — B. Instead of choosing a term

#(x) with (at most) a single variable, we now choose a term #(x1, . .., x,,) with (at most) n variables and write
firAIX... XA, — B:(x1,..., %) = H(X1,...,%,), 0t A; X ...XA,; > (x1,...,%,) — t(x1,...,X,) €B
in assignment notation; or A(x1,...,x,) € A; X...XA,. t(x1,...,X,) € B in lambda notation. For example,

we can define the average function on a pair of real numbers by the assignment notation: av : R? —
R : (x,y) = (x +y)/2. Of course, the function f defined by the assignment notation A; X ... X A, >

(x1,...,x,) > t(x1,...,x,) € B, or the lambda notation A(xy,...,x,) € Ay X ... X A,. t(x1,...,Xx,) € B, is:
f=Aa, o x),y) € (AL XL XA X By = Hx1, ..., X))
Perhaps a nagging doubt that should be assuaged is what terms, say, #(x) or #(xy, ..., x,), are we allowed

to use in our set theory language. After all, in the original formal language of set theory presented in
the only terms allowed were variables! This certainly will not carry us very far in defining functions. The
answer to this question is that we are free to use any terms or expressions available to us in any definitional
extension of the set theory language. The idea of a definitional extension of a first-order language is very
simple: we can always add new, auxiliary notation, provided this new notation is precisely defined in terms
of the previous notation. We have been using this idea already quite a lot when introducing new auxiliary
symbols like @, C, |, N, B, ®, &, X, or P, in our set theory language. For example, we defined the

31

containment relation C in terms of the basic notation of set theory —which only uses the € binary relation
symbol and the built-in equality symbol— by means of the defining equivalence x Cy & (Vz)(z € x =
z € y). Similarly, the term x U {x} that we used in defining the successor function on von Neumann natural
numbers became perfectly defined after singleton sets were formally defined by means of the (Pair) axiom
and the union operation was formally defined by means of the (Union) axiom.

More precisely, given any formula ¢ in our language whose free variables are exactly xi, ..., x,, we
can introduce a new predicate symbol, say P, of n arguments as an abbreviation for it, provided we add
the axiom P(xy,...,x,) © ¢, which uniquely defines the meaning of P in terms of ¢. For example,
the predicate C is defined in this way by the equivalence x C y & (Vz € x) z € y. Similarly, if we
have a formula ¢ in our language whose free variables are exactly xi, ..., x,,y, and we can prove that the
formula (Vx1, ..., x,)(3!y) ¢ is a theorem of set theory, then we can introduce in our language a new function
symbol f of n arguments, and we can define the meaning of f by adding the axiom f(x},...,x,) =y © ¢.
For example, we have done exactly this to define {x, x}, | x, and P(x), using the uniquely existentially
quantified variable y in, respectively, the (Pair), (Union), and (Pow) axioms. Of course, this language
extension process can be iterated: we can first define some new function and predicate symbols this way, and
can later introduce other new symbols by defining them in terms of the formulas in the previous language
extension. For example, the sucessor function can be defined in terms of binary union _ U _ and the pairing
operation {_, _} by means of the term x U {x}, which abbreviates the term x U {x, x}. Finally, by repeatedly
replacing each predicate or function symbol by its corresponding definition, we can always “define away”
everything into their simplest possible formulation in the basic language of set theory presented in § 2]

Exercise 21 Define away the formula y = s(x), where s is the successor function, into its equivalent formula in the
basic language of set theory, which uses only variables and the € and = predicates.

5.3 Images

Given a relation R C A X B, we can consider the image under R of any subset A’ € P(A), that is, those
elements of B related by R to some element in A’. The obvious definition is then,

RIA)=1{be B|(JaecA) (ab)eR).

For example, for SORT the square root relation on the set R of real numbers we have SQRT[{4}] = {2, -2},
SORT[{-1}] = @, and SOQRT[R] = R.
Of course, given B’ C B, its inverse image under R,

R'B1=lacA|@beB)(ab)eR),

is exactly the image of B’ under the inverse relation R~'. For example, since the inverse relation SQRT ™"
is the square function R 3 x — x> € R, we have SORT'[{-1}] = {1}, and SQRT'[R] = Rs0, where Ryg
denotes the set of positive (or zero) real numbers.

Given a relation R € A X B, we call the set R[A] C B the image of R. For example, the image of the
square root relation SORT is SORT[R] = R; and the image of the square function is square[R] = Ryq.

Note that for any relation R € A X B, the assignment P(A) > A’ — R[A’] € P(B) defines a function
R[] : P(A) — P(B). In particular, for the inverse relation R~! we have a function R™![_] : P(B) — P(A).

Note, finally, that when f € A X B is not just a relation but in fact a function f : A — B, then for each
a € A we have two different notations, giving us two different results. On the one hand f(a) gives us the
unique b € B such that a f b, while on the other hand f[{a}] gives us the singleton set whose only element

is f(a), that s, fT{a}] = {f(@)).

Exercise 22 Prove the following:

1. Forany sets A, B, and C, if f € [A—»B] and B C C, then f € [A—C], that is, [A—B] € [A—C], so that we can
always enlarge the codomain of a function to a bigger one.

2. Given f € [A—B], prove that for any set C such that f[A] € C € B we have f € [A—C]; that is, we can restrict
the codomain of a function f to a smaller one C, provided f[A] € C.

32

3. If f e[A-»Bland A C A’ then f ¢ [A’—B], that is, we cannot strictly enlarge the domain of a function f and still
have f be a function. Give a precise set-theoretic definition of partial function, so that, under this definition, if
fe€elA-Bland A C A’ then f is a partial function from A’ to B. Summarizing (1)—(3), the domain of a function
f € [A—B] is fixed, but its codomain can always be enlarged; and can also be restricted, provided the restricted
codomain contains f[A].

4. Call a relation R from A to B totaﬂ iff for each a € A we have R[{a}] # @. Show that any function from A to
B is a total relation. Show also that if f € [A—>B] and A C A’, then f, as a relation from A’ to B, is not total
(so that calling f a partial function from A’ to B makes sense). Come up with the most natural and economic
possible way of extending any relation R from a set A to itself, that is, R € P(A?), to a total relation R, so that:
(i) R C R*, and (ii) if R is already total, then R = R®.

5. Forany sets A, B, C, and D, if R € P(A X B), A C C, and B C D, then R € P(C X D), that is, we can always
enlarge both the domain and the codomain of a relation. However, show that if R € P(A X B) is total from A to
Band A c C, and B C D, then, R, as a relation from C to D, is never total.

Exercise 23 Given a function f € [A—B] and given a subset A’ C A we can define the restriction [T of f to A’ as the
set

flo={@b)eflae A}
Prove that the assignment f — f|4 then defines a function _ 4: [A—B] — [A’—B). Show, using the inclusion N C Z
of the natural numbers into the set Z of integers, as well as Exercise [22}(1)-(2), that the addition and multiplication
functions on natural numbers are restrictions of the addition and multiplication functions on integers in exactly this
sense.

Similarly, given a relation R € P(A X B) and given a subset A’ C A we can define the restriction Ry of Rto A’ as

the set

Rra={(a,b)eR|acA’}.

Prove that the assignment R +— R[4 then defines a function _[x: P(A X B) — P(A’ X B).

5.4 Composing Relations and Functions

Given relations F' : A = Band G : B = C, their composition is the relation F;G : A = C defined as
the set

F;G={(x,2)€e AXC|@yeB)(x,y) e F A (3,2) € G)}.

Similarly, given functions f : A — B and g : B — C, their composition is the relation f; g : A — C,
which is trivial to check it is a function. The notation F; G (resp., f; g) follows the diagrammatic order, so
that F (resp., f) is the first relation (resp., function) from A to B, and G (resp., g) the second relation (resp.,
function) from B to C. Sometimes the composed relation F; G (resp., composed function f; g) is denoted in
application order as G o F (resp., g o f). This is due to the convention of applying functions to an argument
on the left of the argument, so to apply f;g to a € A we have to apply f first to get f(a), and then g to
get g(f(a)). The notation (g o f)(a) = g(f(a)) then follows the application order for functions on the left,
whereas the notation f; g is easier to indicate that f is the first function applied, and g the second. We will
allow both notations, but will favor the diagrammatic one.

Given any set A, the identity function on A is the function idy = {(a,a) | a € A}, or, in assignment
notation, id4 : A — A : a — a. The following lemma is trivial to prove and is left as an exercise.

Lemma 2 (Associativity and Identities for Relation and Function Composition)

1. Givenrelations F : A= B, G: B= C, and H : C = D, their composition is associative, that is,
we have the equality of relations (F;G); H = F;(G; H).

SPlease note that this use of the word “total” means “totally defined” and is opposed to “partial,” in the sense of “partially defined,”
that is, a relation R : A = B is total iff it is defined for every a € A, and should be called partial otherwise. All functions are total
relations in this sense; and we call a relation f : A = B a partial function iff there is a subset A’ C A such that f : A’ — Bisa
(total) function. Note that this notion of total relation is completely different from another notion in which R : A = A is called “total”
iff (Yx,y € A) xRy V yRx. This second sense of “total” is used in the notion of a fotally ordered set with an order relation < in Section
To make things even more confusing, an ordered set that is not total in this second sense is called a partially ordered set or poset;
but here “partial” just means not (necessarily) total in this second and completely different sense. In what follows, the context should
always make clear which of these two different senses of “total” or “partial” is meant.

33

2. Given functions f : A — B, g: B— C, and h : C — D, their composition is likewise associative,
that is, we have the equality of functions (f;g);h = f;(g; h).

3. Given a relation F : A = B, we have the equalities ids; F = F, and F;idg = F.
4. Given a function f : A — B, we have the equalities ids; f = f, and f;idp = f.

Closely related to the identity function id4 on a set A we more generally have inclusion functions. Given
a subset inclusion A’ C A, the inclusion function from A’ to A is the function jﬁ, ={(d',a) | a €A}, or,
in assignment notation, jﬁ, :A” — A : d - a'. Thatis, the function jfv is just the identity function id4-
on A’, except that we have extended its codomain from A’ to A (see Exercise[22}(1)). To emphasize that an
inclusion function identically includes the subset A’ into A, we will use the notation jﬁ, : A” — A. Note that
inclusion functions are also closely connected with the notion of restriction f14 of a function f : A — B
or, more generally, restriction F [4 of a relation F : A = B to a subset A’ C A of its domain defined in
Exercise Indeed, it is trivial to check that we have the equalities: f4 = jﬁ, 3 f,and Fla= jﬁ,; F.

We call a function f : A — B injective ift (Va,a’ € A)(f(a) = f(a’) = a = a’). Obviously, any
inclusion function is injective. For another example of an injective function, consider multiplication by 2
(or by any nonzero number) on the natural numbers: 2-_: N — N : n - 2 - n. Similarly, addition by 2 (or
by any natural number) 2+ _: N — N : n — 2 + n is an injective function. We use the notation f : A > B
as a shorthand for “f is an injective function from A to B.” Note that, since an inclusion jﬁ, TA > A
is always injective, it can also be written jf‘, : A’ > A, but the notation jﬁ, : A’ — A is clearly more
informative, since it indicates that jﬁ, is not only injective, but also an inclusion.

We call a function f : A — B surjective iff B is the image of f, that is, iff f[A] = B. For example,
the absolute value function || : Z — N, with |n| = n if n € N, and |-n| = n for negative numbers, is
clearly surjective. Similarly, the projection to the horizontal plane 7 : R® — R? : (x,y,z) = (x,y) is also
surjective. We use the notation f : A —» B as a shorthand for “f is a surjective function from A to B.”
Note that, taking into account Exercise it is immediate to check that any function f : A — B can be
expressed in a unique way as a composition of its “surjective part” (the restriction of its codomain to f[A]),
followed by the inclusion of f[A] into B. That is, for any B such that f[A] C B we always have f = f; j?[ne
according to the composition

. iB
A Ly a1 B,
Since any inclusion function is injective, the above composition f = f; jjlf[Al shows that any function can
always be expressed as the composition of a surjective function followed by an injective function.

We call a function f : A — B bijective iff it is both injective and surjective. Obviously, the identity
function id, is bijective. Similarly, the function mapping each point of the three dimensional space to its
“mirror image” on the other side of the x — z plane, mirror : R} — R3: (x, ¥,2) = (x, -y, z) is also clearly
bijective. We use the notation f : A—B as a shorthand for “f is a bijective function from A to B.” We
also use the notation A = B as a shorthand for “there exists a bijective function from A to B.” For example,
{0, 1,2}) = 8.

Since any function f : A — Bis a special case of a relation, its inverse relation f~! : B = A is always
defined. However, in general f -1 is a relation, but not necessarily a function. We have already encountered
instances of this phenomenon. For example, given the square function square : R — R : x +— 2, its
inverse relation square™! : R = R is precisely the square root relation SQRT, which is not a function. It
is then interesting to ask: given a function f : A — B, when is its inverse relation f~' a function? More
generally, how is the inverse relation f~! related to the injective, surjective, or bijective nature of a function?

Exercise 24 Given a function f : A — B, prove the following:
1. We always have inclusions f'; f C idg, and ids C f; f~'.
A relation R : A = B is a function iff R"'; R C idp, and idy C R;R™.
f is surjective iff f'; f = idp.
f is injective iff f; ' = id,.
f is bijective iff the relation f~' is a function f~' : B — A.

SR N

[is bijective iff there exists a function g - B — A such that f;g = ids and g; f = idg. Furthermore, g satisfies
these conditions iff =" is a function and g = f".

34

The last two characterizations in Exercise [24] clearly tell us that if we have two sets A and B such that
there is a bijective function f : A — B between them, then in all relevant aspects these sets are “essentially
the same,” because we can put each element a of A in a “one-to-one” correspondence with a unique element
of b, namely, f(a), and conversely, each element b of B is put in a one-to-one correspondence with a unique
element of A, namely, f~'(b). This means that f and f~! act as faithful encoding functions, so that data
from A can be faithfully encoded by data from B, and data from B can be faithfully decoded as data from
A. It also means that the sets A and B have “the same size.”

We can illustrate the way in which a bijection between two sets makes them “essentially the same”
by explaining how the powerset construction $(A) and the function set construction [A—2] are intimately
related in a bijective way. Given any set A, the sets P(A) and [A—2] are essentially the same in this precise,
bijective sense. P(A) and [A—2] give us two alternative ways of dealing with a subset B C A. Viewed as an
element B € P(A), B is just a subset. But we can alternatively view B as a boolean-valued predicate, which
is true for the elements of B, and false for the elements of A — B. That is, we can alternatively represent B
as the function

xp:A—2:a if ac Bthen 1 else O fi

where yp is called the characteristic function of the subset B. The sets P(A) and [A—2] are essentially the
same, because the function y_ : P(A) — [A-2] : B — yp is bijective, since its inverse is the function
O {1 : [A-2] — PA) = f - {1

We call a function f : A — B a left inverse iff there is a function g : B — A such that f;g = idj.
Similarly, we call g : B — A a right inverse iff there is a function f : A — B such that f; g = id4. For
example, composing

Ji I
N—Z7Z —» N

the inclusion of the natural numbers in the integers with the absolute value function, we obtain jg; || = idy,
and therefore jg is a left inverse and || is a right inverse.

Exercise 25 Prove the following:
1. If f : A — Bis a left inverse, then f is injective.
2. If f : A — Bisinjective and A # @, then f is a left inverse.
3. If f : A —> Bis aright inverse, then f is surjective.
4. f: A — Bisboth a left and a right inverse iff f is bijective.

Is every surjective function a right inverse? As we shall see, that depends on the set theory axioms that
we assume. We shall revisit this question in §10.2]

Exercise 26 (Epis and Monos). Call a function f : A — B epi iff for any set C and any two functions g,h : B— C, if
fig=f;htheng=h. Dually,E] call a function f : A — B mono iff for any set C and any two functions g,h : C — A,
if g; f = h; f then g = h. Prove the following:

f 1A — Bisepiiff fis surjective.

f 1A — Bismono iff f is injective.

If f:A— Bandg: B — C are epi, then f; g is epi.

If f:A— Band g : B— C are mono, then f; g is mono.
Given f: A— Band g : B— C with f; g epi, then g is epi.

S I T

Given f: A — Band g : B— C with f; g mono, then f is mono.

In the von Neumann representation of the natural numbers as sets, the number 1 is represented as the
singleton set 1 = {@}. Given any set A, we can then consider the function sets [1-A] and [A—1]. As the
exercise below shows, the set [A—1] is always a singleton set. How about the set [1-A]? Exercise shows
that we always have a bijection A = [1-A].

Exercise 27 Prove the following for any set A:

6 By “dually” T mean that, by “reversing the direction of all the arrows,” e.g., from A —> B to A «— B, in the definition of “epi”
we then obtain the definition of “mono” as its “dual concept.”

35

1. The function set [A—1] is always a singleton set. Describe explicitly the unique function, let us denote it !4, in
the singleton set [A—1].

2. Prove that for all sets A, except one of them, the function 4 is surjective. For which A does 4 fail to be surjective?
In this failure case, is |, injective? Can you give a necessary and sufficient condition on A so that !, is bijective
iff your condition holds?

Note that, since for any set A we have the set equality @ X A = @, then we also have the set equalities
P(@ x A) = P(@) = {@} = 1. Furthermore, the unique relation @ : @ = A is obviously a function. As
a consequence, we have the additional set equalities P(@ X A) = [@—-A] = {@} = 1. That is, for any set
A there is always a unique function from the empty set to it, namely, the function @ : @ — A, which is
precisely the inclusion function /4 : @ < A, and therefore always injective. What about the function set
[A—»@]? We of course have [A-2] C P(A X @) = P(@) = {@} = 1. Butif A # @ the unique relation
@ : A = @ is not a function. Therefore, if A # @ we have [A—~@] = @, that is, there are obviously
no functions from a nonempty set to the empty set. What about the case A = @? Then we have the set
equalities: [0—2] = P(@ X @) = P(@) = {@} = 1. Furthermore, the unique function @ : @ — @ is
precisely the identity function id,.

Given any two sets A and B, we can associate to their cartesian product two functions, p; : AX B —
A :(a,b) » aand p; : AXB — B : (a,b) — b, which are called the projection functions from the
cartesian product A X B into their first and second components, A and B.

Exercise 28 The above definitions of the functions p, and p, are quite high-level, since they hide the representation of
(a, b) as the set {{a}, {a, b}}. Prove that, using the concrete representation of pairs, the functions p, and p, are exactly the
functions: p;y = Ax € AXB. |J(x€ A andp, = Ax € AXB.if (Jx—(x) =2 then |J(xelse JUx—Nx)fieB.
(Hint: use ExerciseH).

Exercise 29 Given any three sets A, B, and C, and given any two functions f : C — A and g : C — B, we can define
the function (f,g) : C — A X B : ¢ — (f(c), g(c)). Prove that:

L (f.9sp=f

2. (f,8p2=8

3. (1) and (2) uniquely determine (f, g), that is, any function h : C — A X B such that h;p, = fand h;p, = g
must necessarily satisfy h = (f, g).

We can compactly express properties (1)—(3) in Exercise[29)in a precise graphical notation by means of

the following commutative diagram:
¢
/(f,g)\
\

A o AXB ” B

where:

o Different paths of arrows having the same beginning and ending nodes are pictorially asserted to have
identical function compositions. In the above diagram the left triangle asserts equation (1), and the
right triangle asserts equation (2). This is called “diagram commutativity.”

e A dotted arrow pictorially denotes a unique existential quantification. In the above diagram the fact
that the arrow for (f, g) is dotted, exactly means that (f, g) is the unique function that makes the two
triangles commute, that is, such that (1) and (2) hold; which is statement (3).

Given any two sets A and B, we can associate to their disjoint union A @ B two injective functions,
ii1tA— A®B:aw— (a,0)and iy : B— A® B : b~ (b, 1), which are called the injection functions into
the disjoint union A @ B from their first and second components, A and B.

Exercise 30 Given any three sets A, B, and C, and given any two functions f : A — C and g : B— C, we can define
the function [f,gl : A® B — C : x — if x € A x {0} then f(p;(x)) else g(p;(x)) fi, where p; : A X {0} — A, and
p1: Bx {1} — B are the projection functions.

Prove that:

36

L islf.gl=1
2. islf.gl=g

3. (1) and (2) uniquely determine [f, g, that is, any function h : A® B — C such that i;;h = f and i>; h = g must
necessarily satisfy h = [f, gl.

Properties (1)—(3) can be succinctly expressed by the commutative diagram:

C
A

[f.¢]

A — A® B < B

1]

Note the striking similarity between Exercises 29| and since, except for “reversing the direction of
all the arrows,” the product A X B and the disjoint union A @ B have the exact same properties with respect
to functions from a set C to their components A and B (resp., to a set C from their components A and B).
As already mentioned for epis and monos in Footnote [6] to Execise [26] this striking coincidence, obtained
by “reversing the direction of the arrows” is called duality. Therefore, the cartesian product A X B and
the disjoint union A & B are dual constructions. For this reason, the disjoint union is sometimes called the
coproduct of A and B.

In fact, this kind of duality is at work not just between epis and monos and between products and
disjoint unions. In a similar way, the empty set @ and the set 1 are dual of each other, since for any set A,
the function sets [@—A] and [A—1] are both singleton sets. That is, for any set A there is a unique function
@ : @ — A from @ to A, and, dually, there is also a unique function !4 : A — 1 from A to 1. That is,
“reversing the direction of the arrows” @ and 1 behave just the same. For this reason, @ is sometimes called
the initial set, and its dual, 1, the final set.

5.5 Abstract Products and Disjoint Unions

Exercises [30]and 29| are much more than just two average exercises: they give us the key for arriving at the
abstract notions of “disjoint union” and “cartesian product,”’ thus freeing them of any “representation bias.”

Let me begin with cartesian products and explain how we can use the properties stated in Exercise [29]
to arrive at the right abstract notions of “cartesian product” and “ordered pair.” As we discussed in §4.1}
the set-theoretic representation of an ordered pair as (x,y) = {{x}, {x, y}} is just one choice of representation
of ordered pairs among many. Since cartesian products are defined as sets of ordered pairs, our defini-
tion of cartesian product is based on the above representation of ordered pairs, and is also one choice of
representation of cartesian products among many. But how could we characterize all the possible correct
representations of the ordered pair and cartesian product notions? And how could we precisely express the
corresponding abstract concepts for such notions within our set theory language? We can do all this very
easily by turning Exercise [29|on its head and using it as the abstract definition of a cartesian product. That
is, we can ignore for the moment our earlier representations for ordered pairs and cartesian products and
adopt the following definition:

Definition 2 (Abstract Product) Given two sets A and B, a cartesian product for A and B is a set, denoted
A X B, together with two functions p; : AXB — A and p, : AX B — B, satisfying the following property:
for any other set C, and any two functions f : C — A and g : C — B, there exists a function, which we
denote (f,g) : C — A X B, such that:

1. (f.8):p1 =1,

2. (f,.8sp2=8

3. (1) and (2) uniquely determine (f, g), that is, any other function h : C — A X B such that h; p; = f
and h; p, = g must necessarily satisfy h = (f, g).

37

In view of this abstract definition, Exercise [29| now becomes just checking that our concrete choice of
representation for ordered pairs and cartesian products is a correct representation of the abstract concept.

But, since Definition [2]does not tell us anything about the internal representation of the elements in the
set A X B, it describes such set as what, both in object-oriented programming and in the theory of algebraic
data types, is called an abstract data type: it makes the internal representation of ordered pairs hidden,
giving the “implementer” enormous freedom to internally represent ordered pairs as he/she chooses. Any
representation will be correct if and only if it satisfies the requirements specified in the abstract definition.

For example, instead of the standard representation of ordered pairs that we have used so far, we could
have chosen the alternative representation discussed in Exercise [3] With the appropriate definition of p;
and p, for this alternative representation (as an exercise, give concrete definions of p; and p, for this
new representation in a way entirely similar to Exercise [28)), this does of course also satisfy the abstract
requirements in Definition A more striking example of a very different choice of representation for
ordered pairs and the corresponding cartesian product is provided by the Gddel numbering technique used
—mnot only in logic, but also in cryptography— for encoding pairs and, more generally, terms in a language
as numbers. Suppose that we want to represent the cartesian product N X N this way. We can do so by
defining for any two numbers n,m € N their ordered pair as the number: (n,m) = 2"*! . 3"*1 Then
we can define N x N = {2"*! . 3"+ ¢ N | n,m € N}, and give to p; and p, the obvious definitions:
p1 i NXN — N:2# .3 gy NXN — N ¢ 2. 3mH s 4y where the correctness of
this representation of pairs and the well-definedness of the functions p; and p, are trivial consequences of
the Fundamental Theorem of Arithmetic, that ensures that any natural number greater than 1 has a unique
factorization as a product of powers of its prime factors. Given functions f,g : C — N, the unique
function (f, g) : C — N X N such that (f, g); p1 = f and (f, g); p» = g is then given by the assignment:
¢ 2fO+1 3gle)+1

Note that the abstract notion of “ordered pair” and its extensionality property (Lemma [T) now appear
as trivial consequences of the abstract notion of “cartesian product.” Given any set A, we can exploit the
bijection A = [1-A] : a — a, explored in detail in Exercise to faithfully represent any element a € A
as a function@ : 1 — A : 0 — a. Then, specializing the set C to 1 in Deﬁnition what we get is that
for any two functions @ : l — A, ’l\a : 1 — B, there exists a unique function (a, b) : 1 — A X B such
that (a, b); py = a and (a, b); p, = b. Defining an ordered pair as an element (a,b) = (a,b)(0) € A X B,
this trivially implies that the extensionality Lemma [I| holds for any representation of pairs provided by
any abstract product. This is of course an enormously more general extensionality result than Lemma [T]
Furthermore, it has a much simpler proof (just given above!) than that of Lemmal[I] This is just one instance
of what I like to call the “generalize and conquer” principle, where many times the more general a result is,
the simpler its proof becomes!

Having identified the duality between products and disjoint unions provides a great economy of thought,
because we then get two abstract concepts for the price of one. That is, we get the concept of “abstract
disjoint union,” just by reversing the arrows in Definition [2}

Definition 3 (Abstract Disjoint Union) Given two sets A and B, a disjoint union for A and B is a set,
denoted A ® B, together with two functions iy : A — A® Band i, : B—> A & B, satisfying the following
property: for any other set C, and any two functions f : A — C and g : A — C, there exists a function,
which we denote [f,g] : A® B — C, such that:

I- il;[f’g]:f;

2. islf.el=g

3. (1) and (2) uniquely determine [f, gl, that is, any function h : A® B — C such that i;;h = f and
ir; h = g must necessarily satisfy h = [f, gl.

As before, Exercise [30] now becomes checking that our concrete representation for A @ B as the set
(Ax{0hU(Bx1), together with our choice of inclusion functions i; and i, for (A X{0}) U(BX 1) is a correct
representation of the abstract concept of disjoint union.

But once we have the abstract concept, there is again great freedom from any “representation bias;”
because we do not need to care about how the elements inside A @ B are internally represented: we just treat
A @ B as an abstract data type. There are, indeed, many possibilities. For example, whenever AN B = @ we

38

can choose A® B = AU B, with i; and i, the inclusion functions ;"% : A < AUBand j4"5 : B AU B,
which trivially satisfies properties (1)—(3) in Definition [3| by taking [f,g] = f U g. This representation
is so common that a special notation is used: we write A ¥ B to denote A U B when A N B = @. For
another example, we can choose a disjoin union representation N @ N = N, with 7; and i,, the functions:
2.-_:N—Nand 1+ (2-.): N— N. Itis trivial to check that this gives us a correct representation of
the abstract notion of disjoint union N @ N, with [f, g](n) = if even(n) then f(n/2) else g((n — 1)/2) fi.

Anybody in his right mind would expect that all these different representations of an abstract product
A X B, (resp., an abstract disjoint union A @ B) are “essentially the same.” This is actually the case, not only
in the weak sense that there are bijections between these different representations, but, as shown in Exercise
[31]below, in the much stronger sense that those bijections preserve what in computer science are called the
“interfaces” of the corresponding abstract data types. For products the “interface” is given by the projection
functions p; and p,, whereas for disjoint union the “interface” is given by the injection functions i; and i,.
Such bijections preserving the interfaces are called isomorphisms.

Exercise 31 (All products (resp., disjoint unions) of A and B are isomorphic). Prove that:

1. Given any two sets A, B, and given two different representations A X B and A X' B of the abstract product of A
and B, with projections py : AXB — Aand p, : AXB — B, resp., pi : AX'B— Aand p, : AX' B— B,
there is a unique bijection h : A x B=>A X’ B such that: (i) h; p| = p1, and h; p}, = p,; and (ii) hlp = D
and h™"; p, = pj.

2. State and prove the dual statement for disjoint unions. Can you “reuse” your proof of (1) to obtain “automati-
cally” a proof of (2), just by reversing the arrows?

Exercise 32 (® and x are Functorial Constructions). For concreteness we assume the standard representations for
A ® B and A X B. These are set-theoretic constructions that act naturally not only on sets A and B, but also on
functions between sets. For example, given functions f : A — A’ and g : B — B’, we can define the function
f@®g:A®B— A’ @® B’ by the defining equation f ® g = [f;11,8;i>]. Applying the definition of [f i1, g; i2], we easily
see that f®g behaves like f on the disjoint copy of A and like g on the disjoint copy of B. That is, (f®g)(a,0) = (f(a),0),
and (f @ g)(b, 1) = (g(b), 1). Dually, by replacing injections by projections and inverting the direction of the functions,
we can define the function f X g : AX B — A’ X B’ by the defining equation f X g = (p1; f, p2;g).- Applying the
definition of (p1; f, p2; 8), we easily see that f X g behaves like f on the first component, and like g on the second, that
is, (f x ©)(@,b) = (f(@), g(b)).

Any set-theoretic construction is called functorial if it satisfies three properties. First, it acts not only on sets, but
also on functions relating such sets, so that the constructed function then relates the sets so constructed. We have
already checked this first property for @ and X by our definitions for f ® g and f X g. Second, it preserves function
composition. For & and X this means that if we also have functions f' : A’ — A” and g’ : B — B, then we have
equalities

(fogs(feg)=1)ogs) resp., (fxgs(f xg)=(1)*x(g8).

Third, it preserves identity functions. For @ and ® this means that for any two sets A and B we have
idA (&) ldB = idA@B resp., ldA X ldB = idAxg.
Prove that the above four equalities hold, and therefore that ® and X are indeed functorial constructions.

Exercise 33 (if-then-else-fi) Let f,g : A — B be any two functions from A to B, and let ¢(x) be a formula in the
language of set theory having a single free variable x. Prove that there is a unique function, denoted if ¢ then f else g fi,
such that for each a € A, (if p then f else g fi)(a) = f(a) if p(a) holds, and (if ¢ then f else g fi)(a) = g(a) if p(a) doesn’t
hold. (Hint: decompose A as an abstract disjoint union.)

5.6 Relating Function Sets

We can view relation and function composition as functions. For example, composing relations from A to
B with relations from B to C, is the function

ot PAXB)XPBXC)— PAXC): (F,G)— F;G
Similarly, composing functions from A to B with functions from B to C, is the function

- [ASB] X [B-C] — [A-Cl : (f,9) = fi8

39

Also, given sets A, B and B’, and a function g : B — B’, we can define the function
[A-g] : [A-B] — [A-B'] 1 he ;g

Likewise, given sets A, A’ and B, and a function f : A” — A, we can define the function
[f-B]:[A-B] — [A'=Bl:h— fih

More generally, given sets A, A’, B and B’, and functions f : A” — A and g : B — B’, we can define
the function
[f-gl:[A-B] — [A'-B’l:h fihg

so that we then get [A—g] = [ids—g], and [f—B] = [f—idg] as special cases.

Exercise 34 ([-—_] is a Functorial Construction). The above definition of [f—g] strongly suggests that [.—_] acts
on both sets and functions and is a functorial construction. However, in the case of the [_—_] construction, its action
on functions comes with a twist, since [f—g] reverses the direction of the function in its first argument: we give it
f A" — A but we get back [f—B] : [A->B] — [A’—>B]. This twist is called being “contravariant” on the first
argument (and “covariant” in the second argument). Prove that [-—_] satisfies the other two functoriality requirements:
it preserves both function composition and identity functions. Because of the contravariance on the first argument, what
now has to be proved is that given functions

Al Al A BB

we have [f—gl;[f'—g'] = [(f; /)—(g;&)]. The requirement for identity preservation is as expected: given any two
sets A and B one has to prove the equality [ids—idg]| = idjs—p).

For any function set [B—C], function evaluation is itself a function
-O=q) 1 [B-CIX B — C: (f,b) = f(D).
Also, for any cartesian product A X B, we have a function
columnsyp : A — [B—(AX B)] :a— Ay € B. (a,y) € A X B.

Note that the name column,xp is well-chosen, since if we visualize the cartesian product A X B as a two-
dimensional table, where each a € A gives rise to the “column” {(a,y) € AX B |y € B}, and each b € B
gives rise to the “row” {(x,b) € A X B | x € A}, then column,xg(a) maps each y € B to its corresponding
position (a, y) in the column {(a,y) € AX B |y € B}.

Exercise 35 Prove the following for any set A:
1. The first projectionmap ps : AX 1 — A : (a, @) = a is bijective.
2. The evaluation function _(J)1—a; : [15A] X 1 — A is bijective.
3. Combine (1) and (2) to prove that the function [1-A] — A : f — f(@) is bijective. That is, for all practical

purposes we can think of an element a € A as a function'a € [1—A], namely the unique function a such that
a(@) = a, and, conversely, any function f € [1-A] is precisely of the form f =a for a unique a € A.

Exercise 36 Prove that for any set A there is a bijection A> = [2—A). That is, except for a slight change of represen-
tation, the cartesian product A X A and the function set [2—A] are “essentially the same set.”

Generalize this for any n > 1, adopting the notational convention that for n = 1, A coincides with the “I-fold
cartesian product” of A. That is, show that for any n > 1 there is a bijection A" = [n—A], between the n-fold cartesian
product of A (as defined in §|for n > 2, and here also for n = 1), and the function set [n—A). Note that for n = 1 this
yields the bijection between A and [1—A] already discussed in Exercise[33}(3).

Regarding the above exercise, note that if A is a finite set with m elements, then, recalling Exercise [T6}
the n-fold product of A has m- .". -m elements, and the function set [n—A] has (how many? See Exercise
[20). Therefore, the above bijection A" = [n—A] tells us two things. First, that the same way that the cartesian
product construction generalizes number multiplication, the function set construction generalizes number
exponentiation. Second, that the bijection A" = [n—A] generalizes the arithmetic identity m - .7. -m = m".

40

Exercise 37 (Currying and un-Currying of Functions). Prove that for any three sets A, B and C, the function
curry : [A X B->C] — [A->[B-C]] : f — columnyyp; [B— f]
is bijective, since it has as its inverse the function
uncurry : [A-[B—C]] — [A X B>C] : h = (h X idg); -(O)a—c)
where h X idg : A X B — [B—C] X B is the unique function associated to h and idp in Exercise@

Currying (after Haskell Curry) allows us to transform a function f : A X B — C of two arguments into
a higher-order-valued function curry(f) : A — [B—C] of its first argument. Given an element a € A, then
curry(f)(a) = Ax € B. f(a, x) € C. Therefore, for any (x,y) € A X B we have the equality, curry(f)(x)(y) =
f(x,y). Un-currying is the inverse transformation, that brings down a higher-order-valued function of this
type into a function of two arguments. Therefore, for any # € [A—[B—C]] and any (x, y) € AX B we have the
equality, uncurry(h)(x,y) = h(x)(y). In functional programming, currying can be used in combination with
the technique called “partial evaluation” to speed up function evaluation. The idea is thatif f : AXB — C
is a function of two arguments, but we know that its first argument in a certain situation will always be
a fixed value a, we may be able to use symbolic evaluation to derive a specialized algorithm for the one-
argument function curry(f)(a) that is more efficient than the general algorithm available for f.

Let me finish this Chapter with an exercise exploring in depth the relationships between the set of
relations P(A X B) and the set of functions [A—%P(B)].

Exercise 38 (Relations as Functions). Given a relation F : A = B, we can associate to it the function F:A—
P(B) : a — Fl[{a}]. Of course, F and F contain the same information, since any function f : A — P(B) is always
of the form f = ffor a unique relation F, namely, for F = {(a,b) € AX B | b € f(a)}. Prove that the mapping
(O : P(Ax B) — [A>P(B)] : F — F is in fact a bijection.

Note that if we have relations F : A = B and G : B = C, we can compose them to obtain F;G : A = C,
but F and G cannot be composed anymore in the standard way, since their domains and codomains do not match.
However, we can give a different definition of composition so that they do compose, in a way that mimics perfectly
the composition of their corresponding relations F and G. Specifically, we can define the following new composition
operation:

F %G =F;(GL)
where composition in the right side of the equality is the usual function composition, since now the codomain of
F:A— P(B) and the domain of G[_] : P(B) — P(C) do match. .

Note, finally, that for id, the identity function the corresponding function id, : A — P(A) is just the function
{Ja: A — P(A) : a — {a}, mapping each a € A to the corresponding singleton set {a}.

Prove the following:

1. This composition mimics perfectly relation composition, that is, we have the equality F.G=F xG.

2. Itis associative, that is, given F : A = B, G: B= C, and H : C = D, we have: F*(é*ﬁ) = (f*G)*ﬁ.
F

3. The maps iE,:, = {_}a act as identities, that is, given F:A= P(B) we have the equalities {_}5 *xF=F= *{_}5.

41

4

Chapter 6

Simple and Primitive Recursion, and
the Peano Axioms

The natural numbers can be used to define recursive functions by simple recursion and by primitive recur-
sion. They satisfy some simple axioms, due to Richard Dedekind and Giuseppe Peano, and reformulated in
category theory terms by F. William Lawvere, which are intimately related to simple recursion.

6.1 Simple Recursion

We routinely define all kinds of functions inductively. For example, consider the function double : N —
N : n — 2. n, which doubles each natural number. We can define it inductively in terms of the successor
function by means of the inductive definition:

e double(0) =0
e double(s(n)) = s(s(double(n)).

Such a definition is just a special case of a general way of defining functions inductively by simple recursion.
The general idea is as follows. We are given a set A, an element a € A, and a function f : A — A. Then
these data always define a function rec(f, a) : N — A that satisfies:

o rec(f,a)(0) =a
o rec(f,a)(s(n)) = f(rec(f,a)(n)).

Why is this, admittedly quite intuitive, way of inductively defining functions sound? That is, how do we
know that such a method uniquely defines a function? The answer is that this is a consequence of the Peano
Induction (Theorem E]), as the following theorem, due to Richard Dedekind [[11} §IX], shows.

Theorem 3 (Simple Recursion). For any set A, element a € A, and function f : A — A, there exists a
unique function rec(f,a) : N — A such that:

o rec(f,a)(0) =a
o rec(f,a)(s(n)) = f(rec(f, a)(n)).

Proof. We first prove that such a function exists, and then that it is unique. Let R(f, @) be the set of all
relations R € N X A such that:

1. (0,a) € R

2. ¥neN) ((n,a’) e R = (s(n), f(a)) € R).

43

Since (N X A) € R(f,a), R(f,a) is nonempty. Let rec(f,a) = (R(f,a). It is trivial to check that, by
construction, rec(f,a) satisfies (1)—(2). We will be done with the existence part of the proof if we show
that rec(f,a) is a function. Let X C N be the set of natural numbers n such that the set rec(f,a)(n) is
a singleton set. If we show X = N we will be done with the existence part. But by Peano Induction,
to show X = N it is enough to show that X is a successor set. We reason by contradiction. Suppose
that 0 ¢ X. Then we must have (0,a),(0,a’) € rec(f,a), with a # a’. But then it is trivial to show
that (rec(f,a) — {(0,a")}) € R(f,a), against the minimality of rec(f,a). Suppose, instead, that there is
an n € X such that s(n) ¢ X, and let (n,a’) be the unique pair in rec(f,a) with n its first component.
Then we must have (s(n), f(a’)), (s(n),a”) € rec(f,a), with f(a’) # a”. But then it is trivial to show that
(rec(f, a) — {(s(n),a”)}) € R(f, a), against the minimality of rec(f, a).

To prove uniqueness, suppose that there is another function, say, rec’(f, a), satisfying the conditions
stated in the theorem. Then we must have rec’(f, a) € R(f,a), which forces the set-theoretic containment
rec(f,a) C rec’(f,a). But this implies rec(f, a) = rec’(f, a), since, in general, given any two sets X and Y,
and any two functions f, f* € [X-Y], whenever f C f’ we must have f = f’. O

The Simple Recursion Theorem can be reformulated as the statement that the set N of von Neumann
natural numbers satisfies the following more general axiom due to F. William Lawvere [29]. Recall from
Exercise[35|that an element a € A can be alternatively represented as a function@: 1 — A : @ - a. Using
this representation of set elements as functions, the Simple Recursion Theorem is then the statement that
the von Neumann naturals satisfy the following axiom, which I call the Dedekind-Lawversﬂ axiom.

(Dedekind-Lawvere) There exists a set N and functions6 1 — Nands : N — N, such
that given any set A, and functionsa : 1 — A and f : A — A, there is a unique function
rec(f,a) : N — A making the triangle and the square commute in the diagram:

N——% N

1 rec(f.a) rec(f,a)

N

that is, such that a; rec(f, a) = 6 and rec(f, a); f = s;rec(f,a).

v v
A—A

f

Obviously, Theorem [3| can be equivalently reformulated as the statement that the set N of the von
Neumann natural numbers, guaranteed to exist as a set by the (Inf) axiom, together with the functions
0:1 —>N,and s : N — N : n > n U {n} satisfies the Dedekind-Lawvere axiom. But note that the
Dedekind-Lawvere axiom is completely abstract, and does not depend on any particular representation of
the natural numbers, such as the von Neumann representation. For example, the set N claimed to exist
by Dedekind-Lawvere could be the binary or decimal representation of the naturals, with s the function
s :n— n+1;orit could be the Zermelo encoding 0 = @, 1 = {@}, 2 = {{@}}, ..., etc., with s : x > {x}.
This abstract formulation is actually better than having a specific representation of the natural numbers, such
as the von Neumann representation, which is implicitly built into the (/nf) axiom because of its formulation
in terms of successor sets. The reason why a more abstract axiomatization is better than a more concrete
one is that then the properties that follow from the given axioms can be directly applied to any set satisfying
the axioms, and not just to a particular set encoding a particular representation.

Note the striking similarity of the Dedekind-Lawvere abstract definition of the natural numbers as an
abstract data type, in which we do not have to care about the internal representation chosen for numbers,
and the concepts of abstract product and abstract disjoint union defined in §5.5] where, similarly, we viewed
a product or a disjoint union as an abstract data type and became liberated from any representation bias.

'Tt is generally called the “Peano-Lawvere” axiom. But this is clearly unfair to Dedekind, whose work Peano knew and cited,
and who, to the best of my knowledge, was the first to state and prove Theorem[3] Furthermore, Dedekind’s definition of the natural
numbers is an abstract one, not depending on any particular representation, but “up to isomorphism,” exactly as captured by the
Dedekind-Lawvere axiom.

44

In Exercise we saw that all representations of an abstract product A X B (resp., an abstract disjoint
union A @ B) were* isomorphic,” in the precise sense that there was a unique bijection between any two
such representations “preserving the interfaces,” i.e., preserving the projections (resp., injections). For the
abstract data type of the natural numbers, the “interface” is of course given by the functions 0 : 1 — N and
s : N — N. Again, as anybody in his right mind would expect, all such representations are isomorphic, in
the precise sense that there is a unique bijection preserving the interfaces.

Exercise 39 (All natural number representations are isomorphic). Let N and N’ be two representations of the natural
numbers satisfying the properties asserted in the Dedekind-Lawvere axiom with associated functions6 :1 — Nand
s:N—>Nand0 :1— Nands : N — N. Prove that there is a unique bijection h : NN such that: (i)
0;h=0,andh;s" = s;h; and (i) 0;h™ =0, and h™'; s = s'; b7l

Exercise 40 (Dedekind-Lawvere implies Induction). Prove that any set N with associated functions 0:1— Nand
s : N — N satisfying the Dedekind-Lawvere axiom also satisfies the following induction property: YT C N) ((0 €
T A ((¥xeT)s(x)eT)) =T =N).

6.2 Primitive Recursion

Consider the following recursive definition of the addition function:
1.0+m=m
2. s(n) + m = s(n + m).

The syntactic format of this definition does not fit the format of definitions by simple recursion. It is instead
an instance of a general method for defining functions called primitive recursion. The general scheme is as
follows. We are given two sets A and B, and two functions g : B— A and f : A — A. Then we define a
function prec(f, g) : N x B — A as the unique function obtained from f and g that satisfies the equations:

L. prec(f,£)(0,b) = g(b)
2. prec(f, g)(s(n),b) = f(prec(f, g)(n, b))

For the case of the addition function we have A = B =N, g = idy, and f = s, so + = prec(s, idy).

Note that, in essence, primitive recursion contains simple recursion as a special case, namely, the case
when B = 1. I say, “in essence” because givena : 1 — A and f : A — A, the function prec(f,a) is
not exactly the function rec(f,a) : N — A, since it has a slightly different typing, namely, prec(f,a) :
Nx1 —s A. But we can use the bijection k : N—sNxX 1 : 1 + (1, @) to obtain simple recursion as a special
case of primitive recursion, namely, rec(f, a) = k; prec(f, a).

Two obvious questions to ask are: (i) is primitive recursion a sound method for defining functions, that
is, does it always define a function, and a unique function? and (ii) is primitive recursion essentially more
general than simple recursion, that is, are there functions that we can define from some basic set of functions
by primitive recursion but we cannot define by simple recursion? These two questions are answered (with
respective “yes” and “no” answers) in one blow by the proof of following theorem:

Theorem 4 (Primitive Recursion). For any sets A and B, and functions g : B— A and f : A — A, there
exists a unique function prec(f, g) : N X B — A such that:

1. prec(f,8)(0,b) = g(b)
2. prec(f,8)(s(n),b) = f(prec(f, g)(n, b))

Proof. 'We can reduce primitive recursion to simple recursion as follows. Since g € [B—A], and f in-
duces a function [B—f] : [B—»A] — [B—A], simple recursion ensures the existence of a unique func-
tion rec([B—f1,g) : N — [B—A] such that: (i) rec([B—f1],2)(0) = g, and (ii) rec([B—f], g)(s(n)) =
rec([B—f1, g)(n); f. We can then define prec(f, g) : N X B — A by “uncurrying” rec([B—f1], g) (see Exer-
cise[37). That is, we define prec(f, g) = uncurry(rec([B-f1,g)). It is then an easy exercise in currying and
uncurrying to check that prec(f, g) satisfies (1)—(2) iff rec([B— f1], g) satisfies (1)—(ii). O

45

The claim that simple recursion is as general a method as primitive recursion for defining some new
functions out of some preexisting ones is clearly vindicated by the proof of the above theorem, provided we
allow ourselves the freedom of currying and uncurrying functions. For example, we can define the addition
function on the natural numbers by simple recursion as the function + = uncurry(rec([N—s], idy)).

Exercise 41 Define natural number multiplication by primitive recursion using the primitive recursive definition of
addition as a basis. Give then a recursive definition of natural number exponentiation based on the previously defined
multiplication function.

Primitive recursion is obviously an effective method to define computable functions (intuitively, func-
tions that we can program in a digital computer) out of simpler ones. But not all total computable functions
on the natural numbers can be defined by primitive recursion (plus function composition and fupling, that
is, functions induced into cartesian products as explained in Exercise @]) from O, the successor function,
the identity function idyy : N — N, and the projection functions p; : N* — N : (x},...,x,) — X,
n>2,1<i<n. Aparadigmatic example of a total computable function that cannot be defined this way is
Ackermann’s function:

A0,n) = sn)

A(s(m),0) A(m, 1)
A(s(m), s(n)) A(m, A(s(m), n)).

However, the claim that Ackermann’s function cannot be defined by primitive recursion (proved in detail in,
e.g., [26], §13) has to be carefully qualified, since it essentially depends on explicitly forbidding the currying
and uncurrying of functions, so that the only functions we ever define are always of the form f : N" — N
for some n € N. Instead, if we allow ourselves the freedom to curry and uncurry functions— that is, besides
composition, tupling, identities, and projections, we also allow functional application functions of the form
(1), as well as functions of the form column, and [f—g], where f and g have already been defined— it
then becomes relatively easy to define Ackermann’s function by primite recursion from 0 and the successor
function as follows.

Lemma 3 If currying and uncurrying of functions (plus composition, tupling, identities, projections, _(_),
column, and | f—g] for previously defined f, g), are allowed in the sense explained above, then Ackermann’s
function can be defined by primitive recursion from 0 and the successor function.

Proof. First of all, we can obtain A : N X N — N by uncurrying its curried version A = curry(A) :
N — [N-N]. Second, I claim that A is just the simple recursive (and a fortiori primitive recursive)
function A = rec(Iter, s), where Iter is the iterator function Iter : [NoN] — [NoN] @ f - An. £50(1).
This claim is easy to prove by observing that: (i) by definition, Z(n)(m) = A(n,m); and (ii) Iter satisfies
the equation Irer(f)(s(n)) = f(lter(f)(n)). We can then prove the equality A = rec(Iter, s) by applying
the definitions of A(0) and rec(lter, s)(0) to verify the base case, and then proving by induction on n the
equality A(s(n)) = Iter(A(n)) To complete our proof we just need to show that Ifer is definable by primitive
recursion. This is easy to do with some currying yoga: it is just a matter of unpacking the definitions to
check that Ifer satisfies the defining equation Iter = It/e?o; [N—p,], where It/e70 is the currying of Iter,
and where [tery is itself defined by primitive recursion as Itery = prec((p1, (), (idw—ny, -(1))), where
(pl, () : [NsN] XN — [NoN] X N : (f, n) (f, f(l’l)), and (id[N_>N], (1)) : [NsN] — [NSN] X N :
e (ff). o

The moral of this story is that, by allowing “primitive recursion on higher types,” that is, by using not
only cartesian products of N but also function sets like [N-N], [[N-N]?-[N3-N]], and so on, as types
in our function definitions, we can define a strictly bigger class of computable functions than those de-
finable using only product types. This kind of recursion on higher types is what higher-order functional
programming languages are good at, so that we can define not only recursive functions, but also recursive
“functionals” like Iter, that is, recursive functions that take other functions as arguments. They are what
Godel called primitive recursive functionals of finite type (for those generated from 0 and s) in his famous
Dialectica paper. Godel’s Dialectica ideas and subsequent work on them are surveyed in [[1], where it is
also shown that the tofal computable functions f : N* — N definable by primitive recursive functionals of
finite type form an amazingly general class. However, because of the halting problem for Turing machines,

46

we know that some Turing-computable functions on the natural numbers are not total but only partial; and
Turing computability is of course co-extensive with computability in a general-purpose programming lan-
guage supporting (fully general) recursive function definitions. sketches how the unique extensional
partial function associated to a recursive function definition can be defined by fixpoint semantics. Further-
more, a very general method to define total computable functions that can handle Ackermann’s function
and much more without having to go up to higher types will be presented in

6.3 The Peano Axioms

The Peano axioms are due to Giuseppe Peano and axiomatize the natural numbers as the existence of a set
N having an element O € N and a function s : N — N such that:

1. VrneN)0 £ s(n)
2. s : N — N is injective, and
3. (Peano Induction) YT CN) (0eT A (VxeT)s(x)eT)) =T =N).

Note that, exactly as in the case of the Dedekind-Lawvere axiom, the Peano axioms give us an abstract
characterization of the natural numbers. That is, they do not tell us anything about the particular way in
which numbers are represented in the set N.

We have already seen in Theorem [2]that the von Neumann representation of the natural numbers, guar-
anteed to exist as a set by the (/nf) axiom, satisfies the third axiom of Peano Induction. It is relatively easy,
but somewhat tedious, to show that it satisfies also the first two Peano axioms (see, e.g., [24]]).

However, proving that the Peano axioms hold for the von Neumann representation of the naturals is in
a sense proving too little: we should prove that the Peano axioms hold for any representation of the natural
numbers satisfying the Dedekind-Lawvere axiom (part of this proof is already contained in Exercise [40).
This, in turn, will imply it for the von Neumann representation thanks to Theorem

In fact, we can prove more than that. As implicit already in [29], and shown in Prop. 17 of [38]] as a
consequence of a more general result that applies not only to the natural numbers but to any so-called initial
algebraﬂ we have in fact an equivalence:

Peano & Dedekind-Lawvere

in the precise sense that a set N together with an element O € N and a function s : N — N satisfies the
Peano axioms iff it satisfies the properties stated for N, 0 € N and s : N — N in the Dedekind-Lawvere
axiom.

Exercise 42 Give two set theory formulas expressing precisely the Peano axioms (as a single formula) and the Dedekind-Lawvere
axiom (again, as a single formula).

2The Dedekind-Lawvere axiom can be trivially reformulated in algebraic terms as the claim that an initial algebra exists for the
class of algebras whose only operations are a constant 0 and a unary operation s. Initial algebras will be studied in detail in Part@

47

48

Chapter 7

Binary Relations on a Set

The case of binary relations whose domain and codomain coincide, that is, relations of the form R € P(AXA)
is so important as to deserve a treatment of its own. Of course, any relation can be viewed as a binary relation
on a single set, since for any sets A and B, if R € P(A X B), then R € P((A U B) X (A U B)) (see Exercise
[22}(5)). That is, the domain and codomain of a relation R is not uniquely determined by the set R. To avoid
this kind of ambiguity, a binary relation on a set A should be specified as a pair (A, R), with A the given set,
and R € P(A X A).

7.1 Directed and Undirected Graphs

The first obvious thing to observe is that a directed graph G with set of nodes N and a binary relation (N, G)
are the same thing! We just use a different terminology and notation to skin the same cat. For example, we
now call a pair (a, b) € G a directed edge in the graph G, and then use the graphical notation:

a—b cO

for, respectively, a pair (a,b) with a # b, and a pair (c, c¢). To make the set N of nodes unambiguous, we
specify the graph as the pair (N, G). One important notion in a directed graph is that of a path, which is
defined as a finite sequence of edges ap — a; — a»...a,-1 — a, withn > 1. A directed graph (N, G). is
strongly connected iff for each a,b € N, if a # b then there is a path from a to b. (N, G) is acyclic iff no
node a € N has a path from a to a. A directed graph (N, G) is connected iff the directed graph (N,G U G™')
is strongly connected. The identity between graphs and binary relations on a set is very useful, since any
notion or construction on relations can be interpreted geometrically as a notion or construction on directed
graphs. For example:

Exercise 43 Prove the following:
1. G € P(N X N) is a total relation iff G is a directed graph where each node has at least one edge coming out of it.
2. f € [N->N]Iiff fis a directed graph where each node has exactly one edge coming out of it.

3. f € [N-N] is surjective iff f is a directed graph where each node has exactly one edge coming out of it and at
least one edge coming into it.

4. f € [N-N] is injective iff f is a directed graph where each node has exactly one edge coming out of it and at
most one edge coming into it.

5. f € [N-N] is bijective iff f is a directed graph where each node has exactly one edge coming out of it and
exactly one edge coming into it.

6. A directed graph G € P(N X N) is strongly connected iff for each a,b € N with a # b there exists an n > 1 such
that (a,b) € G", where we deﬁne{-f] G' =G, and G™' = G; G".

"Note that this definition is based on simple recursion. Note also the potential ambiguity with the totally different use of the
notation G” for the n-th cartesian product of G with itself. Here, of course, what the notation G" denotes is the n-th composition
G;.".; G of G with itself.

49

7. A directed graph G € P(N X N) is connected iff for each a,b € N with a # b there exists an n > 1 such that
(a,b) e (GUG™Y.

8. A directed graph G € P(N x N) is acyclic iff for eachn > 1, G" Nidy = @.

Exercise 44 For each n € N — {0}, the (standard) cycle function is defined for n = 1 as cy, = id,, and for all other n
by cy, =1{0,1),(1,2),...,(n—2,n - 1)}. Likewise, if A is a finite, nonempty set with n elements, we call f : A — A a
cycle iff there is a bijection g : A —> n such that f = g;cy,;g"". Notice that in the light of Exercise (5), when f is
viewed as a graph, calling f a cycle is an exact and perfect description of f.

Prove the following:

1. (Cycle Decomposition of any Permutation). Given any finite, nonempty set A and a bijection f : A — A, there
is a subset {Ay,...,Ar} € (P(A) —{@}) such that: (i) A = \U{A1,...,Ar}; (ii) for each i, j such that 1 <i < j<k,
A;NA; = @; and (iii) there are cycles f; : A; — A;, 1 <i <k, such that f = fi U ... U fi. (Hint: For an easy
proof, use Exercise @—(5));

2. Show that there is an n € N — {0} such that " = id,. Give an arithmetic characterization of the smallest such n
in terms of the numbers of elements in the sets A, .. ., Ay. Note that this shows that, if A is finite, the inverse !
of any bijection f : A — A is a power of f.

What is an undirected graph U on a set N of nodes? Of course it is just a subset U of the form U € N ® N, that
is, an element U € P(N ® N). In other words, an undirected graph with nodes N is exactly a set of unordered pairs
of elements of N. Again, to make the set N of nodes unambiguous, we should specify an undirected graph as a pair
(N,U), with U € P(N ® N).

This is part of a broader picture. The same way that a relation R from A to B is an element R € (A X B), we can
consider instead elements U € P(A ® B). Let us call such a U a linking between A and B, since it links elements of A
and elements of B. An undirected graph on nodes N is then a linking from N to N. Each particular /ink in a linking
U € P(A ® B) is exactly an unordered pair {a, b}, with a € A and b € B, which we represent graphically as:

a—>b cO

when, respectively, a # b, and when the pair is of the form {c, ¢} = {c} for some c € AN B.

We can then introduce some useful notation for linkings. We write U : A <= B as an abbreviation for U € P(AQB).
Note that the bidirectionality of the double arrow is very fitting here, since AQ B = BQA (see Exercise@, and therefore
PAQB) =P(B®A). Thatis, U is a linking from A to B iff it is a linking from B to A. Given linkings U : A < B
and V : B <= C, we can then define their composition U;V : A < C as the linking

U;V={acleA®C|(3beB){a,bleU A {b,c} € V}.

Note that, in particular, for any set A we have the linking i’c}A = {{a} € A® A | a € A}, which we call the identity linking
on A. We say that an undirected graph (N, U) is connected iff for each a,b € N with a # b there exists an n > 1 such
that (a, b) € U", where we define U! = U, and U™*! = U; U".

Note that every relation, by forgetting about directionality, determines a corresponding linking. This is because for
any two sets A and B we have a surjective function

und :AXB —»AQB: (x,y) — {x,y}

which has the equivalent, intensional definition Ax. |J x, since und(a, b) = und({{a},{a, b}}) = U{{a},{a,b}} = {a, b}.
Note that und induces a surjective function

und[-] : P(AX B) —»P(A® B) : R — und[R)].

In particular, for G € P(N X N) a directed graph on nodes N, und[G] is the undirected graph obtained by forgetting the
directionality of the edges a — b (resp., ¢ O) in G and turning them into bidirectional links a — b (resp., ¢ O).

We call a binary relation R € P(A x A) on a set A symmetric iff R = R U R™'. Given any relation R € P(A x A),
the smallest symmetric relation containing R is precisely R U R™!, which is called the symmetric closure of R. Note that
und[R)] = und[R U R™']. That is, a relation and its symmetric closure determine the same linking.

Exercise 45 Give a necessary and sufficient condition ¢ on A and B, so that the surjective function und : AXB —» A®B
is bijective iff ¢ holds. Note that if ¢ holds, then the surjective function und[_] : P(AX B) —» P(AQ B) is also bijective,
which means that we can then uniquely recover the relation R from its corresponding linking und(R). Give examples of
sets A and B such that und is not bijective, so that in general we cannot uniquely recover R from und(R).

Exercise 46 Prove the following:

50

1. Given a linking U : A < B, we have the equalities ifa\lA; U=Uand U, i?lB =U.

2. Given linkings U : A < BandV : B < C, their composition is commutative, that is, we have the equality
of linkings U; V = V; U.

3. Give an example of sets A, B,C, D, and linkings U : A < B,V : B <= C, and W : C < D, showing that
linking composition in general is not associative, so that we have (U;V); W # U; (V; W).

4. Given relations F : A = B and G : B = C, show that und|[F;G] C und[F];und[G]. Exhibit concrete
relations F and G such that und[F; G] C und[F]; und[G]. Prove that if F,G € P(A X A) are symmetric relations
then und[F; G] = und[F]; und[G].

5. For any set A we always have undlid,] = EiA.

6. A directed graph G € P(N X N) is connected iff its corresponding undirected graph und|[G] is connected.

7.2 Transition Systems and Automata

What is a transition system on a set A of states? Of course, it is exactly a binary relation on the set A. So, this is a third,
equivalent skinning of the same cat. In other words, we have the equality:

Binary Relation = Directed Graph = Transition System

where, depending on what kinds of applications we are most interested in, we adopt a somewhat different notation and
terminology. But although the words are different, the underlying concepts are the same. Now instead of calling the
elements of A nodes, we call them states. And instead of using letters like F, G, etc. to denote the binary relation,
we define a transition system as a pair A = (A, —#), where A is its set of states and — 4 € P(A X A) is its transition
relation. And instead of calling a pair (a, a’) € — # and edge, we call it a transition, and write ita — 4 a’, or justa — a’
when the given A is understood. So, we have changed the terminological window dressing, but essentially we have not
changed anything: we are still talking about the same thing.

In the transition system viewpoint, many of the issues we care about are reachability issues: given an initial state
a, can we reach a state @’ by a sequence of system transitions? We also care about deadlocks: are there states in
which we get stuck and cannot go on to a next state? Futhermore, we care about termination: does every sequence
of transitions always eventually come to a stop? These are all obvious relational notions disguised under a systems-
oriented terminology.

Definition 4 A binary relation R € P(A X A) is called reflexive iff idy C R. And it is called irreflexive iff idy N R = @.
A binary relation R € P(A X A) is called transitive iff

Va,a’,a”’ € A) ((a,a’) e R A (d',a”’) € R) = (a,a”’) €R)
The following lemma is left as an easy exercise.

Lemma 4 Given any binary relation R € P(A X A), the smallest reflexive relation containing it is the relation R~ =
R U id,, which we call its reflexive closure.
Given any binary relation R € P(A X A), the smallest transitive relation containing it is the relation

R* = U{R” ePAxXA) | ne®-{0)h)

which we call its transitive closure (for the definition of R" see Exercise {3}(6)).
Given any binary relation R € P(A X A), the smallest reflexive and transitive relation containing it is the relation
R* = R" Uid,, which we call its reflexive and transitive closure.

Given a transition system A = (A, =), what does it mean to say that a state a’ is reachable from a state a? It
means exactly that a —7% a’. And what is a deadlock state? It is a state a € A such that thereisno a’ € A witha — 4 a@'.
And what does it mean to say that A = (A, —4) is deadlock-free (has no deadlock states)? It means exactly that — 4 is
a total relation.

The best way to make precise the notion of fermination of A = (A, —4) is to explain what it means for A =
(A, =), not to terminate. This obviously means that there is a function a : N — A such that for each n € N we have
a(n) -4 a(n + 1). We call a function a satisfying this property an infinite computation of A = (A, —4), and display
such infinite computations graphically as follows:

a(0) -4 a(l) >4 a2) 54 a3) ... an) »gan+1) ...

51

We then say that A = (A, —4) is terminating iff it has no infinite computations.

Of course, since Binary Relation = Directed Graph = Transition System, we likewise call a binary relation (A, R)
(resp., a directed graph (A, G)) terminating (or well-founded, see §IT)), iff there is no infinite computation in (A, R)
(resp., in (A, G)). With the obvious slight change of notation, this exactly means that there is no functiona : N — A
such that for each n € N we have (a(n), a(n + 1)) € R (resp., a(n) — a(n + 1), or a(n) O if a(n) = a(n + 1), is a directed
edge in (A, G)).

Automata are just a variant of transition systems in which transitions have labels, which we think of as inputs or
events or actions of the system.

Definition 5 A labeled transition system or automaton is a triple A = (A, L, > z), where A is its set of states, L is its
set of labels or inputs, and — g€ P(A X L X A) is its transition relation.

. /
The triples (a,l,a’) € — g are called the labeled transitions, and are denoted a — 4 a'.

Note, again, that due to the identity Directed Graph = Transition System, the above definition is (up to a trivial
change of terminology, changing “state” by “node,” and “labeled transition” by “labeled edge”) exactly the definition
of a labeled graph. Relation? graph? transition system? They are all the same!

Finally, note that the usual description of a (nondeterministic) automaton as a triple A = (A, L, d#), where A is the
set of states, L is the set of inputs, and 64 : L X A = A is the transition relation, is equivalent to the above definition
A = (A, L, —4), just by swapping the order of the first two components in the corresponding triple. That is, for the
same A and L we can obtain two equivalent representations of the same automaton A (one with — 4, and another with
d.) by means of the defining equivalence:

(La),d)€da & a—ad

Of course, a deterministic automaton is the special case when 64 : L X A = A is not just a relation, but a function
0a : LXA — A, called the automaton’s transition function.

7.3 Relation Homomorphisms and Simulations

Given graphs (N, G) and (N’,G’), we call a function f : N — N’ a graph homomorphism from (N, G) to (N’,G") iff
Vx,y € N) (x,y) € G = (f(x), f(y)) € G’. We use the notation f : (N,G) — (N’,G’) as a shorthand for: “f is
a graph homomorphism from (V, G) to (N’,G’).” Note that: (i) idy is always a graph homomorphism from (N, G) to
itself; and (ii) if we have f : (N,G) — (N’,G’)and g : (N',G’) — (N”,G"), then we have f; g : (N,G) — (N",G").
The notion of graph homomorphism is of course heavily used in combinatorics and graph algorithms (or special cases
of it, such as that of a graph isomorphism, on which more below), and is very intuitive: we map nodes of G to nodes of
G’, and require that each edge in G should be mapped to a corresponding edge in G'.

But we mustn’t forget our identity: Binary Relation = Directed Graph = Transition System. So, why calling
f :(N,G) — (N',G’) a graph homomorphism? This terminology is just in the eyes of the beholder. We may as well
call it a relation homomorphism (since it respects the corresponding relations G and G’), or, alternatively, a simulation
map between transition sytems, since (changing notation a little), if we have transition systems A = (A, —4) and
B = (B, —g), then a graph homomorphism f : (A, »4) — (B, —g) exactly tells us that any transition a — 4 a’ in
system A can always be simulated via f by a transition f(a) —g f(a’) in system B. Therefore, we again have the same
notion under different names, that is, the identity:

Relation Homomorphism = Graph Homomorphism = Simulation Map.

Of course, the general idea of a “homomorphism” of any kind is that of a function that “preserves the relevant
structure.” For relation homomorphisms the relevant structure is that of a graph that, alternatively, can be regarded as
a transition system, or just as a binary relation on a set, and the preservation of structure for f : (N,G) — (N',G’)
is precisely the condition (Vx,y € N) (x,y) € G = (f(x),f(y)) € G’. In a completely analogous way, we have
seen that certain data types, such as products, disjoint unions, and models of the natural numbers, have a relevant
“structure,” namely, what in computer science are called their “interfaces,” that is, the projection functions p;, p, for
products, the injection functions iy, i, for disjoint unions, and the zero, 0, and successor function, s, for models of the
natural numbers. Implicitly, in Exercises [31] and 39 we were using the adequate notion of homomorphism preserving
the relevant structure for abstract products, disjoint unions, and models of the natural numbers in the special case of
isomorphisms, that is, of bijective homomorphism (for the relevant structure) whose inverse is also a homomorphism
(again, for the relevant structure).

For relation homomorphism the definition of isomorphism is obvious. A relation homomorphism f : (N,G) —
(N’,G") is called a relation isomorphism iff f is bijective and £~ is also a relation homomorphism ! : (N’,G") —

52

(N,G). When we take the graph-theoretic point of view this is exactly the well-known notion of graph isomor-
phism, that is, two graphs that are esentially the same graph except for a renaming of their nodes. The graphs
({a, b, c}, {(a,b), (b, c),(c,a)}), and ({e, f, g}, {(e, f), (f,), (g, e)}) are isomorphic graphs; and the functiona — e, b —
f, ¢ — g, and also the function a — f, b — g, ¢ — e, are both examples of graph isomorphisms between them.
Therefore, abstractly they are the same graph.

Of course, we call a relation homomorphism f : (N,G) — (N’,G’) injective, resp., surjective, resp., bijective
iff the function f is injective, resp., surjective, resp., bijective. Note that, although every relation isomorphism is
necessarily bijective, some bijective relation homomorphisms are not relation isomorphisms (can you give a simple
example?).

A special case of injective relation homomorphism is that of a subrelation, that is, we call (N, G) a subrelation
of (N',G") it N € N’ and the inclusion map j%/ is a relation homomorphisms j%/ : (N,G) — (N’,G’). Note that
(N, G) is a subrelation of (N’,G’) iff N € N’ and G € G’; for this reason we sometimes use the suggestive notation
(N,G) € (N’,G’) to indicate that (N, G) is a subrelation of (N’,G"). Note that, from a graph-theoretic point of view, a
subrelation is exactly a subgraph. Of course, viewed as a transition system, a subrelation j%/ : (N,G) = (N',G") is
exactly a transition subsytem.

We call a relation homomorphism f : (N,G) — (N’,G’) full ifft (Vx,y € N) (x,y) € G & (f(x),f() € G".
Likewise, we call a subrelation j%/ 1 (N,G) = (N',G’) a full subrelation ift j%/ is a full relation homomorphism. Note
that j%’ : (N,G) — (N’,G’) is a full subrelation iff G = G’ N N?. Therefore, to indicate that (N,G) C (N’,G’) is a
full subrelation, we write G = G’ N N? = G’|y, write (N,G’|y) C (N’,G"), and call G’|y the restrictiorE] of G’ to N.
Graph-theoretically, a full subrelation (N, G’|y) € (N’,G’) is exactly a full subgraph, that is, we restrict the nodes to N,
but keep all the edges from G’ that begin and end in nodes from N.

The above notion of relation homomorphism can be generalized in three ways. The first generalization is to ex-
tend this notion to a notion of homomorphism of labeled graphs, or, equivalently, labeld simulation map of labeled
transition systems or automata. Given that a labeled graph is exactly the same thing as labeled transition system, to
avoid unnecessary repetitions I only define the notion using the transition system terminology. Given labeled transition
systems A = (A, L, —4) and B = (B, L, —g) having the same set L of labels, a labeled simulation map from A to B,

. . .. ! .
denoted f : A — B, is a function f : A — B such that whenever we have a labeled transition a — 4 @’ in A, then

f(a) —ig f(a’) is a labeled transition in 8. That is, B can copycat anything A can do with the same labels.

A second generalization considers relation homomorphisms H : (N, G) = (N’, G’), where now H is not a function
but a relation. Again, the three viewpoints of relation, graph, and transition system are equivalent. I give the definition
using the transition system terminology, where it is most often used and is called a simulation relation. In more neutral
terms it could be called a non-deterministic relation homomorphism. Given transition systems A = (A, —#) and
B = (B, —g), a simulation relation from A to B, denoted H : A = B, is arelation H : A = B such that whenever
we have aHb and a transition a — 4 a’ in A, then there is a b’ € B such that b —g b’ is a transition in B and a’ Hb'. We
call H : A = B a bisimulation iff H™! : 8 = A is also a simulation relation. That is, 8 can copycat A, and A can
copycat 8B, so that A and B are behavioraly equivalent.

A third generalization combines the previous two into the notion of a labeled simulation relation. Given labeled
transition systems A = (A, L, = 4) and 8 = (B, L, —»3) having the same set L of labels, a labeled simulation relation

. . .. !
from A to B, denoted H : A = B, is arelation H : A = B such that whenever we have a labeled transition a — 4 a’

in A and aHb, then there is a b’ € B and a labeled transition b —iﬂ b’ in B such that ' Hb'. We call H : A — B a
labeled bisimulation iff H™! : 8 = A is also a labeled simulation relation. That is, 8 can copycat A with the same
labels, and A can copycat B also with the same labels, so that A and B are behavioraly equivalent in an even stronger
sense.

Exercise 47 Prove that f : (N,G) — (N’,G") is a relation isomorphism iff f is a bijective and full relation homomor-
phism.

Exercise 48 (Pulling back binary relations). Let (B, G) be a binary relation and let f : A — B be a function. Prove
that: (i) f : (A, f~'(G)) — (B, G) is a relation homomorphism, where, by definition, a f'(G)a’ & f(a)G f(a'); and
(ii) f : (A,R) — (B, G) is a relation homomorphism iff R C f~1(G).

Exercise 49 (Dedekind-Lawvere is an “Infinity Axiom”). Prove that any set N with associated functionsa 11— N
and s : N — N that satisfies the Dedekind-Lawvere axiom must be infinite. This tells us that we can use the Dedekind-
Lawvere axiom as an alternative to (Inf) to ensure the existence of infinite sets in out set theory. (Hint: Use Exercise
H31(2) to view (N, s) as a directed graph.)

2Note that this notion of restriction is similar to, but in general different from, the notion of restriction of a function or a relation
to a subdomain defined in Exercise The difference is that forR : A = B,and A’ C A, Rl4= RN (A’ X B). Even when A = B,
in general this yields a different notion of restriction than R|4» = RN A’%. For this reason, the two different notions: R[4/, and, when
A = B, R|a, are each given a different notation.

53

Exercise 50 Prove the following:

1. If A = (A, > 4) is a transition system, then idy is a simulation map idy : A — A. And if f : A — B and
g : B — C are simulation maps, then f;g : A — C is also a simulation map.

2. Prove the exact same properties as in (1) changing:

e “transition system” to “labeled transition system,” and “simulation map” to “labeled simulation map”
everywhere

o “simulation map” to “simulation relation” everywhere

o “transition system” to “labeled transition system,” and “simulation map” to “labeled simulation relation”
everywhere.

3. If A= (A,—4)and B = (B, —g) are transition systems and H C P(A X B) is a set of binary relations such that
each H € H is a simulation relation (resp. a bisimulation relation) H : A = B, then | H is also a simulation
relation (resp. a bisimulation relation) | JH : A = B. Prove the same changing “transition system” to
“labeled transition system,” and “simulation relation” to “labeled simulation relation” everywhere.

4. For any transition systems A = (A, —>g) and B = (B, —>g) there is a “biggest possible” simulation (resp.
bisimulation) between them, that is, a simulation relation max : A = B (resp. a bisimulation relation max.bis :
A = B) such that for any other simulation (resp. bisimulation) relation H : A — B we always have
H C max (resp. H C max.bis). Prove the same changing “transition system” to “labeled transition system,”
“simulation relation” to “labeled simulation relation,” and “bisimulation relation” to “labeled bisimulation
relation” everywhere.

7.4 Orders

A (strict) order on a set A is a relation < € P(A X A) that is both transitive and irreflexive. We read a < @’ as “a is less
than a’,” or “a is smaller than a’.” The inverse relation <! is denoted >, and we read a > a’ as “a is greater than a’.”
An ordered set is a set with an order on it, that is, a pair (A, <), with < a (strict) order.

Note the pleasing fact that if < is transitive and irreflexive, then > is also transitive and irreflexive. Therefore if we
adopt > as our “less than” relation, we get another order on A, namely (A, >), which is called the opposite, or inverse,
or dual order relation. For example, we can order the natural numbers in either the usual ascending order, or in their
opposite, descending order.

Examples of ordered sets are everywhere. The < relation on the natural numbers N, the integers Z, the rationals
Q, and the reals R, make all these sets ordered sets. Likewise, the strict containment relation C makes any powerset
P(A) into an ordered set (P(A), C). A different order on N — {0, 1} is given by divisibility, where we write n|m, read “n
(strictly) divides m,” to abbreviate the formula (3k € N — {0, 1}) k- n = m. Then (N — {0, 1}, _|_) is an order.

Exploiting again the equality Directed Graph = Relation, what is an ordered set when viewed as a graph? It is
exactly a directed transitive and acyclic graph. So talk about an ordered set and talk about a directed transitive and
acyclic graph is just talk about the same thing.

Of course, the transitive closure G* of any directed acyclic graph G is a directed transitive and acyclic graph. This
is exploited pictorially in the so-called Hasse diagram of an ordered set, so that the ordered set is pictured as a directed
acyclic graph (with the bigger nodes depicted above the smaller nodes without explicitly drawing the arrowheads), and
without explicitly drawing the remaining edges in the transitive closure, although they are understood to also be there.
For example, the Hasse diagram of the ordered set (£(3), C) is the following directed acyclic graph:

{0, 1,2}

1}/{0, 2}\{
>

"~

Given an ordered set (A, <), the reflexive closure <~ of its (strict) order relation is always denoted <. We then read

VL] AL

a < a' as “ais less than or equal to a’,” or “a is smaller than or equal to a’.” Of course, the inverse relation <! is always

1,2}

{0,
{

{2}

@

54

AL

denoted >, and we read a > a’ as “a is greater than or equal to a@’.” Note that, since < is irreflexive, the mappings: (i)
< <, with < = (< Uidy), and (i) < — <, with < = (< —id,), are inverse to each other, so that we can get the strict
order < from its nonstrict version <, and vice versa. So we can equivalently talk of an ordered set as either the pair
(A, <), or the pair (A, <), specifying either the strict order <, or its reflexive closure <.

Sometimes an ordered set (A, <) is called a partially ordered set, or a poset for short. This is to emphasize that
elements in an ordered set may be incomparable. For example, in the ordered set (£(3), C), the singleton sets {0} and
{1} are incomparable, since {0} ¢ {1} and {1} ¢ {0}. Instead, any two different numbers in (N, <), or (Z, <), or (Q, <),
or (R, <) can always be compared. An ordered set where elements can always be compared is called a totally ordered
set (also called a lineally ordered set, or a chain). The precise definition of a poset (A, <) being totally ordered is that it
satisfies the formula

Vx,ye A)(x<yVx=yVx>y).

(or, equivalently, it satisfies the formula (Vx,y € A) (x <y V x > y).) For example, (N, <), (Z, <), (Q, <), and (R, <)
are all total orders. So are (P(@), C) and (P(1), C), the only two powersets where set containment is a total order. The
alternate description of a total order as a “linear” order, or a “chain,” comes from its pictorial representation as a graph,
since in such a representation all the elements are arranged on a single vertical line.

One consequence of the partial nature of non-linear orders is that, in general, a partially ordered set may have zero,
one, or more than one element such that there is no other element bigger than such an element. For example, in the
poset (P(3) — {3}, ©), the elements {0, 1}, {0, 2}, and {1, 2}, are exactly those elements such that there is no other element
bigger than any of them, since 3 = {0, 1,2} has been removed. Such elements, if they exist, are called the maximal
elements of the poset. More precisely, an element a € A is called a maximal element in a poset (A, <) iff it satisfies the
formula (Vx € A)—(x > a); equivalently, a is maximal iff <[{a}] = @.

One very stupid and unfair, yet very common, fallacy in human affairs comes from the deeply confused idea that if
there is an order ranking human beings under some criteria (already a questionable matter), that order must surely be
linear. Unfortunately, the thought that an order could be partial does not even enter into many confused minds. This
leads to unrestricted talk about the best person in some respect or another. But such talk is often both false and unfair.

First of all there is the problem of determining how “good” in relation to some criteria people are, which often may
involve a lot of subjective perceptions. For the sake of argument, let us grant that a fair, objective evaluation may be
possible in some cases. Even under such ideal circumstances, and assuming we can honestly conclude that an individual
is unsurpassed in the qualities being measured, which exactly means that he/she is a maximal element under the agreed
criteria of comparison (for example, a better parent, a better researcher, a better employee, a better student), it is in
general fallacious to conclude that there is a unique unsurpassed individual, that is, that there is such a thing as “the
best” parent, researcher, employee, student, or whatever. A little applied set theory can go a long way in seeing through
the falsity of such deeply unfair, yet very common, social practices.

Of course, the maximal elements of the poset (A, >) are called the minimal elements of the poset (A, <). That is, an
element a € A is called a minimal element in a poset (A, <) iff it satisfies the formula (Vx € A)~(x < a); equivalently, a
is minimal iff >[{a}] = @. For example, the minimal elements of the poset (P(3) — {@}, C) are exactly {0}, {1}, and {2}.
And of course the minimal elements of (P(3) — {3}, D) are exactly {0, 1}, {0, 2}, and {1, 2}.

Given posets (A, <4) and (B, <p), we call a function f : A — B monotonic (or monotone) from (A, <,) to (B, <p)
iff (Va,a’ € A) a <4 @ = f(a) <p f(a’). We use the notation f : (A,<4) — (B, <p) as a shorthand for: “f is
a monotonic function from (A, <,) to (B, <p).” Have we seen this fellow before? Of course! This is just our good
old friend Mr. Relation Homomorphism, a.k.a. Mr. Graph Homomorphism, a.k.a. Mr. Simulation Map, disguised
under yet another alias! That is, a monotonic function f : (A,<4) — (B, <p) is exactly a relation homomorphism
[(A L4) — (B, <p).

We call a monotonic function f : (A,<4) — (B, <p) strictly monotonic iff in addition it satisfies that (Va,a’ €
A) a <4 d = f(a) <g f(a’). That is, a strictly monotonic function f : (A,<4) — (B, <p) is exactly a relation
homomorphism f : (A, <4) — (B, <p). Of course, as is more generally the case for relation homomorphisms, we
also have that: (i) id4 is always a monotonic (and also strictly monotonic) function from (A, <,) to itself; and (ii) if
f:(A,<4) — (B,<p) and g : (B,<p) — (C, <¢) are monotonic (resp., strictly monotonic), then so is f; g.

For example, the function Ax € N. x? € N is a strictly monotonic function from (N, <) to itself. And the function
Alx,y) € N2 max(x,y) € N, where max(x,y) denotes the maximum of numbers x and y in the order (IN, <), is a
monotonic but not strictly monotonic function from (N X N, <jqy) to (N, <) (see Exercise for the definition of
(N XN, <pan))-

By definition, a poset isomorphism [: (A,<4) — (B, <p) is exactly a relation isomorphism. We call (X,<’) a
subposet of (A, <) iff (X, <") C (A, <) is a subrelation. Similarly a subposet of the form (X, <|y) C (A, <) is called a full
subposet of (A, <). The same definitions apply replacing < by < everywhere; for example, a subposet (X, <) C (4, <)
is exactly a subrelation.

Exercise 51 Call a relation R C A x A asymmetric iff RN R™! = @. Call a relation R C A X A antisymmetric iff
RN R Cidy. Prove that the following are equivalent for R C A X A a relation:

55

o R is irreflexive and transitive
e R is asymmetric and transitive.
Prove also that the following are equivalent for R C A X A an irreflexive relation:
® R is transitive
® R is asymmetric and transitive
o RUidy is reflexive, antisymmetric and transitive.
Likewise, prove that the following are equivalent for R C A X A a reflexive relation:
o R is antisymmetic and transitive
® R —id, is asymmetric and transitive
® R —idy is irreflexive and transitive.

Therefore, it is equivalent to define an ordered set either: (i) as a pair (A, <), with the (strict) order < irreflexive and
transitive; or (ii) as a pair (A, <), with < asymmetic and transitive; or (iii) as a pair (A, <) with the (nonstrict) order
< reflexive, transitive and antisymmetric, since, given <, we can define < = (< Uid,), and given <, we can define
< = (L —idy).

Exercise 52 Prove the following:
1. f:(A,<4) — (B, <p) is a poset isomorphism iff f : (A, <4) — (B, <p) is a strict poset isomorphism.

2. If (A, <4) and (B, <p) are chains, then a strictly monotonic function f : (A, <4) — (B, <p) is a poset isomor-
phism iff f is surjective.

Exercise 53 Given posets (A,<,) and (B, <p), define on the cartesian product A X B the relation <,xp, called the
product order, by the equivalence

(a,b) <axp (@',0") & (a<sd ANb<gh)

Prove that <axp is reflexive, transitive, and antisymmetric, and therefore (by Exercise|3_7|) (A X B, <uxp) is a poset.

Show that (AX B, <axp) is “almost never” a total order, by giving a (in fact quite restrictive) necessary and sufficient
condition involving the cardinalities of A and B, and the orders (A, <4) and (B, <p), so that (AX B, <axp) is a total order
iff your condition holds.

State and prove the analogue of Exercise [29|for posets, replacing everywhere the word “set” by “poset,” and the
word “function” by “monotonic function,”

Can you dualize all this? Give a definition of disjoint union of posets (A, <4) ® (B, <p), and show that it is the right
definition by proving that it satisfies the properties in the analogue of Exercise |[30|for posets, replacing everywhere the
word set by “poset,” and the word “function” by “monotonic function.”

Exercise 54 Given posets (A, <a) and (B, <p), define on the cartesian product A X B the relation <p,ya.p), called the
lexicographic order, by the equivalence

(@,D) <pexapy (@,0) & (a<ad V(a=d Ab<gh))

Prove that <p.xa p) is an order relation, and therefore (A X B, <p.xa,p)) IS a poset.
Prove that if (A, <4) and (B, <g) are total orders, then (A X B, <1.xa.p)) is also a total order.

Exercise 55 Consider the following statement:

If the set of maximal elements of a poset (A, <) is nonempty, then for each x € A we can choose a maximal
element m, of (A, <) such that m, > x.

Is this statement true or false? The way to answer any such question is to either give a proof of the statement or to give
a counterexample, that is, an example where the statement fails.

Exercise 56 (Embeddings, and Representing a Poset in its Powerset). A monotonic function f : (A, <) — (B,<p) is
called a monotonic embedding iff it is a full relation homomorphism. Prove the following:
1. A monotonic embedding is a strictly monotonic function and is injective.
2. For any poset (A, <), the function >[{_}] = da € A. >[{a}] € P(A) defines a monotonic embedding from (A, <)
to (P(A), Q). In particular, the function > [{_}] defines a poset isomorphism (A, <) = (=[{_}1[A], ©). This is a way
of “faithfully representing” any poset (A, <) inside its powerset poset (P(A), C).
3. Given a poset (A, <), the function >[{_}] = da € A. >[{a}] € P(A) is a strictly monotonic function from (A, <)
to (P(A), Q). Show that in general this function is not injective (therefore, is not a monotonic embedding either).
Show that, however, if (A, <) is a chain, then the function >[{_}] is a monotonic embedding and defines a poset
isomorphism (A, <) = (>[{_}1[Al, ©), providing yet another way of “faithfully representing” a chain (A, <) inside
its powerset poset (P(A), Q).

56

7.5 Sups and Infs, Complete Posets, Lattices, and Fixpoints

Given a poset (A, <) and a subset X C A, we define the set ubs(X) of upper bounds of X in (A, <) as the set ubs(X) =
{x € A|(¥y € X) x > y}. Dually, we define the set [bs(X) of lower bounds of X in (A, <) as the set of upper bounds of
X in (A, >). Thatis, Ibs(X) = {x € A | (Vy € X) x < y}. For example, in the poset (P(3), C) for X = {{0}, {2}} we have
ubs(X) = {{0,2},{0, 1,2}}, and Ibs(X) = {@}.

Given a poset (A, <) and a subset X C A, we say that X has a least upper bound (or lub, or sup) in (A, <) iff
ubs(X) # @ and there exists an element of ubs(X), denoted \/ X € ubs(X), such that (Vy € ubs(X)) \ X <y. Of course,
\/ X, if it exists, is unique, since it is the smallest upper bound of X. Dually, we say that X has a greatest lower bound
(or glb, or inf) in (A, <) iff X has a least upper bound in (A, >). That is, iff there exists an element of /bs(X), denoted
A X € Ibs(X), such that (Vy € Ibs(X)) A X >y. Again, A X, if it exists, is unique, since it is the biggest lower bound
of X. For example, in the poset (P(3), ©) for X = {{0}, {2}} we have \/ X = {0,2}, and A X = @.

Many posets (A, <) have sups and/or infs for some choices of subsets X C A, leading to useful notions such as that
of a poset with top and/or bottom element, a lattice, a chain-complete poset, or a complete lattice. We can gather several
of these notionsﬂtogether in the following definition:

Definition 6 Given a poset (A, <), we say that (A, <):
1. has a top element iff \/ A exists. We then use Ty, or just T, to denote \/ A.
2. has a bottom element iff)\ A exists. We then use L4, or just L, to denote)\ A.

3. is alattice iff it has a top and a bottom element, T, and L4, and for any two elements a,b € A, both \/{a, b} and
Nla, b} exist. We then use the notation aVv b = \/{a, b}, and a A b = N\{a, b}.

4. is chain-complete iff for every subposet (C,<|c) C (A, <) such that (C,<|c) is a chain, the sup \/ C exists in
(A,). The sup \/ C is usually called the limit of the chain C.

5. is a complete lattice iff for any subset X C A both \/ X and)\ X exists. This in particular implies that both
Ta= VA, and 14 = \ A exist.

Note that if (A, <) is a lattice (resp., complete lattice), then (A, >) is also a lattice (resp., complete lattice) with all
the operations dualized, that is, T becomes L and L becomes T, \/ becomes A and A becomes \/, and V becomes A
and A becomes V.
Note also that in any complete lattice (A, <), if X C A, it follows trivially from the definitions of ubs(X) and /bs(X),
and of \/ X and A X that we have the identities:
/\ ubs(X)

\/x
AR \/ 1bs(x)

It also follows trivially (one could fittingly say “vacuously”) from the definitions of ubs and [bs that we have ubs(@) =
Ibs(@) = A. Therefore, we have the, at first somewhat confusing, identities: \/ @ = AA = 1,and A\@ = VA =T.
However, they should not be too confusing, since we have already encountered them in the case of the complete lattice
(indeed, complete boolean algebra) (P(X), <), where \/ = |J and A = (). Indeed, we saw in that in (P(X), Q)
we have (@ = X, where X is the top element of (P(X), C), and of course we have | J@ = @, where @ is the bottom
element of (P(X), Q).

Let us consider some examples for the above concepts. For any set X, the poset (P(X), C) is a complete lattice and
therefore satisfies all the properties (1)—(5). Given any U € P(X) we of course have \V U = |JU,and AU = "U.
The lattice operations are just the special case of finite unions and finite intersections, i.e., AV B = A U B, and
A A B =AnN B. In particular, the powerset P(1) = P({@}) = {@,{@}} = 2 is a complete lattice and therefore a lattice
with the inclusion ordering. We call 2 the lattice (in fact more than that, the boolean algebra) of truth values, with
0 = @ interpreted as false, and 1 = {@} interpreted as true. Note that the lattice operations V and A are exactly logical
disjunction and logical conjunction of truth values in (P(1),C) = (2,C). Therefore, there is no confusion possible
between the use of Vv and A for logical operations and for lattice operations, since the second use generalizes the first.

For any set X, the poset (Py,(X) U {X}, C) of finite subsets of X plus X itself is a lattice, with AV B = AU B, and
A A B =AnN B, butif X is infinite, then (Py,(X) U {X}, ©) is not a complete lattice.

The interval [0, 1] in the real line, [0, 1] = {x € R | 0 < x < 1}, is a complete lattice with the usual ordering < on
real numbers. Given a subset X C [0, 1] we use the notation \/ X = max(X), and A\ X = min(X). max(X) is the smallest
real number r such that r > y for each y € X, and min(X) is the biggest real number r such that » < y for each y € X.

3There are many others. The classic textbook in this area is the excellent [3]]; there are also many more recent basic and advanced
textbooks. For a detailed study of the different families of subsets of a poset for which one can require to have sups (or dually infs),
and the corresponding category-theoretic properties of the complete posets thus obtained see [33]].

57

The lattice operations V and A are also called max and min, with max(x,y) the biggest of x and y, and min(x, y) the
smallest of the two. This lattice is the foundation of fuzzy logic [49]], which is used in the fuzzy control systems of many
electronic devices. The basic idea is that [0, 1] can be viewed as a set of “fuzzy truth values,” generalizing the standard
truth values in 2 = {0, 1}. Now logical disjunction is max and logical conjunction is min.

The poset (R, <) with max and min of two real numbers defined again as maximum and minimum is almost a lattice,
since the only things it lacks to be a lattice are a top and a bottom element. If we add them, using the standard notation
T = 400, and L = -co, then (R U {+00, -00}, <) becomes a complete lattice, with max(X) either the smallest real number
bigger than all the elements in X, if X is bounded above, or +oo otherwise, and with min(X) either the biggest real
number smaller than all the elements in X, if X is bounded below, or -co otherwise.

The poset (N, <) has a bottom element (namely 0), but has no top element. It is also almost a lattice, with V = max
and V = min; it just lacks a top element. Also, for any nonempty subset X ¢ N, A X = min(X) is always defined as the
smallest natural number in X, but \/ X = max(X) is only defined as the biggest number in X if X is finite and nonempty,
and as 0 if X = @, but is not defined if X is infinite. However, if we add to N a top element, denoted as usual T = oo,
then (N U {0}, <) becomes a complete lattice, where for any infinite subset X C N we have max(X) = co.

A very useful example of a chain-complete poset is provided by partial functions. If you did Exercise 22} you
already know what a partial function is. If you missed the fun of Exercise22] here is the definition. A partial function
from A to B, denoted f : A — B, is arelation f C A X B such that for each a € A, f[{a}] is always either a singleton set
or the empty set. The set [A— B] of all partial functions from A to B is then:

[A—B] = {f € P(A x B) | (Ya € A)\Yb,b € B)((a,b),(a,b') € f) = b =b)}.

We then have the obvious inclusions [A—B] € [A—B] € P(A x B). Ordered by subset inclusion, the poset ([A—B],)
is then a subposet of the complete lattice (P(A X B),S). ([A—B], ©) has a bottom element, namely @. But as soon
as A # @ and B has more than one element, ([A—B], C) cannot be a lattice, and cannot have a top element. Indeed,
the set [A—B] is exactly the set of maximal elements of ([A—B], ©); and under those assumptions on A and B, we can
always choose a € A, and b,b” € B with b # b’, so that we have partial functions f = {(a,b)}, and g = {(a,b’)}, but
fUg=1{(a,b),(a,b)} is not a partial function. Indeed, then ubs{f, g} = @, where ubs{f, g} denotes the set of upper
bounds of {f, g} in the poset ([A—B], ©). The important fact, however, is that ((A—B], C) is chain-complete. Indeed, let
C C [A—B] be a chain. Then its limit is the set | J C, which is a partial function, since if we have (a, b), (a,b’) € |J C,
then we must have f,g € C with (a,b) € f and (a,b’) € g. But since C is a chain, we have either f C gor g C f.
Assuming, without loss of generality, that f C g, then we also have (a, b) € g, and therefore, b = ', so | J C is indeed a
partial function.

Given a function f : A — A, an element a € A is called a fixpoint of f iff f(a) = a. The following theorem, due to
Tarski and Knaster, is choke-full with computer science applications:

Theorem S (Tarski-Knaster). If (A, <) is a complete lattice, then any monotonic function f : (A,<) — (A, <) has a
fixpoint. Furthermore, any such f has a smallest possible fixpoint.

Proof. Consider the set U = {x € A | f(x) < x}, and let u = A U. Therefore, for any x € U, since f is monotonic and
by the definition of U, we have f(u) < f(x) < x, which forces f(u) < u. Therefore, u € U. But since f is monotonic,
fIU] € U, and we have f(u) € U. Hence, f(1) > u. Therefore, f(u) = u, so u is our desired fixpoint. Furthermore, u
is the smallest possible fixpoint. Indeed, suppose that v is another fixpoint, so that f(v) = v. Then f(v) < v. Therefore,
ve U, andthus, u <v.O

A very useful, well-known variant of the Tarski-Knaster theorem, also choke-full with even more computer science
applications, can be obtained by simultaneously relaxing the requirement of (A, <) being a complete lattice to just being
chain-complete with a bottom; and strengthening instead the condition on f from being just a monotone function to
being chain-continuous. A monotone f : (A,<) — (A, <) is called chain-continuous iff for each chain C in (A, <)
having a limit \/ C, we have f(\/ C) = \/ f(C), that s, f preserves limits of chains.

Theorem 6 If (A, <) is a chain-complete poset with a bottom element L, then any chain-continuous function f : (A, <
) — (A, <) has a fixpoint. Furthermore, any such f has a smallest possible fixpoint.

Proof. Obviously, L < f(L). Since f is monotonic, we then have a chain {f"(L) | n € N} of the form
L < fl< ... <ML <MW < ...

Then our desired fixpoint is \/{f"(L) | n € N}, because, since f is chain-continuous, we have f(\/{f"(L) | n €
N = VA L) | ne N = V{f"'(L) | n e N} = V{f"(1) | n € N}. Also, \V/{f"(L) | n € N} is the smallest
possible fixpoint of f, since if a is any other such fixpoint, then L < a forces f"(L) < f"(a) = a. Therefore,
a € ubs({f"(L) | n € N}), and therefore \/{f"(L) | n € N} < q, as desired. O

58

One of the great beauties of mathematics is that seemingly abstract and extremely general theorems like the one
above give rise to extremely concrete and useful applications; in this case, computer science applications, among
others. Theorem []is at the heart of the semantics of recursive function definitions in a programming language. If we
define a function by simple recursion or by primitive recursion, we are always sure that the function so defined is a
total function, and therefore terminates. But a recursive function definition may never terminate for some inputs, and
therefore its extensional meaning or semantics in general is not a total function, but a partial one.

The importance of Theorem |6 for the semantics of programming languages is that it can be used to precisely define
the partial function associated to a recursive function definition as a fixpoint, thus the name fixpoint semantics for this
method, proposed by the so-called denotational semantics approach pioneered by Dana Scott and Christopher Strachey
(see, e.g., [43] 44, 140]). Let me illustrate the basic idea with a simple example. Consider the following recursive
function definition to compute the factorial function on natural numbers:

factorial(n) = if n = 0 then 1 else n - factorial(p(n)) fi

where p denotes the predecessor partial function on the natural numbers, so that p(s(n)) = n, and p(0) is undefined.
The basic idea is to see such a recursive definition as a functional, which is just a fancy word for a function whose
arguments are other functions. Specifically, we see the recursive definition of factorial as the (total) function:

Ofactorial © [IN=N] — [N=N] : f > An € N.if n = 0 then 1 else n - f(p(n)) fi.

It is not hard to check that 64,/ 1S monotonic and chain-continuous in the chain-complete poset of partial functions
([IN—=N], ©). Then, the fixpoint semantics of the factorial function definition is precisely the least fixpoint of dzcioriats
that is, the function \/{6;‘0“0”‘1,(@ | n € N}, which in this example happens to be total, since the factorial function
definition terminates. Let us look in some detail at the increasing chain of partial functions

@ C Stactoria(@) S -+ S Sprerorial@) S Sporial(@) S ...

ctorial

Just by applying the definition of Ofucroriw We can immediately see that this is the sequence of partial functions:
2 C {0,D} € ... € {(0,1),(1,2),...,(n,n)} € {(0,1),(1,2),...,(n,nD),(n+ 1),(n+ D} € ...

Therefore, if we denote by !_ the factorial function, we have, \/{6;a(,wr,.al(®) | n € N} =1_, which is the expected fixpoint
semantics of the factorial function definition. The above sequence of partial functions has a strong computational mean-
ing, since it represents the successive approximations of the factorial function obtained by a machine implementation

computing deeper and deeper nested function calls for factorial.

Exercise 57 Call (A, <) a complete sup semilattice (resp., a complete inf semilattice) iff for any subset X € A, \/ X
always exists (resp., \ X always exists). Prove that any complete sup semilattice (resp., any complete inf semilattice)
is always a complete lattice.

Exercise 58 Given a set A, consider the following subsets of P(AXA): (i) TransRel(A), the set of all transitive relations
on A; and (ii) EquivRel(A), the set of all equivalence relations on A (see below). Prove that (TransRel(A), Q)
and (EquivRel(A), C) are both complete lattices. Similarly, given a poset (A, <), consider the set Sub(A, <) of all its
subposets, that is the set Sub(A,<) = {(A’,<") € P(A) X P(A X A) | (A',<") C (A,<) A poset(A’,<")}, where, by
definition, the predicate poset(A’, <") holds iff (A’, <") is a poset. Prove that (Sub(A, <), C) is a complete lattice. (Hint:
in each of the three proofs you can cut your work in half using Exercise[57])

Exercise 59 Let (A, <,) and (B, <p) be posets, and assume that both have a top element (resp., have a bottom element,
resp., are lattices, resp., are chain-complete, resp., are complete lattices). Prove that then (A X B, <axp) has also a top
element (resp., has a bottom element, resp., is a lattice, resp., is chain-complete, resp., is a complete lattice).

7.6 Equivalence Relations and Quotients

Given a set A, the identity relation id, is what we might call the absolute equality relation on A. Yet, life is full of
situations where we are not interested in absolute equality but in some kind of relative equality. Consider, for example,
money. Any two one-dollar bills, which are different in the physical, absolute sense, are nevertheless equal from the
relative standpoint of paying with them. Similarly, any two quarter coins are equal for paying purposes. In general, any
two bills or coins of the same denomination are equal for paying purposes, or, if you wish, equivalent (equi-valent: of
the same value). Money works as an exchange of wealth precisely because we do not care about the individual identities
of bills or coins, except up to equivalence.

59

More precisely, let Money be the finite set of dollar bills and coins of different denominations currently in circula-
tion. We can define a binary relation = C Money?, where x = y iff x and y are money items of the same denomination.
For example, x can be a dollar bill and y can be a dollar coin. Note that this defines a partition of the set Money into
“buckets,” with one bucket for money items of value 1 cent (only cent coins go here), 5 cents (only nickels here), an-
other for those of value of 10 cents (only dimes), another for those of value 25 cents (only quarters), another for value
1 dollar (both dollar bills and dollar coins), another for those of value 5 dollars, and so on.

We can generalize this a little by considering the set P(Money) of subsets of Money. Then we say the two subsets
U,V C Money are equivalent, denoted U = V iff their value adds up to the same amount. For example, U can be a set
of two dollar bills, a quarter, a dime, and three nickels; and V can be a set with a dollar coin and six quarters. They
are equivalent, that is, they have the same value, namely, 2 dollars and 50 cents. Again, this partitions P(Money) into
“buckets,” with one bucket for each concrete amount of money. We now have buckets for 1, 5, 10, and 25 cents, but
also buckets for other values from 2 up to 99 cents and beyond. In general we have buckets for any amount of money
of the form n.xy with n a natural number, and xy two decimal points, and with n.xy smaller than or equal to the total
value of the finite set Money of money in circulation. Note that there are two buckets containing each a single subset,
namely, the bucket containing the empty set (whose value is 0), and the bucket containing the set Money, which is the
bucket of biggest value.

Definition 7 Given a set A, an equivalence relation on A is a binary relation = C A® such that it is reflexive, symmetric,
and transitive.

Obviously, both = on Money, and = on P(Money), are equivalence relations in this precise sense. Similarly, given
n € N — {0}, the relation x =, y defined by the logical equivalence x =, y © |x—y| € nis an equivalence relation on
N (namely the relation of having the same remainder when divided by n), which partitions the set N into n “buckets,”
namely,
N/n = {n,n +1,...,1n +(n - 1))

(see also Exercise[6).
Given an equivalence relation = on a set A, and given an element a € A, we call the equivalence class of a, denoted
[a]=, or just [a] if = is understood, the set
l[al- ={x€ A | x=a}.

The equivalence classes are precisely the “buckets” we have been talking about in the above examples. For example,
in Money we have one equivalence class for each denomination; and in N we have one equivalence class for each
remainder after division by n. Note that it is easy to show (exercise) that a = @’ iff [a]= = [a’]=. Therefore, equivalence
classes are of course pairwise disjoint:

Lemma S Given an equivalence relation = on a set A, the set A/= = {[al- € P(A) | a € A} is a partition of A.
Conversely, any partition of A, U C P(A) defines an equivalence relation =q; such that A/=qy = U. Furthermore, for
any equivalence relation = on A we have the equality = = =4.

Proof. 1f A = @, then the only equivalence relation is @ = @ X @, and @/@ = @, which is a partition of | J2 = @. If
A # @, obviously A/= # @, and @ ¢ A/=, and we just have to see that any two different equivalence classes [a]- and
[a']= are disjoint. We reason by contradiction. Suppose [a]= # [a@’]= and leta” € [a]-N[d’]=. Thena = a” anda” =a’.
Therefore, since = is transitive, a = a’. Hence, [a]= = [d’]=, a contradiction.
Conversely, given a partition of A, U C P(A), we define the equivalence relation =¢, by means of the logical
equivalence
asyd © (AU e U)a,d € U.

This is trivially an equivalence relation such that A/=q, = U. It is also trivial to check that = = =4.. O

The above lemma tells us that equivalence relations on a set A and partitions of such a set are essentially the same
thing, and are in bijective correspondence. That is, the assignments = — A/= and U +— =q are inverse to each other.
Therefore, partitions and equivalence relations give us two equivalent (no pun intended) viewpoints for looking at the
same phenomenon of “relative equality.” The equivalence relation viewpoint emphasizes the intuition of two things
being equal in such a relational sense. The partition viewpoint emphasizes the fact that this classifies the elements of A
into disjoint classes.

Indeed, the mapping a — [a]- is precisely the process of classification, and is in fact a surjective function

g= A —A/=1a - lal=

called the quotient map associated to the equivalence relation =. We can generalize this a little, and regard any function
f A — Basaprocess of classifying the elements of A, or, what amounts to the same, as a way of defining a notion
of relative equality between the elements of A, namely, a and @’ are equal according to f iff f(a) = f(a’). That is,

60

any f : A — B classifies the elements of A according to the partition {f~'(b) € P(A) | b € f[A]}, whose associated
equivalence relation =; can be characterized by means of the logical equivalence

(Va,d e A)a=sd & f(a) = f(a)).

Note that the equivalence relation = is exactly our old friend f; f~!, which we encountered in Exercise 4} That is, for
any function f we have the identity =, = f; f~!. Of course, when f is the function g= : A —» A/=, we get=,_ = =.

In all the examples we have discussed there is always a function f implicitly used for classification purposes. For
the money examples the functions are den : Money — Q, mapping each coin or bill to its denomination as a rational
number, and val : P(Money) — Q, mapping each set U of coins and bills to its total value. Likewise, for the residue
classes modulo 7, the relevant function is rem, : N — N, mapping each number x to its remainder after division by n.

The following lemma has an easy proof, which is left as an exercise.

Lemma 6 For any binary relation R C A X A, the smallest equivalence relation R on A such that R C R is precisely the
relation R = (R U R™)*.

Lemma 7 For any binary relation R C A X A and any function f : A — B such that (¥(a,a’) € R) f(a) = f(a'), there
is a unique function f A/R —> B such that f = qR,f

Proof. Since g5 is surjectlve it is epi (see Exercise |26), and therefore f if it exists, is unique. Let us prove that
it does exist. We define f A/R — B : [a] z P f(a) This will be a well-defined function if we prove that

aRa' = f(a) = f(a’), so that the definition of f does not depend on our choice of a representative a € [alz. Note that,
by our assumption on f, we have R C =¢. and since R is the smallest equivalence relation containing R we also have
RC =/. Therefore, aRa’ = a =rad.Buta=ya © f(a) = f(a'). Therefore, aRa' = f(a) = f(a'), as desired. O

Corollary 1 (Factorization Theorem). Any function f : A — B factors as the composition f = q= f;f; j?[A], with

q=, surjective, fbijective, and jl;[4) an inclusion, where fis the unique function associated by Lemma|7|to f and the
relation =;. This factorization is graphically expressed by the commutative diagram:

%

A B
i j]f[A
JE—

Al=f —— fIA]

Proof. Obviously, by Lemmawe have a factorization f = g=,; f Furthermore, fis injective, since

flalz) = fld)=) & fa) = fld) ® a=;d & [al-, = [d]-,.
Furthermore, ffactors as
Az Lo a1 B

But since f: A/=; — B is injective, by Exercise [26] (2) and (6), then f: A/=; —» f[A] is also injective, and
therefore bijective, as desired. O

Exercise 60 (Exercise[24]revisited). Prove that for any function f : A — B we have the identity of binary relations
fi f7' = =/, and the identity of functions jjf[=/ ~1s f. Therefore, the above factorization diagram can be equivalently
rewritten as follows:

f
A——8B

It i j\fllf

S
Alfs o —— [1A]
Exercise 61 Give a precise and succinct description of all the equivalence relations on the set 3 = {0, 1,2}, describing

each one of them explicitly. (Hint: describing each such equivalence relation as a set of pairs is certainly precise, but
not succinct).

61

Exercise 62 Let A and B be any two sets, and let f,g € [A—B)]. Prove that the relation f ~ g that holds when the
functions f and g agree everywhere except possibly at a finite number of arguments, that is, the relation defined by the
equivalence

frg & (AX € Pu(A) fla-x = gla-x

is an equivalence relation on [A— B].

Exercise 63 Given a finite set A with n elements, give a numeric expression depending on n that counts the total number
of equivalence relations on A, and prove its correctness.

Exercise 64 (Extends Exercise20).

1. Given sets A and B, use the (Sep) axiom to give explicit definitions by means of set theory formulas of the subsets
[A— Blinj, [A— Bl [A=Bly; € [A—B] of, respectively, injective, surjective, and bijective functions from A to
B.

2. If A and B are finite, with respective number of elements n and m, prove that: (i) [A—Bl;; # @ iff n < m, (ii)
[A— Bl # @ iff n > m, and (iii) [A—Bly; # @ iff n = m.
3. Under the respective assumptions n < m, n > m, and n = m, give explicit numeric expressions, using n and m,

that calculate the exact number of functions in, respectively, [A—Bl,;, [A— Bl.j, and [A— Bly;;, and prove their
correctness. (Hint: use the Factorization Theorem, ExerciseE] and some elementary combinatorics).

Given the essential identity Relation = Directed Graph = Transition System, a natural question to ask is: how does
an equivalence relation look like as a graph?

Exercise 65 Given a set N of nodes, the complete graph on N is the relation N*. Prove that, given a graph (N, G), G is
an equivalence relation iff there exists a partition U of N such that:

1. Foreach U € U, G|y is the complete graph on U.
2. G=UIGly e PINXN) | U €U}

Likewise, it is natural to ask: how does an equivalence relation look like as a transition system?

Exercise 66 Call a transition system A = (A, —) reversible iff (Y(a,a’) € —z) (a',a) € —%. Intuitively, in a
reversible system we can always “undo” the effect of a transition a — 5 a’ by taking further transitions.
Prove that A = (A, — #) is reversible iff —7, is an equivalence relation.

Finally, we can give a graph-theoretic interpretation to the smallest equivalence relation G generated by a relation
G.

Exercise 67 Given a graph (N, G), and given a node n € N, the set of nodes n’ € N connected to n (including n itself)
can be defined as, [nlg = {n’ € N | (n,n’) € (G U G™")*}). We call [n]g the connected component of node n. Prove the
following (in whichever order you think best, but without using Lemma @ until you give a proof of it; some choices of
order can make proofs of other items in (1)—(3) trivial):

1. The set {[n]g € P(N) | n € N} of connected components of (N, G) is a partition of N.
2. Give a detailed proof of Lemma@
3. We have a set identity {{nlg € P(N) | n € N} = N/G.

The following two exercises relate the notion of equivalence relation with two other notions, namely, that of pre-
order, and that of bisimulation.

Exercise 68 (Preorders). A preorder (also called a quasi-order) is a pair (A, <) with A a set, and <€ P(A X A) a
reflexive and transitive relation on A. Given preorders (A, =<,), (B, <p), a monotonic function f : (A, <4) — (B,=<p)
is, by definition, a relation homomorphism. Prove that:

1. (A,<) is a preorder iff (2)* = <. Furthermore, if f : (A,R) — (B,G) is a relation homomorphism, then
[(A,R") — (B, G") is a monotonic function between preorders.

2. For any preorder (A, <): (i) the relation =< defined by the equivalence a =< @’ & (a <d AN d =< a)isan
equivalence relation; (ii) in the quotient set A/=< the relation <. defined by the equivalence [al-_ << [d']-. ©
a 2 d’ is a partial order (in the “less than or equal” sense); and (iii) q=_ : (A, <) — (A/=<, £<) is monotonic
and satisfies the following property: for any poset (B, <g) and any monotonic f : (A,<) — (B,<p) there is a
unique monotonic f: (A/=<,<<) — (B, <p) such that f = qzs;f

62

Exercise 69 (Minimization of Transition Systems and Automata). Let A = (A, —.a) be a transition system (resp. let
A = (A, L, > #) be a labeled transition system). Prove that the biggest possible bisimulation relation max.bis : A =
A (resp. the biggest possible labeled bisimulation relation max.bis : A = A) defined in Exercise PO(4) is an
equivalence relation. Let us denote it = 4. Prove also that:

1. The set A|=x has a natural structure as a transition system A/=z = (A/=a, > ar,), with [a]l > ag, [d'] iff
a —aq a (show that this definition of the transition relation does not depend on the choices of representatives a
and a' in [a] and [a']). A/=4 is called the minimal transition system behaviorally equivalent to A. Similarly,
for A = (A, L, >4) a labeled transition system, the set A/ =4 has a natural structure as a labeled transition
system Al=a = (A|=a, L, > ag,), with [a] _>5‘]’(Em [@']iffa —iﬂ a’ (show that this definition of the transition
relation does not depend on the choices of representatives a and a’ in [a] and [a']). A/=4 is called the minimal
automaton behaviorally equivalent to A.

2. For any transition system A = (A, —7) (resp. for any labeled transition system A = (A, L, > 7)) the quotient
map q=, : A —» A/=g is a bisimulation q=, : A —» A[=g (resp. a labeled bisimulation q=, : A —» A[=gz).

3. For any total bisimulation relation (resp. total labeled bisimulation relation) H : A = B such that H™'
is also total, there is an isomorphism of transition systems (resp. isomorphism of labeled transition systems)
[Al=a —B/=g; that is, bisimilar systems have the same minimization up to isomorphism.

4. For A = (A, —>g) a transition system (resp. A = (A,L, —xa) a labeled transition system), A| =4 is really
minimal, in the sense that it cannot be compressed anymore. That is, the equivalence relation =) is exactly
the identity relation on the set A|=g. In particular, if A has a finite set of states A, the number of states in A/=4
is the smallest possible for a system bisimilar with A.

7.7 Constructing Z and Q

To give some flavor for both how set theory is used to define —that is, to build mathematical models of— all mathe-
matical objects of interest, and how useful the notion of a quotient set under an equivalence relation is, I show how the
integers Z and the rationals Q can be easily defined as quotient sets.

Let us begin with the set Z of integers. Any integer can be obtained as the difference between two natural numbers.
For example, 7 is 7 — 0, or, equivalently, 15 — 8. Likewise, =7 is 0 — 7, or, equivalently, 8 — 15. This suggests defining
the integers as the quotient set Z = N? /=, where = is the equivalence relation

yy=W@,y) © x+y =x'+y

in particular, the number 7 is represented as the equivalence class [(7,0)] = [(15, 8)], and the number —7 as the equiv-
alence class [(0,7)] = [(8,15)]. Note that, given any such equivalence class, we can always choose either a represen-
tative (n,0), which we denote by n, or a representative (0, n), which we denote by —n (of course, we denote (0, 0) by
0 = —0). We can define addition, subtraction, and multiplication of integers in the obvious way: [(x,y)] + [(x",y")] =
[((x+x,y+)] [] = [0 = [(x + Yy, y+ x)], and [(x,)] - [(X, y)] = [((x- %) + (¥ - ¥'), (x-¥) + (¥ - x'))]. One
of course has to show that the above definitions of addition, subtraction, and multiplication do not depend on the choice
of representatives (x, y) € [(x,y)], but this is an easy exercise.

Once we have the integers, it is equally easy to define the rationals. Each rational number can be represented as a
fraction n/m, with n € Z and m € Z—{0}, where 0 = [(0, 0)]. Of course the fractions 1/2,2/4, and 3/6 are all equivalent.
This suggests defining the rational numbers as the quotient set Q = (Zx (Z—{0}))/=, where = is the equivalence relation

xy=W,y) © x-y=x"-y

and where we typically use the notation [(x,y)] = x/y, and usually pick a representative (x,y) € [(x,y)] such that
x/y is an irreducible fraction with y a natural number. In this way, x/y uniquely represents the equivalence class
[(x,y)]. Addition, subtraction, multiplication, and division of rational numbers is now defined in the obvious way:
[Ce, I+ 0] = [((x-Y)+ - XD, y-y)] [1= [,)] = [((x-y) = -2, y-¥)), [][,)] = [(x- X, -y,
and [(x,]/[(x",y)] = [(x -,y - x')], where in the last definition we must require that x # 0. As before, one has to
show that the definition of each operation does not depend on the choice of representatives (x,y) € [(x,y)], again an
easy exercise.

63

64

Chapter 8

Sets Come in Different Sizes

Obviously, two sets A and B such that A = B, that is, such that there is a bijection f : A— B are essentially the same set,
since their elements are placed by f in a one-to-one correspondence. Therefore, the relation A = B gives us a precise
way of capturing the intuition that A and B have the same size.

Definition 8 (Finite and Infinite Sets). A set A is called finite iff there is an n € N such that A = n. A set A is called
infinite iff it is not finite.

The relation A = B is sometimes called the equinumerosity (or equipotence) relation. In particular, it is trivial to
prove (exercise) that if A is finite, A = B iff B is finite and has exactly the same number n of elements as A. That is, any
finite set can always be placed in one-to-one correspondence with exactly one n € N.

How can we capture the notion of a set A having a size smaller than (or equal to) that of another set B? Obviously
this means that B must contain a subset B’ such that A = B’. But this is equivalent to the existence of an injective
function f : A »> B, since then A = f[A], and f[A] C B. Therefore we can introduce the notation A < B to abbreviate
the existence of an injective function f : A >» B, with the intuitive meaning that the size of A is “smaller than or equal
to” that of B. Similarly, the notation A < B abbreviates A < B and A # B, that is, the size of A is strictly smaller than
that of B. For example, for each natural number n we have n < N; and for natural numbers n and m, we have n < m iff
n<m.

Note that if A and B are finite sets, and we have f : A > B with f[A] # B, then A # B, since A must have strictly
fewer elements than B. However, for infinite sets we may easily have f : A > B, f[A] # B, and A = B. For example,
both the successor function Ax € N. s(x) € N, and the double function Ax € N. (2 - x) € N define injective functions
N »— N whose images do not fill all of N. The image of Ax € N. s(x) € N is the set of nonzero natural numbers, and
the image of Ax € N. (2 - x) € N is the set of even numbers.

Richard Dedekind took this fact of a set being in bijection with one of its proper subsets as the very definition of an
infinite set. That is, he proposed the following:

Definition 9 A set A is called Dedekind-infinite iff it has a proper subset B C A such that A = B.

Trivially, since no finite set can be Dedekind-infinite, any Dedekind-infinite set is infinite in the standard sense of
Definition [8] But is every infinite set Dedekind-infinite? The answer to this question will be given in §10.2] Corollary

8.1 Cantor’s Theorem

A very reasonable question to ask is: are there different sizes for infinite sets? Are some infinite sets intrinsically bigger
than others? Intuitively, for example, the “countable infinity” of the natural numbers N seems to be a smaller size of
infinity than the infinity of the “continuum” represented by the real line R (which we shall see in §?? has a bijection
R = P(N)). A precise answer to this question, on the affirmative, is given by the following beautiful theorem due to
Georg Cantor.

Theorem 7 (Cantor’s Theorem). For any set A we have A < P(A).

Proof. The function {_}, : A — P(A) : x — {x} sending each x € A to the corresponding singleton set {x} € P(A)
is clearly injective because of extensionality. Therefore we have A < P(A). We now need to show that A # P(A), that

65

is, that there is no bijective function f : A — P(A). For this it is enough to show that there is no surjective function
f A — P(A). Suppose that such a surjective f were to exist. Consider the set C ={x€ A |x ¢ f(x)}. Since f is
surjective, there must exist an element a € A such that f(a) = C. We then have two possibilities: eithera € C,ora ¢ C.
If a € C, then a € f(a), and therefore, a ¢ C, a contradiction. If a ¢ C, then a € f(a), and therefore, a € C, again a
contradiction. Therefore f cannot be surjective. O

Note that Cantor’s theorem immediately gives us an infinite ascending chain of strictly bigger infinite sets, namely,

N < P(N) < P(IN) < ... < P'(V) < P™I(N) < ...

where, by definition, PHN) = P(P(N)).

8.2 The Schroeder-Bernstein Theorem

Another very simple but important question to ask is the following. Suppose we have two sets A and B such that we
have been able to show A < B and B < A. Can we then conclude that A = B? The answer, in the affirmative, is another
key theorem of set theory, namely, the Schroeder-Bernstein Theorem. Proofs of this theorem can be a bit messy; I give
below a very simple proof due to Peter Johnstone [28].

Theorem 8 (Schroeder-Bernstein). Given any two sets A and B, if A < Band B < A, then A = B.

Proof. By hypothesis we have injections f : A > Band g : B > A. Let us try to place ourselves in the best possible
situation to define a bijection between A and B. The best possible situation would be to find a subset X C A such that
X = A —g[B - f[X]I]. If such a subset were to exist, we could immediately define a bijection between A and B. Indeed,
since f is injective, we could place X in bijective correspondence with its image f[X] using f. But then the complement
of f[X]in B, thatis, B — f[X] is mapped by g to the complement of X in A, namely, A — X. Therefore, since g is also
injective, we could place B — f[X] in bijective correspondence with A — X using g, and therefore, A — X in bijective
correspondence with B — f[X] using g~'. Therefore, the disjoint union of functions:

{(x, f(x)) e AxB|xeX}U{(g(y),y) € AxB|yeB- f[X]}

would be our desired bijection, proving A = B. So all we need to do is to find a subset X € A such that X =
A — g[B — f[X]]. This obviously looks like the fixpoint of some function. If we can show that it is the fixpoint of a
monotonic function from a complete lattice to itself, we will be done, since Theorem [3] (Tarski-Knaster) guarantees
the existence of such a fixpoint. The complete lattice in question is (P(A), ©), and the monotonic function is just the
following composition of monotonic functions:

1 B-() sl A-0)
(P(A), Q) — (P(B), Q) — (P(B),2) — (P(A),2) — (P(A),S)

where one should note the double reversal of the subset orderings due to the second and fourth functions, which perform
complementation in, respectively, P(B) and P(A). O

Exercise 70 Prove that for any A, A < A. Prove that if A < B and B < C then A < C. Prove that if A < Band B < C
then A < C.

66

Chapter 9

Indexed Sets

I-indexed sets, are, intuitively, families of sets {A;};,c; indexed or parameterized by the elements of another set /. For
example, if I = 5, we could consider the /-indexed set {A;};c4, Where Ag = 13, A; =7,A, =N, A3 =7, and Ay = @. So,
we can think of {A;},c; as the listing or sequence of sets

13,7, N, 7, @

which is of course different from the set {@, 7, 13, N}, both because the elements in the set {@,7, 13, N} are unordered,
and because our list can have repetitions, like the one for 7.

Under closer inspection, an /-indexed set turns out to be nothing new: just a completely different, but very useful,
new perspective, deserving a notation of its own, on a surjective function.

9.1 Indexed Sets are Surjective Functions
What is a sequence? Consider, for example, the sequence of rational numbers {1/s(n)},cn, Which we would display as
1, 172, 1/3, 1/4, ... 1/n,
and which has 0 as its limit. Or maybe the sequence of even numbers {2 - n},cn, which we can display as
0, 2, 4,6, ... 2-n,

In a similar manner, we could consider finite sequences like {1/s(1)},e, Or {2 - n},er, With k a natural number, which
would just truncate the above infinite sequences to the first k elements in the sequence.

I ask the question “what is a sequence?”” on purpose, as an Occam’s razor type of question: do we essentially need a
new concept to get a precise mathematical definition of a sequence, or is it just a convenient notation denoting a concept
we already know? The answer is that, clearly, we do not need any more concepts, since a sequence is just a (sometimes)
handy notation to describe a function. For example, the sequence {1/s(n)},qy is just a convenient, alternative notation
for the function 1/s(-) : N — Q : n — 1/s(n). Likewise, {2 - n},qy is just a convenient notation for the function
2-_:N — N:n 2-n Inasimilar way, the corresponding finite sequences would be convenient notation for the
functions 1/s(_)) :k— Q:n+ 1/s(n),and2-_:k—>N:n+—2-n.

There is, however, a slight indeterminacy between the sequence notation and the corresponding function it denotes,
because the sequence notation does not mention the codomain of such a function. So, we could instead have considered
(in the infinite sequence case, for example) the corresponding surjective functions 1/s(_) : N —» {1/s(n) e Q | n e N} :
ne 1/s(n),and2-_: N —» i: n — 2 - n. Note, by the way, that the subsets {1/s(n) € Q | n € N} c Q, andéc N
are totally different from the sequences that generate them, since in such sets we have lost completely all information
about the way in which the elements of the set are enumerated by the corresponding sequence.

So, a more careful answer to the above question “what is a sequence?” would be that it is a convenient notation
for a surjective function from either the set N of natural numbers (infinite sequence), or from a natural number & (finite
sequence), to some other set. This way, the indeterminacy about the codomain of the function is totally eliminated.

But why do we need to restrict ourselves to countable or finite sequences? Why couldn’t we consider the uncount-
able “sequence” {x*}.cr as a convenient notation for the function square : R —» R : x = x>? And why do we have
to restrict ourselves to numbers? Given any set I, why couldn’t we consider, for example, the “sequence” {(7, i)};c; as a
convenient notation for the surjective (and injective) function d; : I —» id; : i — (i, i), mapping each i € I to the pair
(i, 7) in the identity function id,?

67

Now we have to remember something very important, namely, that in pure set theory any set element is itself a
set. Therefore, the elements in all these, increasingly more general kinds of “sequences” like {1/s(1)}ne, {**}xer, and
{(i,D)}ier, are always “sequences” of sets! In the first sequence the elements are rational numbers, that can be represented
as equivalence classes of integers; in the second sequence they are real numbers, again representable as sets (e.g., as
“Dedekind cuts”), and in the third sequence they are ordered pairs, which we have seen are a special kind of sets. But
this is always the case: in pure set theory the elements of any set are always other sets. Furthermore, any function
f : A — Bis always a function of the form f : A — P(C) for some C. Indeed, let C = | J B. Then, by the (Union)
axiom we have (Vb € B) b C | B, and therefore, (Vb € B) b € P(|J B), which implies B € P(|J B). Therefore, we have

the following factorization of f:
P A
AL B S P(U B)

so that f maps each a € A to a subset f(a) C | B.

We have now arrived at a very useful general notion of “family of sets,” extending that of a sequence indexed by
numbers, and co-extensive with that of a surjective function f : I —» T. Instead of using the, too overloaded, word
“sequence,” given a set I of indices, we will speak of an I-indexed set, or an I-indexed family of sets. We write the
I-indexed set co-extensive with f as {f(i)},;. The elements i € I are called indices, since they are used to index the
different sets in the given family of sets.

Definition 10 (/-indexed set). A surjective function f : I —» T can be equivalently described, in a sequence-like
notation, as the I-indexed family of sets { f(i)}ic;. In this notation, we call such a surjective f an I-indexed set.

I-indexed sets are a generalization of ordinary sets, since we can view an ordinary set X as the 1-indexed set
associated to the surjective function X:1 —»{X}:0 X. The only difference is that in the 1-indexed set case, there
is only one set in the family, whereas in general we have a family of sets (and not just a single set) indexed by /. To
emphasize that an /-indexed set is a family of sets indexed by /, we will use the suggestive notation A = {A;},c;, where
A is the name of the entire /-indexed set (that is, the name of a surjective function A : I —» A[I]), and A; is the set
assigned to the index i € I (making the slight change of notation of writing A; instead of A(i)). The use of A for the
name of the entire /-indexed set helps our intuition that it is “just like an ordinary set,” except that it is more general.

In which sense more general? How should we visualize an I-indexed set? We can think of it, in F. William
Lawvere’s words [31]], as a continuously varying set, thus adding dynamics to set theory. In which sense “varying”?
Well, we can think of I as a parameter along which the set is varying. For example, if / = N, then we can think of N as
discrete time, so that in the N-indexed set A = {A, },eni, A, is the “snapshot” of A at time 7.

For example, a digital version of the movie Casablanca, which we abbreviate to C, can be mathematically modeled
as a family of sets (the movie’s frames) indexed by natural numbers corresponding to the different “instants” of the
projection (each instant happening each 1/30th of a second). Indeed, Casablanca has naturally this intuitive meaning
of a time-varying set. Suppose we have a two-dimensional 3000 x 5000 pixel screen, with 3000 x 5000 the cartesian
product of the sets 3000 and 5000 (therefore, since 3000 - 5000 = 15000000, this is a 15 Megapixel screen), where each
pixel in the screen is shaded by a shade of grey represented by a 16-bit vector. Such vectors are just the elements of
the 16-fold cartesian product 2'¢. Therefore, each frame in our digital version of Casablanca, for example, the frame
number 360, denoted Csg, is just a function

Cieo : 3000 x 5000 —> 21°

which in computer science would be called a “two-dimensional array of 16-bit numbers.”

Our version of Casablanca lasts 102 minutes, and the movie projects 30 frames per second. Then we have a total
of 102 - 60 - 30 = 183600 frames. Therefore, Casablanca is a 183600-indexed set C = {C,};c183600, Where each C, is
precisely the specific function from the cartesian product 3000 x 5000 to the cartesian product 2'® corresponding to
the #-th frame in the movie. Of course, C is just another notation for a surjective function C : 183600 —» C[183600],
where C[183600] = {C, | t € 183600} is the set of all frames in the movie.

There is, again, a crucial distinction between the 183600-indexed set C = {C}},c183600, and the set C[183600] = {C; |
t € 183600}, where all information about the order in which the frames are arranged is totally lost. Intuitively, and
reverting from digital to celluloid to drive the point home, we can think of the set C[183600] = {C, | r € 183600} as a
bag in which, after cutting with scissors each of the 183600 frames, we have thrown them all together in a jumbled and
chaotic way, with no order whatsoever between them. Of course, Casablanca is just an an example. What this example
illustrates is a general method to model mathematically any digital movie as an indexed set. This can of course be quite
useful, since any software for digital videos will implicitly or explicitly manipulate such a mathematical model.

The word “continuously” must be taken with a few grains of salt, since for / = N, or / = 183600, we might rather
talk of a “discretely varying set,” (although our eyes are fooled into seeing Casablanca as a continuously varying set of
images). But if we take as parameter set / = Ry, then the expression “continuously varying set” fully agrees with our
intuition, since in the varying set A = {A}icr,,, A; is the “snapshot” of A at continuous time . For example, we can

68

Figure 9.1: C, for some ¢ € 183600 in the Casablanca movie (from The Economist, June 14th-20th, pg.89, 2008.).

completely describe the time evolution of a billiard ball on a billiards table from the time when it is hit by a player, say
at time 0, as a continuously varying set in exactly this sense, namely, as a Ryp-indexed set of the form B = {B};cr,,.
where for each 1 € Ry, B; is a pair B, = (S, (u;, d,, i;)), where S, € P(R?) is a solid sphere, representing the points
in space occupied by the ball at time #, and (&, d,, ;) € (R3?)? are the coordinates at time ¢ of three chosen points on
the surface of the ball, namely, the “up,” “down,” and “impact” points. At time 0 we choose the three points (i, dy, ip)
to be: (i) the point at the top of the ball as it rests on the table, (ii) the opposite point on the surface of the ball under
the table, and (iii) the point of impact chosen by the player to hit the ball (which we idealize as a “point,” and we can
reasonably assume is different from both 1y and dy). Then, the points (u,, d;, i;) will be those points on the surface of
the solid sphere S, where the original points (ug, dy, ip) have been carried by the motion of the ball at time ¢. Note that
S, tells us where the ball is at time ¢ as a solid sphere, but does not tell us anything about the ball’s spin. All spin
information is captured by the simpler continuously varying set {(u/, d;, i;)}er, -

Exercise 71 Prove that the continuously varying set {(u;, d;, 1;)}icr,, completely determines all aspects of the dynamic
evolution of the billiard ball over time. That is, at any time t we can always “reconstruct” the solid sphere S, from the
three points (u;, d;, i;).

Use the bijection R?? = R’ guaranteed by Exercises and @ to show that we can, equivalently, com-
pletely characterize the dynamic evolution of a billiard ball by the indexed set associated to a surjective function
B: Rso —» Cp, where Cy C R’ is a curve in the 9-dimensional euclidean space R®. This curve is parameterized of
course by the time t € Ry, which is the whole idea of a Ryy-indexed set. The representation of the ball’s dynamics
by our original Ryo-indexed set B is very intuitive, but our equivalent representation as the Ryq-indexed set B is much
simpler. It illustrates a very general idea used to represent the dynamics of a physical systems in a “phase space.”
That is, we represent the state of a possibly complex system as a point in an n-dimensional euclidean space, so that its
dynamic evolution traces a curve parameterized by the time t € Ry in such a space, that is, a Ry-indexed set .

A somewhat different, but also quite intuitive, way of thinking about an /-indexed set is as what is called a dependent
type in some functional programming languages. For example, the data type of rational-valued arrays of length n for
any n is not a single data type, but rather a family of data types that depend on the value of the length parameter n € N.
It is the N-indexed set Array(Q) = {[n—Q]},ay. Here it is not helpful to think of the parameter set N as a set of “times.”
Instead, we think of it as a set of “sizes.”

Yet another family of examples comes from algebraic data type specifications, where the index set [is a set of
names for the types of a data type. For example, / can be the set of names I = {Bool, Nat, Int, Rat}. Then, an I-indexed
set is an actual family of data types, that is, an interpretation for the type names, assigning a concrete set of data
elements to each type name. For example, a typical /-indexed set A = {A;};e; for I = {Bool, Nat, Int, Rat} may have
Apool = 2, ANt = N, Ay = Z, and Ag, = Q. But this is not the only possibility: we may wish to interpret the sort

69

Nat as naturals modulo 2, and the sort Int as 64-bit integers, and then we could have an /-indexed set B = {B;};; with
Bgoot = 2, Byar = N/2, By, = 2%, and Brar = Q.

The key idea common to all these intuitions about, and uses for, an /-indexed set —continuously varying set,
dependent type, algebraic data type, and so on— is that / is a parameter set, so that A = {A;},e; is a family of sets
which vary along the parameter set /. We can graphically represent such a parametric dependence of A = {A;};e; on [
by displaying each set A; as a vertical “fiber” right above its index element i € I, where the “gaps” in the way the sets

{Aitier A;

]

p
X}
R)
{]

Figure 9.2: Histogram-like display of an I-indexed set {A;};¢;

A; are spread out above their indices i indicate those cases where A; = @; and where the different sizes of the sets A; are
suggested by their histogram-like display.

It is always instructive to look at corner cases of a definition. Note that in our definition of /-indexed set, the index
set I can be any set. In particular, we can have the somewhat strange case where / = @. So the question then becomes:
how many @-indexed sets are there? The obvious answer is: as many as surjective functions from @ to some other
set. But the only such surjective function from @ is the identity function id, : @ — @. Therefore, id, is the only
@-indexed set.

Note that the possibility that the sets A; in an /-indexed set A = {A;} can vary does not imply that they have to
vary. We may happen to have A; = A for all i,i’ € I, so that A; is constant and does not change at all as we vary the
parameter i € I. For example, we may have an avant-garde short movie, called AVG, that lasts 2 minutes and projects
during the whole time the single frame Mao : 3000 x 5000 —> 2'¢ shown in Figure That is, since 2-60-30 = 3600,
we have AVG = {Mao};e3600-

In general, given any ordinary set X, we can define the constant I-indexed set X; = {X};, that is, the constant
family where the set assigned to each i € [is always the same set X, which is precisely the /-indexed set associated to
the constant surjective function X; : I —» {X} : i — X. More precisely:

Definition 11 (Constant I-indexed sets). If I # @, then, for any set X, the constant I-indexed set denoted X is, by
definition, the surjective function X; : I —»{X} : i = X. If I = @, then for any set X, the constant @-indexed set
denoted Xy is, by definition, id.

A perceptive reader might have wondered how, in our example of arrays of rational numbers, is the surjective
function Array(Q) : N —» Array(Q)[N], defining the N-indexed set Array(Q) = {[n—Q]},an, precisely defined. This
is a nontrivial question, since for such a function to be defined there must exist a set 7 such that for each n € N,
[n—Q] € T. But how do we know that such a set exists?

Exercise 72 Find a set T such that for each n € N, [n—Q] € T. Then define the N-indexed set Array(Q) = {[n—Q]},en
explicitly as a surjective function. (Hint: use partial functions).

For the dependent type of arrays we can indeed find a set 7', so that such a dependent type is a surjective function
Array(Q) : N —» T In general, however, we may be able to describe a “family of sets,” in a weaker sense of the term,
as a sequence {A;};c; without having much of a clue about how to find a set T such that for each i € / we have A; € T.
How do we know that in general such a set T always exists? Note that in Definition [10{an /-indexed set was defined
to be a surjective function A : I —» A[I]. Therefore, with that definition the above problem does not explicitly arise,
since the family notation {A;},c; is just a notational convention for such a function. The unsolved issue, however, is
whether given a family {A;};c;, now taken as the primary concept, so that we are not explicitly given a set T such that

70

Figure 9.3: Based on a painting by Andy Warhol in http://www.warholprints.com/portfolio/Mao.html.

for each i € I we have A; € T, we can always find a surjective function A : I —» A[I] such that for each i € I, A(i) = A;.
Situations where such a set 7T is not at all obvious are not hard to come by. Consider, for example, the sequence of sets

2, P(2), PP)), ...,P (D), ...

which we could describe as the family of sets (in this alternative sense, where the surjection is not given) {P"(2)},en. It
is indeed not at all obvious how to find a set 7' such that for each n € N we have £"(@) € T. An even simpler example
is the sequence 0, {0} {{0{} ... {0}",... of Zermelo natural numbers. We know by the axiom of infinity that the set N
of von Neuman natural numbers exists, but is there a 7 which is the image of the Zermelo sequence? The answer to the
question of whether such a set 7' always exists for an indexed set in this weaker sense is in the affirmative. However,
to make this answer precise two additional ideas, which I can only sketch at this point, are needed: (i) a notion of
intensional function can allow us to precisely characterize a family {A;},c; in this weaker sense as a primary notion;
and (ii) a new axiom of set theory, the replacement axiom, does indeed ensure that a correspoding surjective function
A : I —» A[I] always exists for families in this weaker sense.

Exercise 73 (I-Indexed Sets as Untyped Functions). The need for requiring I-indexed sets to be surjective functions
was due to the indeterminacy of a function’s codomain. But this is a side effect of having typed the function. Without
typing such a problem dissappears. That is, we can define an untyped function as a binary relation f (therefore con-
tained in some cartesian product, which we need not specify) such that (Vx,y,2) (x,y),(x,z) € f = y = z. Then we can
define an I-indexed set as exactly an untyped function f such that dom(f) = I, where if, say, f C A X B, then dom(f) =
fa € A | (a,b) € f}. Of course, the only possible typing of f as a surjective function is f : dom(f) —» fldom(f)].
Check that all we have said so far can be equivalently formulated by taking I-indexed sets to be untyped functions.

9.2 Constructing Indexed Sets from other Indexed Sets

I-indexed sets behave like ordinary sets in many respects. We can perform set-theoretic constructions on them, like
union, intersection, disjoint union, cartesian product, and so on, to obtain other /-indexed sets.

The idea is that we can carry out such set-theoretic constructions in a “componentwise” manner: for each index
i € I. For example, we can define the union of two /-indexed sets A = {A;},c; and B = {B;};c; as the I-indexed set
AU B = {A; U Bj}i;. Note that if X and Y are ordinary sets, and X and Y are their corresponding 1-indexed sets, we
have the identity: XUY = XUY. That is, union of /-indexed sets is an exact generalization of union of ordinary sets
(which are viewed here as 1-indexed sets). But union is just an example: many other set-theoretic constructions can be
generalized to the /-indexed setting in a completely similar manner. Here are some:

Definition 12 Given I-indexed sets A = {Ai}ic; and B = {B;}ic;, we can define their union, intersection, difference,
symmetric difference, cartesian product, disjoint union, function set, and powerset as the following I-indexed sets:

71

e AUB={A;UBi}ics

o ANB={A; N Bi}ics
o ={A; - Bilias
e ABB={A; 8B}
o AXB={A; X Bi}ies
o A®B={A; ®Bi}ics

e [A—B] = {[Ai=Bil}ia
o P(A) = {P(A)}ier

Similarly, given /-indexed sets A = {A,;};c; and B = {B;};c;, we can define their containment relation A C B by means
of the equivalence
ACB o (Yiel) A, CB,;

and if this containment relation holds, we call A an I-indexed subset of B. How is the empty set generalized to the /-
indexed case? It is of course the /-indexed set @; = {@};c/, that is, the constant /-indexed set associated to @. Obviously,
the containment relation @, C A holds true for any /-indexed set A = {A;};e;-

9.3 Indexed Relations and Functions

How are relations and functions generalized to the /-indexed setting? Given /-indexed sets A = {A;};c; and B = {B} e/,
an I-indexed relation R from A to B, denoted R : A = B, is an [-indexed subset R C A X B. That is, an /-indexed family
of relations R = {R;};c; such that for each i € I we have R; € A; X B;. Similarly, an I-indexed function from A to B,
denoted f : A — B, is an [-indexed relation f = {fi};c; such that for each i € I, f; € [A;—>B;]. Of course, an /-indexed
function f : A — B is called injective, surjective, or bijective iff for each i € I the function f; is injective, surjective,
or bijective. For each I-indexed set A = {A;};¢;, the I-indexed identity function id, is, by definition, idy = {idy,}ics.

Also, relation and function composition is defined in the obvious, componentwise way: given /-indexed relations
R:A = Band G : B= C, the [-indexed relation R; G : A = C is defined componentwise by the equality R; G =
{Ri; G;}ic;. Likewise, given I-indexed functions f : A — Band g : B — C, the I-indexed function f;g: A — C'is
defined componentwise by the equality f; g = {f;; gi}ics-

The following lemma is a trivial generalization to the I-indexed case of Lemma [2]and is left as an exercise.

Lemma 8 The following facts hold true for I-indexed relations and functions:

e Given I-indexed relations F : A = B, G : B= C, and H : C = D, their composition is associative, that is,
we have the equality of I-indexed relations (F;G); H = F;(G; H).

o Given I-indexed functions f :A — B, g : B— C, and h : C — D, their composition is likewise associative,
that is, we have the equality of I-indexed functions (f;g);h = f;(g; h).

o Given an I-indexed relation F : A = B, we have the equalities id,; F = F, and F; idg = F.

o Given an I-indexed function f : A — B, we have the equalities idy; f = f, and f;idp = f.

Let us consider some interesting examples of /-indexed functions. Given A = {A,};c; and B = {B,},¢;, consider their
I-indexed cartesian product AX B and disjoint union A®B. Then, we have I-indexed projection functions p; : AXB — A
and p, : A X B — B, defined in the obvious, componentwise way, namely, p; = {p; : A; X B; — A;}ie; and
p2 = {p2 : Ai X B; — Bi}ie;. Similarly, we have the I-indexed injection functions into the I-indexed disjoint union,
ii:A— A®Bandi, : B— A® B, definedby: iy ={i; : A; — A; ® Bi}ic;and i, = {i, : B; — A; ® Bi}ics.

Similarly as for the case of ordinary functions, we can specify /-indexed functions using lambda expressions. Given
I-indexed sets A = {A;}ie; and B = {B;}ss, a lambda expression Ai € I.Ax; € A;. t(x;,i) € B; defines in this way an /-
indexed function from A = {A;}ic; to B = {B;} s, provided that we can prove the formula (Vi € I)(Vx; € A;) t(x;, i) € B;.
Indeed, in such a case, for each i € I, the function f; thus specified is the set of pairs f; = {(a;, #(a;, 1)) € A; X B; | a; € A;}.
For example, the /-indexed projection functions p; = {p; : A; X B — A;}ies and p, = {p> : A; X B; — Bi}ics, have
the obvious lambda expression specifications p; = Ai € L.A(x;,y;) € A; X B;. x; € A;jand p, = Ai € 1. A(x;,y;) €
A; X B;. y; € B;. Similarly, the I-indexed injection functions into the I-indexed disjoint union, iy : A — A® B
and i, : B — A @ B have the lambda expression specifications i; = Ai € I. Ax; € A;. (x,0) € A; @ B;, and
ip =Adiel Ay; € B;. (;,1) € A; ® B;. Likewise, the I-indexed identity function idy : A — A can be specified by the
lambda expression Ai € I. Ax; € A;. x; € A;.

To give a couple of additional examples, illustrating the use of /-indexed functions as parameterized functions for
dependent types, consider the following two N-indexed functions from Array(Q) = {[n—Ql},cn, the dependent type

72

of rational-valued arrays of length n for any n, to, respectively, 5,(Q), the data type of finite sets of rationals, and
N, where the first function maps an array a = {(0, xp), ..., (n-1, x,-1)} to the finite set {xi,...,x,}, and the second
function maps an array a = {(0, xo), ..., (n-1, x,-1)} to its length n. Since an ordinary data type can always be viewed
as a constant dependent type, we can describe these two (parametric in n € N) functions as N-indexed functions
set : Array(Q) — P, (Q)w and length : Array(Q) — Ny, defined by the respective lambda expressions: set = An €
N.1a € [n-Q]. a[n] € P;n(Q), and length = An € N. Aa € [n—Q]. n € N.

Exercise 74 (Generalizes Exercise @) Given any three I-indexed sets A, B, and C, and given any two I-indexed
functions f : A — Cand g : B — C, we can define the function [f,g] : A® B — C by the defining equation
Lf. gl = {[f:» gil}ies. Prove that:

L ilf.gl=f
2. islf.gl=¢

3. (1) and (2) uniquely determine [f, gl, that is, any I-indexed function h : A ® B — C such that i;;h = f and
ir; h = g must necessarily satisfy h = [f, g].

Properties (1)—(3) are compactly expressed by the following commutative diagram of I-indexed functions:
C

[f:8]

A — A® B < B

1 n

Exercise 75 (Generalizes Exercise @) Given any three I-indexed sets A, B, and C, and given any two I-indexed
functions f : C — A and g : C — B, we can define the I-indexed function (f,g) : C — A X B by means of the
defining equation (f, g) = {(fi, §:)}ier- Prove that:
L (f.ehpi=f
2. (f,ghp2=8
3. (1) and (2) uniquely determine (f, g), that is, any I-indexed function h : C — A X B such that h; p; = f and
h; p, = g must necessarily satisfy h = (f, g).

Properties (1)—(3) are compactly expressed by the following commutative diagram of I-indexed functions:

c
AN
(f:9)

\
A<——AxB—>B

73

74

Chapter 10

From Indexed Sets to Sets, and the
Axiom of Choice

We can gather into a single set data from an /-indexed set in various ways; in particular, the ordinary set XA, which is
a generalized cartesian product of all the sets A; in an /-indexed set A = {A,};c/, is intimately connected with another
key axiom of set theory: the axiom of choice.

10.1 Some Constructions Associating a Set to an Indexed Set

There are several very useful constructions such that, given an /-indexed set A = {A;};¢;, associate to it an ordinary set.
Specifically, we will consider four constructions that exactly generalize the four set-theoretic constructions of union,
intersection, disjoint union, and cartesian product from constructions on pairs of sets to constructions on arbitrary
I-indexed families of sets.

Let us begin with the union | A, also denoted | J;c; A;, of an I-indexed set A = {A;};c;, which when we view A as a
surjective function A : I —» A[/], is just the union of its codomain set, that is, it is defined by the equation

Ja=]Jamn.

For example, the union | JArray(Q) of the dependent type Array(Q) = {[n—Q]},an of rational-valued arrays of
length n for any n is, of course, the ordinary set Lis#(Q) of /ists of rational numbers, another very useful data type.

Instead, for C = {Ci};c1s3.600 the digital version of Casablanca, the set | JC does not seem particularly useful.
Since each frame C, is a function from 3,000 x 5,000 to 2!°, and therefore a set of pairs of the form ((i, j), v), with
(i, j) € 3,000 x 5,000 and v € 2%, the set | J C is just the set of all such pairs for all frames in the movie. If we find a
given pair ((, j),v) in |J C, all we know is that for some (one or more) frames in the movie, the pixel (i, j) has the shade
of gray v.

In a dual way (since union and intersection are dual concepts), if I # @ we can define the intersection () A, also
denoted ();c; A;, of an I-indexed set A = {A;};; as the intersection of the codomain set of the function A : I —» A[[].

That is, we define () A by the equation
ﬂ A= ﬂ A[I].

For example, the intersection (), [7—Q] of the dependent type Array(Q) = {[n—Q]},ey of rational-valued arrays
of length n for any n is, of course, the empty set, since no array can have two different sizes. I strongly conjecture that
for C = {C\}e183600 the digital version of Casablanca, the intersection () C is the empty set, since it would be amazing
to have a coordinate (i, j) such that its pixel never changes shade in the entire movie! Instead, in the AVG movie we
have () AVG = Mao. More generally, for any I # @, and for any set X, if we consider the constant /-indexed set X;, we
always have N X; = U X; = X.

Yet another very useful construction is the disjoint union of an I-indexed set A = {A,};c;, which is denoted P
or just @ A. It is the set defined by the equation

@Ai = {(a,i)e(UA)xIlaeAi}.

iel

A,

iel

Note that this is an exact generalization of the, already defined, binary disjoint union operation Ay ® A, since for I = 2,

we can view A = {A, },c as a 2-indexed set, and then we have the set identity @n o An = Ag®A,. In this generalization,

75

the two injection functions from Ay and A, to Ay ® A, are generalized by an /-indexed family of injection functions
{ii: Ai — @A sa; o (@i DYier

which we can view as a single /-indexed functioni: A — (@ A).

What the Ay ® A, construction achieved was to first make disjoint copies of Ay and A, and then form the union of
those copies. This is now generalized to a disjoint union construction for an /-indexed family of sets, so that for each
i,i’ € I withi # 7, the sets A; X {i} and Ay X {i’} are by construction always disjoint. Therefore, the set {A; x {i} | i € I}
is always a partition of @id A;, and @ie[A; is just the union of all the sets in such a partition.

For example, the disjoint union € Array(Q) = @neN [n—Q] of the dependent type of rational-valued arrays of
length n for any n, Array(Q) = {[n—Q]},ay is the set of pairs (a,n), where a is a rational-valued array and » is its
size. Here the disjoint union is not terribly useful, since if n # m, then [n—Q] N [m—Q] = @. That is, the sets in this
family are already pairwise disjoint, so there was really no need to make them pairwise disjoint again. Nevertheless,
P Array(Q) is a very useful and well-known data type construction in functional programming, where it is called the
2-type (because it is typically denoted X Array(Q)) associated to the dependent type Array(Q).

Instead, for C = {C,}c183600 the digital version of Casablanca, the sets in this family are not pairwise disjoint:
there can be many contiguous frames where relatively few pixels change shade (say, those corresponding to the faces
of Humphrey Bogart and Ingrid Bergman), but the pixels corresponding to the furniture and the walls in the room do
not change at all. Therefore, in this case the construction € C gives us something different from, and more interesting
than, the quite useless set of shaded pixels | JC. Now the elements of @ C are pairs (((7, j),v), 1), with ((Z, j), v) the
shaded pixel for coordinates (i, j) in the z-th frame. Unlike the case of the set | C, where we had no way to reconstruct
the movie from | C, we can now reconstruct all of Casablanca (admittedly, in a somewhat painful way) out of the set
@ C, since we can recover each frame C, as the set C, = {((, j),v) € UC | (((i, j),v),1) € @ C}. Of course, this
recoverability property holds true not just for Casablanca, but for any disjoint union @E ;A for any I-indexed set A,
since we can always recover each A; as the set A; = {a € | JA | (a,i) € P A}

The construction dual to disjoint union is of course that of product. The product X;qA; of an I-indexed set
A = {A;}ie;, which can be abbreviated to just XA, is defined as the set

XA=lae[l- UA] | (Vi € D) ali) € A}

The elements a € XA are sometimes called choice functions, since what they do is to choose for each index i € I an
element a(i) € A; of the corresponding set A;. The same way that given a surjective function A : I —» A[I] we use
the sequence notation A = {A;},¢; for it to emphasize that it is an /-indexed set (making the slight change of notation
of writing A; instead of A(i)), given a choice function a € XA, we can use the sequence notation a = {a;};¢; for it,
likewise making the slight change of notation of writing a; instead of a(i). Note that the XA construction generalizes
the cartesian product construction Ay X Ay, since when S = 2, the function

XnEZAn —> AO X Al am (a(O),a(l))

is well-defined and is a bijection. In this generalization, the two projection functions from Ay X A; to Agp and A, are
generalized by an /-indexed family of projection functions

{pi: XA — A :a- ad)ie

which we can view as a single I-indexed function p : (XA); — A.

A complementary way of thinking of a choice function a € XA is as a global element of the I-indexed set A = {A;}.
That is, each element a; in the choice function a = {a;};c; can be thought of as a local element of A, namely, local to the
index i and the set A;. But since a = {a;};c; chooses a local element for each local index i € 1, it is reasonable to think of
a as a global element of A. Note that such global elements may not exist at all, that is, we may have XA = @. Indeed,
this will always happen as soon as there exists an index i € [such that A; = @, since then we obviously cannot choose
a local element for the index i. We can graphically represent choice functions, that is, the elements of XA (which we
also think of as “global elements” of A = {A;};c;) as “curves” a lifting each element i € I to a local element a; € A; in
the histogram-like display of A = {A;} shown below

76

{Ai}ier

Therefore, the set XA is just the set of all such “curves.”

Let us consider some examples of global elements. For the dependent type Array(Q) = {[n—Q]},ay of rational-
valued arrays of length n for any n, its global elements/choice functions are the elements of XArray(Q), which in
functional programming is called the II-fype (a function type which is typically denoted I1 Array(Q)) associated to the
dependent type Array(Q). One possible such global element/choice function can be the “infinite sequence of finite
sequencesﬂ’ {(1,1/2,1/3,...,1/n)},en of increasingly longer arrays, which we can display as:

@, 1, (1,1/2), (1,1/2,1/3), ...(1,1/2,1/3,...,1/n),...
and which contains the same information as the infinite sequence of rationals
L, 172, 1/3, 1/4, ... 1/n, ...

which is here just described as a global element of Array(Q) by listing its successive approximations. A rich source of
examples of global elements of Array(Q) which exactly correspond to sequences of rationals comes from the measur-
ing of physical quantities over time. For example, let temp,,;,, and temp,,,, be the lowest and highest daily temperatures
recorded in the island of Spitsbergen, a matter of some recent concern for polar bears. We can assume that the software
of the temperature recording system in the Spitsbergen observatory writes the daily maximum and minimum temper-
atures in two arrays whose length is incremented each day, so that the two respective sequences of highest and lowest
temperatures, and the two respective sequences of arrays of Array(Q) contain the same information. Of course, at each
point in time, say day k since the establishment of the Spitsbergen observatory, we do not yet have the entire global
element, but only a global element of Array(Q)[= {[n—Ql},ex-

In general, we can associate an element of X,en[n—Q] not just to some particular sequences of rationals, but to
any sequence of rationals. That is, we can define an injective function

j : [NHQ] - XﬂEN[”*Q] : f and {frn}neN

which allows us to naturally view each infinite sequence of rationals as an element of X,en[n—Q]. But this injective
function from sequences of rationals to global elements of Array(Q) is not surjective, since other global elements of
Array(Q) exist which do not correspond to infinite sequences of rationals at all. For example, we could consider the
global element

@, 1, (1,1/2), (1,1/4,1/9), ...(1,1/2",1/3",...,1/n"),...

which does not correspond to any successive approximation of an infinite sequence of rationals. Similarly, the global
element
@, 1, 2,2), (3,3,3), ...(n,.".,n),...

does not correspond to any successive approximation of an infinite sequence of rationals either.

The view of choice functions as global elements is also very fruitful in order to relate several set-theoretic construc-
tions, building /-indexed sets out of other /-indexed sets, to familiar notions already encountered, such as those of an
I-indexed subset, an /-indexed relation, and an /-indexed function. Recall that in @ given /-indexed sets A and B,
we defined other /-indexed sets such as, for example, P(A), P(A X B), and [A—B]. The obvious question to ask about
such sets is: what do P(A), P(A x B), and [A— B] have respectively to do with the notions of an /-indexed subset, an
I-indexed relation, and an /-indexed function? And the obvious answer is:

o an I-indexed subset of A is exactly an element of XP(A), that is, a global element of P(A),

IThat is, we display an array a € [n—Q] as the finite sequence (a(0), a(l), ..., a(n-1)); then a choice function is an infinite sequence
whose elements are finite sequences of increasing length.

77

o an /-indexed relation from A to B is exactly an element of XP(A x B), that is, a global element of P(A x B),

e an /-indexed function from A to B is exactly an element of X[A—B], that is, a global element of [A—B].

Exercise 76 Given I-indexed sets A and B, show that there are bijections

Puen=@Pae@P»n

X(A x B) = (XA) x (XB).

Exercise 77 Given a set X, an I-indexed set A such that A C X;, and a subset B C X, prove the following set-theoretic

equality:
BN (U A) = U(B, NA).

Under the assumption that 1 + @, prove the dual equality

BU (ﬂA) = ﬂ(B, UA).

Exercise 78 Prove that for any sets I and B the following two set-theoretic equalities hold:
1. @B,=BxI
2. XB; =[I-B]

Therefore, we can always think of a cartesian product of two sets as a special case of a disjoint union, and of the
function set from I to B as a special case of a product of an I-indexed set. Note that Exercise @ is a very special case

of (2).
Exercise 79 (Generalizes Exercise [B0). Given an I-indexed set A, a set C, and given any I-indexed function f : A —
Cy, we can define the function f : @A — C : (a;,i) — fi(a;). Prove that:
1. foreachiel, i,-;fz fi
2. (1) uniquely determines]? that is, any function h : @ A —> C such that for eachi € I, i;;h = f; must necessarily
satisfy h = f

Properties (1)—(2) are graphically expressed by the following commutative diagrams (one for each i € 1) of functions:

pa f>C
A;

Exercise 80 (Generalizes Exercise @) Given an I-indexed set A, a set C, and given any I-indexed function f : C; —
A, we can define the function f : C — XA : ¢ = {fi(¢)}ic;. Prove that:

1. foreachice€l, ﬁp,« =f;

2. (1) uniquely determines]F that is, any function h : C —s XA such that for each i € I, h; p; = f; must necessarily
satisfy h = f.

Properties (1)—(2) are graphically expressed by the following commutative diagrams (one for each i € I) of functions:

Col XA

S

A;

Exercise 81 (Initial and Final Sets Revisited). Show that for the only @-indexed set id, we have:
1 @id@ =@, and
2. Xid, = 1.

Show, furthermore, that when we specialize Exercisesand @to the case when I = @, they exactly mean, respectively,
that @ is the initial set, and that 1 is the final set. This provides a different proof of these two facts, that were already

proved in

78

Exercise 82 (€D and X Are Functorial Constructions) (Generalizes Exercise . In a way totally analogous to
Exercise we can easily check that @ and X are functorial constructions. Indeed, given an I-indexed function
f: A — B, we can use Exerciseto define the function @ f : @ A — €D B as the unique function associated to
the I-indexed function {f;;i;}ic; : A — (®B);. Applying the definition in Exercise@ it is easy to check that for each
(a;, 1) € D A we have (D)i, i) = (fi(a), i).

The dual definition for X f is obtained in the expected way by changing injections by projections and the direction
of the arrows. That is, X f : XA — XB is the unique function associated according to Exerciseto the I-indexed
Sfunction {p;; fi}ier : XA — B. It is then easy to check that Xf maps each {a;}ic; € XA to {fi(a)}iar € XB.

Prove that @ and X are functorial constructions, that is, that they also preserve composition and identities. This
means that: (i) for any I-indexed functions

AL BSC

we have (@ ; (@ g) = @(f;) (resp., (X £);(Xg) = X(f;8)); and (ii) for any I-indexed set A we have @ idy =
idga (resp., Xid, = idy a)-

10.2 The Axiom of Choice

The above discussion of choice functions (a.k.a. global elements) has prepared the ground for the axiom of choice
(AC), an axiom with far-reaching consequences. Indeed, AC is disputed by some specialists, particularly those with a
constructivist bend of mind, who prefer to develop as much of set theory as possible without assuming it. This is the
reason for the notation ZF'C, which abbreviates ZF + AC, so that ZF abbreviates the axioms of Zermelo-Fraenkel set
theory without AC. The statement of AC is very simple:

Any I-indexed set A = {A;}ic; such that for each i € I the set A; is nonempty has a choice function.

Its precise formalization as a set theory formula is just as simple:
(AC) (YD(VA : I — A[ID((Vie D AG) £ @) = XA #0).

At first sight, AC seems “obvious.” Why couldn’t we choose an element a; for each set A;, if all such sets A; are
nonempty? The obvious-looking AC axiom becomes a little less obvious when we reflect on what our notion of a
function is. If we think of a function Ax € A. #(x) € B as a precise rule to assign a given output value 7(x) to each input
value x, then the issue becomes whether, given an arbitrary I-indexed set A = {A;};c; with all their A; nonempty, we can
always come up with a precise and principled way (a rule in some sense) of choosing for each i € [an element a; € A,.

The difficulty of always being able to come up with such a rule can be illustrated by a thought experiment due
to Bertrand Russell, which he presented in one of his books on the philosophy of mathematics [42]]. Russell was 98
years old when he died in 1970. Had he lived for a few more years, he might perhaps have considered re-issuing his
Introduction to Mathematical Philosophy with a new version of his thought experiment, which originally involved a
millionaire having infinitely many pairs of boots and socks. The new version, besides illustrating the issues involved
in the axiom of choice, could have also served as a morality tale, providing further illustration after the Vietnam
war (Russell and Jean-Paul Sartre organized a Vietnam War Crimes Tribunal) of what Russell felt were disastrous
consequences of American imperialism.

The revised tale might perhaps have gone as follows:

Once upon a time, in an amazing world in which, besides finite things, all kinds of infinite things existed,
there lived a woman called Rimmelda. She was an infinitely vain former beauty queen, married to an
infinitely rich dictator of an infinitely poor banana republic, controlled from the shadows by an infinitely
powerful CIA. Rimmelda never wore the same dress twice: she had an infinite wardrobe, with dresses
from the most famous fashion designers, and with an infinite number of pairs of high-heel shoes. She also
had an infinite number of pairs of silk stockings in her wardrobe.

In planning her future appearance at an infinite number of state banquets, Rimmelda wanted to set in
place a clear and unambiguous method by which, when helping her to dress, her maids would hand her
first one shoe and a corresponding stocking, and then a second matching shoe and its corresponding
matching stocking. With so many shoes and stockings around, this was badly needed, since there had
been great confusion among the maids, causing embarrassing mismatches in Rimmelda’s attire at some
state banquets. Trying to solve this problem, Rimmelda run into serious difficulties, which she vaguely
suspected could be mathematical in nature. A mathematics professor from the most important university
in the country was summoned to the dictator’s palace to solve the problem. This professor was a con-
structivist who had had a strict moral and mathematical upbringing. He always told the truth, and he only
accepted as valid functions those assignments from arguments to values that could be explicitly defined
by clear and unambiguous rules. He told Rimmelda that he could provide a clear rule for the shoes: the

79

first shoe chosen should always be the left shoe in the pair; but that no such clear and unambiguous rule
could be given for the stockings, since the two stockings in each pair look exactly the same. Rimmelda
went into a fit of hysteria, and the professor was accused of secretly plotting a leftist conspiracy and was
sent into prison.

In the language of /-indexed sets we can explain the professor’s inability to solve Rimmelda’s problem as follows.
The infinite collection of pairs of shoes can be described as an N-indexed set Shoes = {Shoes,},en, Where Shoes, is
the n-th pair of shoes. Since each set Shoes, has exactly two elements (the left shoe and the right shoe in the pair),
all sets Shoes, are nonempty. And there is indeed no problem in coming up with a well-principled choice function in
XShoes: we can, for example, follow the rule of always choosing the left shoe in each pair. The infinite collection
of pairs of stockings can also be described as an N-indexed set Stockings = {Stockings,},en, With Stockings, the n-
th pair of stockings. Again, since each set Stockings, has exactly two elements, all sets Stockings, are nonempty.
However, since the two stockings in each pair are indistinguishable, there seems to be no clear way of coming up with
an unambiguous method or rule for choosing one of the two stockings in each pair. That is, there seems to be no clear
way of unambiguously specifying a choice function in XStockings.

The point of this story is that AC is in some sense non-constructive, since it postulates the existence of a choice
function in the product XA of any I-indexed set A whose component sets are all nonempty, but provides no explicit
description of how such a choice function can be defined. The difficulty does not come from being able to pick one
stocking in a single pair of stockings: we can always do that. As shown in Exercise[84] there is no difficulty either in
choosing an element in X,;A; when each of the A; is nonempty and the index set I is finite. The problem comes when
1 is infinite, since then an unambiguous rule or method for the choice should be a parametric rule, that can be applied
in a uniform way (like the rule for picking the left shoe) to an infinite number of instance cases.

The axiom of choice can be further illuminated by another, very intuitive set-theoretic property that is in fact
equivalent to it. Recall that, right after Exercise[23] we asked the question:

Is every surjective function a right inverse?

but postponed answering such a question until now. The right answer is that this depends on whether we adopt AC as
an axiom in our set theory or not. Because, in fact, AC is equivalent to the property of every surjective function being a
right inverse, as the following theorem shows.

Theorem 9 AC is equivalent to every surjective function being a right inverse.

Proof. To prove the (=) part, just notice that f : A —» B is a surjective function iff the B-indexed set {f~'(b)}sen
is such that for each b € B the set f~'[{b}] is nonempty. By AC, the set Xbegf’l[{b}] is then nonempty. But what is
Xenf'[{b}]? First notice that [J{f~'[{b}]}sez = A. Therefore, X,epf~'[{b}] C [B—A] is just the set of all functions
g : B —> A such that for each b € B, g(b) € f~'[{b}]. That is, X,cpf ' [{b}] is precisely the set of all functions that are
left inverses to f. Since Xopes F7'[{b}] is nonempty, f has a left inverse, and is therefore a right inverse, as desired.

To prove the (<) part, let A = {A;};c; be an I-indexed set such that for each i € I we have A; # @. This also implies
that for each i € I the set A; X {i} # @. Consider now EBA = U{A; x {i} | i € I}, and define the projection function
P2 EDA — [: (a;,i) — i. Since for each i € I we have A; X {i} # @, p, is obviously surjective, and therefore,
by our assumption, a right inverse. Let g : I — €D A be such that g; p, = id;. Consider now the projection function
pi: @A — JA : (a;,i) = a;. I claim that g; p; is a choice function. Indeed, for each i € I we have g(i) € A; x {i},
and therefore, p,(g(i)) € A;. Therefore, XA # @, and as a consequence AC holds. O

Note that Theorem [J] gives us an alternative way, given sets A and B, of proving A < B. The standard way is of
course to exhibit an injective function f : A > B. But we now have the alternative possibility of proving A < B
by exhibiting a surjective function g : B —» A, since by Theorem [J] this ensures the existence of a left inverse (and
therefore injective, see Exercise 23)) function f : A > B such that f; g = id,.

We can gain additional insights about AC by considering an older, equivalent formulation of it, which we shall call
AC:

(AC’) For every set X there exists a function ¢ : P(X) — (@} — X, from the set of its nonempty subsets to
X, such that for each A € P(X) — {@} we have c(A) € A.

The term choice function was originally used, in a more restricted sense, for a function ¢ with such a property, since it
chooses for each nonempty subset of X an element in that subset.
AC and AC’ are in fact equivalent, as shown by the following:

Theorem 10 AC & AC'.
Proof. For the (=) direction, just observe that the identity function idp(x)-() : P(X) — {@} — P(X) — {0} is bijective

and in particular surjective. Therefore, idpx)-(¢) is a (P(X) — {@})-indexed set, which we can write in sequence notation
as idpx) (o) = {A}acpon—to)- Of course, since for each A € P(X)—{@} the set A is nonempty, by AC the set Xidpx)io; =

80

X Aep(x)—z}A 1s nonempty. But since J(P(X) — {@}) = X, the elements of XAep(X>,(@;A are precisely the functions
¢ : P(X)—{@} — X such that for all A € P(X) — {@} we have c(A) € A, that is, the “choice functions” in the more
restricted sense of AC’, and they exist by the nonemptyness of X Aep(x)-{o)A, as desired.

For the (<) direction, by Theorem[9]it is enough to show that AC’ implies that any surjective f : A —» B is a right
inverse. But since f is surjective, we have {f~![{b}] | b € B} C P(A) — {@)}. Let ¢ : P(A) — {@} —> A be such that for all
C € P(A) — {2} we have ¢(C) € C. Then obviously the composed function

,)
B p8) 5 pa) - (2} 5 A

is a left inverse to f, and therefore f is a right inverse, as desired. O
We can use the axiom of choice to prove that for any infinite set A, N < A. This agrees with our intuition that
countable infinite sets are the smallest infinite sets possible, but this intuition requires a proof.

Theorem 11 For any infinite set A, N < A.

Proof. All we need to do is to define an injective function f : N > A. The intuitive idea of how to define such
a function is a follows. We pick an element ay € A and define f(0) = ao, then we pick a; € A — {ap} and define
f(1) = a,. Likewise, we pick a,) € A —{ay,...,a,} and define f(s(n)) = a,, and so on. Since all the a, are different,
f is injective and we are done. However, this intuitive argument, although essentially sound, makes implicit use of both
simple recursion and AC, and therefore needs to be developed into a complete proof. To give such a full proof we reason
as follows. We let P,(A) C P(A) — {@} denote the subset of all the infinite subsets of A, which is trivially nonempty
since A € P.,(A). We then use a choice function ¢ : P(A) — {@} — A to define a function

smaller : Po(A) — Poo(A) : X > X — {c(X)}

which is well-defined, since if X is an infinite set, X — {c(X)} is also infinite (otherwise X would be finite!). By
simple recursion this then defines a function rec(smaller,A) : N — P (A). We then define our desired f : N »—
A : n = c(rec(smaller, A)(n)). To see that f is injective, first observe that: (i) if n > m, then rec(smaller, A)(n) C
rec(smaller, A)(m), and (ii) for each n € N, f(n) € rec(smaller, A)(n), and f(n) ¢ rec(smaller,A)(s(n)). Let now
n,m € N, with n # m. Without loss of generality we may assume n > m. Therefore, f(m) ¢ rec(smaller, A)(s(m)). Since
n > s(m), rec(smaller, A)(n) C rec(smaller,A)(s(m)); thus , f(m) ¢ rec(smaller, A)(n). But f(n) € rec(smaller, A)(n).
Hence, f(n) # f(m), as desired. O

Corollary 2 (Infinite iff Dedekind-Infinite) A is infinite iff there is a proper subset B C A such that A = B.

Proof. For the (&) part, just note that if there is a proper subset B C A such that B = A, A cannot be finite; therefore A
must be infinite. For the (=) part, by the above theorem there is an injective function f : N »» A. Let B = A — {f(0)}.
The desired bijection A = B is then given by the function Aa € A. if a € A — f[N] then a else f(s(f'(a))) fi. O

The axiom of choice has many other consequences, some rather technical and many far-reaching. Let me mention
one that is very intuitive. In fact, so intuitive that one might naively think it obvious. It is called cardinal comparability
(CC) and has an extremely simple formulation.

(CC) Given any two sets A and B, either A < B or B < A.

Yet another, extremely useful property, equivalent to AC, is the property WO stating that every set can be well-ordered.

Besides its non-constructive nature, another reason why AC has a special status within ZFC is that it is independent
of the other axioms of ZF in the following precise sense: (i) no contradiction is created by adding AC to ZF’; and (ii) no
contradiction is created by adding —AC to ZF. That is, either AC or —AC (but obviously not both!) can be added to ZF
without contradiction. The proof of (i) goes back to to Goedel [18]]; and that of (ii) to Fraenkel (see [47]], 284-289). In
fact, Fraenkel’s proof of (ii) can be viewed as a formalization of Russel’s thought experiment (Rimmelda’s story), since
it is achieved by adding to a standard model of set theory a countable family of cardinality-2 sets, just like the family
Stockings = {Stockings, }pen.

AC was first proposed by Zermelo in 1904, together with a proof that AC = WO (see [47]], 139-141). This caused
quite a stir due to its consequences (for example, the well-ordering of the reals) and its non-constructive nature. A
subsequent more detailed proof of the same result by Zermelo (see [47], 183-198), is very much worth reading even
today, because it addresses very cogently the various criticisms that had been leveled against his ideas and explains why
and how AC is often used in mathematical practice. For additional discussion on the axiom of choice, its wide use in
mathematics, Zorn’s Lemma, and the so-called Banach-Tarski Paradox see [27].

Exercise 83 Prove that AC is equivalent to the property that for every total relation R : A = B there exists a function
f:A— Bsuchthat f CR.

81

Exercise 84 Prove (without using AC) that if I is a finite set and A = {A;}ic; is an I-indexed set such that for each i € I,
A; # @, then XA # @. Therefore, AC is only needed for I-indexed sets such that I is infinite.

Exercise 85 Prove (using AC) that for any I-indexed set A = {A;}ic; such that for each i € I, A; # @, the projection
functions p; : XA —> A; are surjective for all i € I.

Exercise 86 In the proof of Theorem|I] the set P(A) of infinite subsets of A was described informally. Give a set
theory formula ¢ such that P.(A) can be formally defined as the set P,(A) = {X € P(A) | ¢} using the (Sep) axiom.

Exercise 87 (The Infinite Hats Puzzle, adapted from [48]). There is a prison with a countably infinite number of
prisoners, each with a prisoner number, 0,1,2,...,n,... on his uniform. They have unlimited mathematical powers:
they can remember mathematical objects of arbitrary cardinality and can compute (in the broad sense of the word)
with such objects. Also, they can survey their infinite number of fellow prisoners when they see them, and they can talk
simultaneously with all of them when in the prison yard. One day the prison guards tell them:

“Tomorrow we will place a hat on the head of each of you. The hat will be either black or white; but you
will not be able to see it; however, you will be able to see the hats that all other prisoners wear, but you
will not be able to talk to them. We will give each of you a piece of paper and a pencil where you should
write your guess for the color of your own hat. If all of you, except for a finite number, guess correctly the
color of your hat, all of you will be freed; otherwise, all of you will be executed. Today, we will let you
talk to each other for an hour in the prison yard to try to find a strategy to win in this game.”

Can the prisoners agree ahead of time on a strategy that will make them free when the following day the guards place
the hats on their heads?

Solve the same puzzle when the hats the guards place on the prisoners’ heads can have any shade of grey between
totally black and totally white (a shade can be represented as a real number s between 0 (black) and 1 (white)). In
this case the prisoners also have infinite precision vision: they can estimate the exact shade s of grayness of any other
prisoner’s hat just by looking.

(Hint: you may find Exercise@useful).

82

Chapter 11

Well-Founded Relations, and
Well-Founded Induction and Recursion

A well-founded relation on a set is, by definition, a terminating relation. Such relations have an enormous importance
in both computer science and in mathematics for at least three reasons: (i) they are of course crucial for termination
arguments; (ii) they vastly generalize induction on the natural numbers to induction on any well-founded relation; and
(iii) they vastly generalize simple and primitive recursion to well-founded recursion, a very powerful and general form
of recursion that is always guaranteed to terminate.

11.1 Well-Founded Relations

Definition 13 Given a binary relation R C A X A, the pair (A,R) is called a well-founded relation on A iff R is
terminating, that is, there is no sequence a : N — A such that for each n € N we have a, R ayy, oy, pictorially, no
sequence such that

ayRa Ra, ... a,Rayy ...

Let us consider some examples. The set N can be endowed with several well founded relations, including the
following:

o The predecessor relation (in fact, partial function) p, withnpm < n = s(m).
e The strict order relation n > m.
e The reverse divisibility relation n vid m, where, by definition, nvidm & n#0 A@QkeN)k#1 A n=k=m.

Likewise, for any set A the set List(A) = |J,ay[n—A] can be endowed with a well-founded head-rest superlist order
(List(A), 1), where, if we denote a list a : k — A as a finite sequence ay . . . a;—1, then a 2 b iff k > 1, and either b = ay,
orb = ay...dg-q.

Given any set A, the set Pp,(A) of finite subsets of A can be endowed, among others, with two different well-founded
relations. The most obvious one is (£,(A), D). Another interesting well-founded relation (indeed, a subrelation of 2)
is the singleton-rest relation (Pg,(A), J), which is analogous to the head-rest superlist relation for lists, where, by
definition, given X, Y € $4,(A) we have X 1 Y iff X has at least two elements and there exists x € X such that either
Y = {x}, or Y = X — {x}. Note that the inverse relation (¥, (A), C) is well-founded iff A is finite.

Yet another well-founded relation is provided by the immediate subterm relation between arithmetic expressions,
which is the set[] Exp of expressions that can be formed out of a countable set of variables x,y, x",y, ... and of smaller
expressions ¢, ', etc., by means of the following BNF-like grammar:

011 | x| @+e)| @=1)]| (tx1)

The immediate subterm relation ¢ > ¢’ is then defined on Exp by the defining equivalence t > ¢ & (3¢’ € Exp) t =
r+t" Vi=t'+t Vi=t—-t"Vi=t'-t Vi=tx«t"Vit=t'xt.
For non-examples, note that neither (N, <), nor (Z, >), nor (Z, <), nor (R, >), nor (R, <) are well-founded.

Properly speaking, since our set theory is built ex nihilo out of the empty set, we would need to encode these expressions, for
example with a Godel encoding of expressions as natural numbers. For the moment I will not bother with this. I will instead assume
that we are working in a variant of set theory in which atoms such as the symbols +, — and *, and the variables, are all allowed as
elements of other sets. Then we can, for example, represent the expression (1 + (x * 0)) as the tuple (+, 1, (x, x,0)). In I will give
a general set-theoretic construction for a set of algebraic expressions and will further discuss this matter.

83

11.1.1 Constructing Well-Founded Relations

It is very useful to have constructions such that, if some relations on some sets are well-founded, then other relations
on other sets are also well-founded.

For any set A, the relation (A, @) is well-founded. In particular, (@, @) is well-founded, and for any well-founded
(A, R) there is a unique relation homomorphism @ : (@, @) — (A, R).

One very easy way to determine that a relation (A, R) is well-founded is to find a relation homomorphism f :
(A,R) — (B, G) to a binary relation (B, G) which is itself well-founded. If we view (A, R) as a transition system, we
can equivalently express this idea by saying that to prove that (A, R) is teminating it is enough to find a possibly simpler,
terminating transition system (B, G) and a simulation map f : (A,R) — (B, G).

Lemma9 Let f : (A,R) — (B, G) be a relation homorphism with (B, G) well-founded. Then (A, R) is well-founded.

Proof. Suppose not. Then we have a sequence a : N — A such that for each n € N we have a, R a,,. But this then
yields a sequence a; f : N — B such that for each n € N we have f(a,) G f(ayu)), contradicting the well-foundedness
of (B,G). O

The following are then two immediate consequencess of the above lemma:

Corollary 3 Let (B, G) be a well-founded relation. Then:

1. Any (B’,G’) with B C B, G’ C G, and G’ C B’ X B’ is well-founded. In particular, for any B' C B, the binary
relation (B', G N B'?), called the restriction of G to B', and denoted (B', G|y') is well-founded.

2. Forany function f : A —> B, the binary relation (A, f(G)) is well-founded, where, by definition, a f~(G)a’ &
f@G f(a).

Another useful construction is the cartesian product construction. Given well-founded relations (A, R) and (B, G), it
is easy to show that the relation (AX B, RXG) is well-founded, where, by definition, (a, b)) RXG (a¢’,b’) & aRa’ AbGD'.

A second, also well-founded, relation (A X B, R > G) can be defined on A X B, where, by definition, (a,b) R
G@,b') © (aRa AN(b=b" vV bGD)V((a=da VvV aRad) AN bGD).

Yet a third, well-founded, lexicographic relation (A X B, Lex(R, G)) can be defined on A X B, where, by definition,
(a,b)Lex(R,G)(a’,b’) & aRd VvV (a=da N bGD).

Exercise 88 Generalize the above cartesian product construction to the product of an I-indexed family of well-founded
relations {(A;, R;)}ie;, by showing that the binary relation (XiciAi, XiR)) is well-founded, where, by definition, for
a,a’ € XigA; we have a X Ria' < (Vi € I) a(i)R; d'(i). Specialize this construction to prove that, given a well-
founded relation (A, R) and a set B, the function set [B—A] is well-founded by means of the relation {B—R} defined by
the equivalence f{B—R}g < (¥b e B) f(b)Rg(b).

Dually, it is easy to show that the disjoint union of two well-founded relations (A, R) and (B, G) yields a well-
founded relation (A @ B, R ® G), where, by definition, (x,)R&G (y,j) © (i=j=0AxRy) V (i=j=1 AxGy).

Exercise 89 Generalize the above disjoint union construction to the disjoint union of an I-indexed family of well-
founded sets {(A;, R;)}ic1, by showing that the binary relation (@iel A;, @ie] R)) is well-founded, where, by definition,
for (a,i),(d,i') € EB,-gAi we have (a,i) @ie[Ri(@,i') © i =1 A aR;a'. Specialize this construction to prove
that, given a well-founded set (A, R) and another set B, the cartesian product A X B is well-founded with the relation
(a,b)Rx B(a,b’) © aRda" N b=0D.

Yet another very useful construction is to associate to a well-founded relation (A, R) the well founded relation
(A, R"). Indeed, the following lemma has an easy proof that is left as an exercise.

Lemma 10 [f (A, R) is well founded and transitive, then it is a (strict) poset. For any well-founded (A, R) the relation
(A, R") is also well-founded and is of course a strict poset. Furthermore, any relation (A, R) is well-founded iff (A, R")
is well-founded.

As an example, note that (N, >) = (N, p*).

84

11.2 Well-Founded Induction

Given a binary relation (A, R), we call an element a € A R-minimal iff R[{a}] = @. The notion of R-minimality provides
a very useful, alternative characterization of well-founded relations that makes a crucial use of the axiom of choice.

Theorem 12 Given a binary relation (A, R) the following are equivalent:
1. (A, R) is well-founded.

2. Any nonempty subset B C A has an R|g-minimal element.

Proof. To see (2) = (1), assume that (A, R) satisfies (2) but is not well-founded. Then consider a sequence a : N — A
such that for each n € N we have a, Ray. The set B = {a, | n € N} is obviously nonempty, but it has no R|z-minimal
element, contradicting assumption (2).

To see (1) = (2), assume that (A, R) is well-founded and has a nonempty subset B C A with no R|g-minimal
element. This exactly means that for each x € B the set R[{x}] N B € P(B) is nonempty. But by (AC") we know that
there is a function ¢ : P(B) — {@} — B such that for each X € P(B) — {@} we have ¢(X) € X. This means that we can
define a function next = Ax € B. c(R[{x}] N B) € B, where, by construction, x R c(R[{x}] N B). Since B is nonempty, let
b € B, and consider the simply recursive sequence rec(next,b) : N — B. By construction this sequence is such that
for each n € N we have rec(next, b)(n) R rec(next, b)(s(n)), contradicting (1). O

As an immediate collorary of the above theorem we now obtain an enormously general induction principle, namely,
the principle of well-founded induction.

Theorem 13 (Well-Founded Induction). For any well founded (A, R), if a subset B C A is such that for each a € A if
R[{a}] C B then a € B, then we must have B = A.

Proof. Let B C A be such that for each a € A if R[{a}] C B then a € B, and assume B # A. Then A — B is nonempty
and has an R|4-g-minimal element, say a. Therefore, R[{a}] C B. Therefore, a € B, contradictinga € A — B. O

Given a well-founded set (A, R), we often use the above well-founded induction principle to prove formulas of the
form (Vx € A) P(x). Any such formula determines a subset B = {x € A | P(x)}. Obviously, (Vx € A) P(x) holds iff
B = A. Using well-founded induction we can prove B = A, and therefore our formula, if we can prove

(Va € A) [(Vx € R[{a}]) P(x)] = P(a).

The above induction principle is very general, and contains many other induction principles as special cases, in-
cluding the following (check in detail that the mentioned induction principles are indeed special cases as claimed):

e Peano Induction. This is just the special case of well-founded induction where (A, R) = (N, p).

o Strong Induction. This is is a variant of induction on the natural numbers where for a set B C N, if we can show
0 € B, and that for each n € N whenever n C B then n € B, then we can conclude that B = N. This is just the
special case of well-founded induction where (A, R) = (N, >).

e List Induction. To prove a property P for all lists in List(A) it is enough to show that: (i) P(@), (ii) (Ya € A) P(a)
(where we view each a € A as a lenght-one list), and (iii) for any list a;...a,-; with k& > 1 we can prove
that P(ap) and P(a; ...ax-1) imply P(ap . ..ax-1). This is just the special case of well-founded induction where
(A,R) = (List(A),).

o Structural Induction. To prove a property P for all expressions in an algebraic language (arithmetic expressions
Exp are a paradigmatic example, but we could consider expressions built with any other function symbols) we:
(i) prove P(a) for each constant symbol a; (ii) prove P(x) for each variable x if the expressions have variables; and
(iii) for each function symbol f of n arguments in our expression language and for each expression f(z,...,?,)
we prove that if P(¢;),A ... A P(t,), then P(f(t,...,t,)). For our arithmetic expression example this means
that to prove that P holds for all expressions we have to prove: P(0), P(1), P(x) for all variables x, and for
f € {+,—, =} that if P(¢) and P(?'), then P(f(z,t")). This is just well-founded induction where (A, R) = (Exp,)
(the generalization to expressions with other function symbols is straightforward).

Note that the “base case” is implicit in the general formulation of well-founded induction. For the natural numbers
the base case is the case n = 0. For a well-founded (A, R), any R-minimal a € A provides a base case, since then
R[{a}] = @, and for B = {x € A | P(x)} we then obviously have @ = R[{a}] C B; therefore we must prove P(a) for all
R-minimal a € A. For example, for (List(A), 3J), the J-minimal lists are the empty list @ and the length-one lists a € A,
which provide the base cases for list induction. Therefore, to inductively prove a property P for all lists, in particular
we must prove P(@) and P(a) for each a € A.

85

11.3 Well-Founded Recursion

The idea of well founded recursion is as follows. We have a well-founded set (A, R) and another set B. We then define
a recursive function f : A — B by defining the value of f for any argument a € A in terms of the value of f for
“R-smaller” arguments, that is, for arguments in R[{a}]. Let us see some examples of this very general method to define
functions before we formalize the general notion.

11.3.1 Examples of Well-Founded Recursion

Simple recursion is a special case of this idea. We take (A, R) = (N, p). Then, given b € B and f : B — B, we define
rec(f,b) : N — B in terms of the values of rec(f, a) for “p-smaller” numbers. The base case is n = 0, which has
nothing p-smaller than it. So we set rec(f, b)(0) = b. In all other cases, n = s(m), so that m is the element p-smaller
than s(m), and we set rec(f, b)(s(m)) = f(rec(f, b)(m)).

Primitive recursion is another special case of this idea. We take (4,R) = (N x B, p X B) (see Exercise [89). Given
g:B— Aand f: A — A, we define prec(f, g) : Nx B — A in terms of its values for p X B-smaller arguments. The
p X B-minimal elements are those of the form (0,), for which we define prec(f, g)(0, b) = g(b). All other elements are
of the form (s(n), b), whose only p X B-smaller element is (n, b), so we define prec(f, g)(s(n), b) = f(prec(f, g)(n, b)).
Ackermann’s Function can also be defined by well-founded recursion. We take (A,R) = (N X N, Lex(p, p)). A :
N x N — N is then defined in terms of its values on Lex(p, p)-smaller arguments. For (0,n) € N x N we define
A(0,n) = s(n). For (s(m),0) € N X N, the Lex(p, p)-smaller arguments are all the (m,n), and we define A(s(m),0) =
A(m, 1). Finally, for (s(m), s(n)) € N X N, the Lex(p, p)-smaller arguments are all the (m, k), plus the element (s(m), n),
so we can define A(s(m), s(n)) = A(m, A(s(m), n)).

List Recursion works similarly to primitive recursion. Here, the well-founded relation is (List#(A), J), and the 3-
minimal lists are @ and the a € A. So, to define a recursive function, let us call it rec(f, g, b) : List(A) — B, we need
to specify an element b € B and functions g : A — B and f : B X B — B. Then we define rec(f, g, b) as follows: (i)
rec(f, g, b)(@) = b, (ii) fora € A, rec(f, g, b)(a) = g(a), and (iii) for alistag . ..a;_; withk > 1, rec(f, g, b)(ay .. .ar-1) =
f(gla), rec(f, g, b)(ai ...ar-1)). For example, suppose that B = List(C), and that we want to extend a function g :
A — C to a function map(g) : List(A) — List(C) in the obvious way, that is: (i) map(g)(@) = @, (ii) for a € A,
map(g)(a) = g(a), and (iii) for a list ay...a,—, with k > 1, map(g)(ay . ..ar-1) = gla)map(g)(a, ...ar_1). That is,
map(g) = rec(-- _,g,D), where _- _: List(C) X List(C) — List(C) : (ag ...an-1,bg ... by_1) > ag...ay-1 by ...by_y.
Structural Recursion can be used to define recursive functions on algebraic expressions. We can illustrate the idea for
the case Exp of arithmetic expressions, but all generalizes to expressions with other function symbols in a straightfor-
ward way. The well-founded relation is of course (Exp, >). To define a function from Exp to B by structural recursion
we need to specify: (i) elements by, b; € B, (ii) a function g : ¥ — B, where ¥ is the set of variables in Exp, and
(iii) binary functions f,, f-, f. € [B X B—B]. Then we can define a function, let us call it rec(f,g,b) : Exp — B,
as follows: (i) rec(f, g,b)(0) = by, and rec(f, g,b)(1) = by, (ii) rec(f, g,b)(x) = g(x), and (iii) for op € {+, —, *},
rec(f,g,b)(op(t,1")) = fop(rec(f, g, b)), rec(f, g, b)(t')). For example, suppose that Exp are arithmetic expressions in a
programming language, and that the variables appearing in the expressions have some assigned integer values in mem-
ory (if some variables are unasigned, we may by default give them the value 0). This means that the state of the memory
can be characterized by a function g : ¥ — Z. Then the evaluation function for arithmetic expressions associated to
the memory g is the function eval(g) : Exp — Z that in the above notation can be defined as eval(g) = rec(f, g,b)
with by = 0, by = 1, and f,, f-, f. the functions +, —, % : Z X Z — 7Z. For example, if g(x) = 3 and g(y) = 2, then
eval(g)(x = (x +y)) = 15.

11.3.2 Well-Founded Recursive Definitions: Step Functions

The above examples give us a good, informal intuition for what a well-founded recursive function looks like. But they
do not give us a mathematical model for well-founded recursive functions. Without such a mathematical model we
cannot answer crucial questions such as the following: (i) what is a well-founded recursive function definition? (ii)
how do we know that each such definition indeed defines a unique function and therefore makes sense? (iii) how do we
know that all functions defined by well-founded recursion terminate? This section answers question (i) by developing
a very general mathematical model of well-founded recursive definitions. Questions (ii) and (iii) are then answered in
§IL33

In several of the examples of well-founded recursive function presented in we used some linguistic de-
scription of the process of defining the value of a well-founded recursive function on an argument in terms of its value
on R-smaller arguments. But since there isn’t a single well-founded relation, but an infinite number of such relations,
what we need, and we do not yet have, is a precise formulation of a general method of defining well-founded recursive
functions that will apply to any well founded relation. Furthermore, this general method should be semantic, that is,

86

involving sets and functions, as opposed to linguisitc. Indeed, it should provide the semantic basis to properly interpret
any linguistic description, such as, for example, a well-founded recursive program.

Such a semantic method of defining well-founded recursive functions is provided by the notion of a step function,
which is a function that contains all the information necessary to allow us to take the next step in computing our desired
function. Let me first illustrate this idea with an example before giving the general definition. Consider the following
primitive recursive definition of the addition function by means of the equalities:

e O+m=m
o s(n)+m=s(n+m).

This is indeed a linguistic description. But what does it really say? It is obviously circular, since + is defined in terms
of itself. But this circular syntactic description implicitly contains a non-circular semantic method to extend a function,
so that it becomes defined on a bigger argument. It says, “if you have any two-argument function f on natural numbers
which is defined on smaller arguments, I can tell you how to extend it to a bigger argument.” For example, if f is defined
on (n, m), then we can extend f to be defined on the bigger argument (s(r), m) with the value f(s(n), m) = s(f(n, m)).

How can we precisely capture this non-circular semantic method? With a function. Which function? In this
example, the function that maps each pair (f, (n,m)) with f any function defined on the set R[{(n, m)}] into the intended
value of its extension for the argument (n, m). Recall that in this case R is the well-founded relation p x N. Therefore,
R[{(0,m)}] = @, and R[{(s(n),m)}] = {(n, m)}. The function in question can then be described by the lambda expression
A(f, (n.m)). if n = O then m else s(f(p(n),m) fi. What are its domain and codomain? Its codomain is obviously N.
What about its domain? Here our knowldge of /-indexed sets becomes extremely useful, since we can say it in one
blow: its domain is the set @ ()N [R[{(n, m)}]>N], where, as already mentioned, R = pxN. Indeed, the elements of
such a disjoint union are exactly the pairs of the form (f, (n.m)) with f a function with domain R[{(n, m)}] and codomain
N. This is just a special instance of the following general notion.

Definition 14 Let (A, R) be a well-founded relation and B any set. A definition of a well-founded recursive function
from A to B is a function of the form h : @ _,[R[{a}]—B] — B, called the step function of the recursive function thus
defined.

acA

In what sense does a step function define a well-founded recursive function? In the following: a step function
h: @ag A[R[{a}]-B] — B defines the recursive function, let us call it rec(h), characterized by means of the defining
equality
rec(h)(x) = h(rec(h)[gy, X)-

Of course this is still a circular definition, but now a semantic one in terms of 4, and not by some linguistic device.
However, it is not at all obvious that the above equality actually defines a unique function, that such a function exists at
all, or that it is terminating, although intuitively all these things seem plausible. Settling these burning issues once and
forall is the goal of

For the moment we can gain further empirical evidence that defining rec(h) in this way makes sense by observing
that the step function & provides a computational method to compute rec(h)(x). Let us illustrate this idea with our
primitive recursive definition of addition by seeing how we can compute that 2 + 2 = 4. Our function 4 in this case
is h = A(f, (n.m)). if n = 0 then m else s(f(p(n),m) fi. Therefore, 2 + 2 = rec(h)(2,2) = h(rec(h) 1.2y, (2,2)) =
s(rec(h)(1,2)) = s(h(rec(o2y, (1,2))) = s(s(rec(h)(0,2))) = s(s(2)) = 4.

To gain a little more familiarity with step functions, we can see what a step function looks like for a type of list-
recursive function considered in namely, a function of the form map(f); specifically one such function that
allows us to compute the lenght of a list. The idea is to define a function lenght on all elements of List(A) as the
function length = map(!,) : List(A) — List({1}), where !4 is the constant function mapping each a € A to 1. Note
that the set of lists List({1}), with the empty list @ as zero element, and the function A/ € List({1}). 1/, that appends
one more “1” to the left of a list /, as the successor function, satisfies the Dedekind-Lawvere axiom, and therefore is a
model of the natural numbers, namely, the model corresponding to “counting with one’s fingers,” so that, for example,
the number 5 is represented by the list 1111 1. Our step function for the above length function is then of the form
h: @ IeList(A)[:I[{l}]—>List({l})] —> List({1}), and has the following definition by cases (which could easily be expressed
by a nested if-then-else):

* ND,0)=0
o VaeA) h@,a)=1
e fork > 1,h(f,a0...ak,1) = 1f(a1 ...ak,l).

Leta,b € A, and let us compute length(a b a b). We have, length(ab ab) = rec(h)(abab) = h(rec(h)Mapap). (@bab)) =
1rec(h)(bab) = 1 h(rec(h)[pap), (bab)) = 11recth)(ab) = 11h(rec(h)Nap,(@b)) = 111rec(h)(b) = 111h(2,b) =
1111.

87

Exercise 90 Define the appropriate step function h for Ackermann’s funtion and for the function eval(g) : Exp — Z
evaluating arithmetic expressions with a memory g. Use the corresponding step functions to compute the value of each
of these functions on some small arguments.

Exercise 91 (Alternative definition of step functions). Given a well-founded relation (A, R) prove that there is a contain-
ment @aGA [R[{a}]-B] € [A—B] x A. Show that, instead of using a step function h : @aeA [R[{a}]—>B] — B to define
a well-founded recursive function rec(h), we can always extend such a function h to a function i’ : [A—~B] XA — B, so
that W r@aam“a”_) p1= h, and can then equivalently define rec(h) as rec(h’) by the equality rec(h’)(x) = I’ (rec(h’) gy
, X). Therefore, we could alternatively have defined a step function as a function b’ : [A—~B] XA — B.

11.3.3 The Well-Founded Recursion Theorem

Let us come back to the three questions raised in m (i) what is a well-founded recursive function definition? (ii)
how do we know that each such definition indeed defines a unique function and therefore makes sense? (iii) how do
we know that all functions defined by well-founded recursion terminate? The answer to question (i) is now clear: a
step function. The following theorem answers questions (ii) and (iii). Note that the proof of this theorem is a natural,
yet far-reaching, generalization of the same result, in Theorem EL for the special case of simple recursion, that is, of
well-founded recursion for the well-founded relation (N, p).

Theorem 14 (Well-Founded Recursion). Let (A,R) be a well-founded relation, and consider a step function h :
@aeA[R[{a}]—)B] —> B. Then there exists a unique function rec(h) : A — B, such that for all x € A, the func-
tion rec(h) satisfies the equality rec(h)(x) = h(rec(h)[gy, X)-

Proof. We first prove that such a function exists, and then that it is unique. Let R(%) be the set of all h-closed relations,
where, by definition, a relation Q C A X B is h-closed iff for each x € A, if there is a function g : R[{x}] — B such
that g € Q, then we have (x,h(x,g)) € Q. Since A X B € R(h), the set R(h) is nonempty. Define rec(h) = (R(h).
It is then trivial to check that rec(h) € R(h). We will be done with the existence part if we prove: (i) rec(h) is total,
that is, (Vx € A)(Jy € B) (x,y) € rec(h); and (ii) rec(h) is a function; since (i) and (ii) imply that for all x € A,
rec(h)(x) = h(rec(h)[gy, X)-

To see (i), suppose that rec(h) is not total. This means that the set X = {x € A | =(dy € B) (x,y) € rec(h)} is
nonempty and has an R-minimal element a € X. Therefore, rec(h) is total on A — X, and R[{a}] € (A — X). This means
that the projection function p; = A(x,y) € rec(h). x € (A — X) is surjective. Therefore, by Theorem EL we have a
function ¢ : (A — X) — rec(h) such that g; p; = ids_x. Therefore, g = g[A — X] C rec(h) is a function. Therefore, since
R[{a}] € (A—-X) and rec(h) is h-closed, we must have (a, h(a, glgja) € rec(h), contradicting the fact rec(h) is undefined
on a. To see (ii) suppose that rec(h) is not a function. This means that the set Y = {x € A | (y,2) (x,y),(x,2) €
rec(h) Ay # z} is nonempty and has an R-minimal element a’ € Y. Therefore, by (i), rec(h) is a function on A — Y, and
R[{a’}] € (A - Y). But since rec(h) is h-closed, we must have (a’, h(a’, rec(h) Igiaryy)) € rec(h), and since a’ € Y, we
must have a b € B with (a’,b) € rec(h) A b # h(a’, rec(h) I gy)- But if we can show that rec’(h) = rec(h) — {(a’, b)}
is h-closed, then we get a blatant contradiction of the fact that rec(h) is the smallest h-closed relation. But we can see
that rec’(h) is indeed h-closed reasoning by cases. If x = a’, then since rec’(h) ['gjiwn= rec(h) gy is a function, there
is exactly one choice for a function g : R[{a’}] — B such that g C rec’(h), namely, g = rec’(h) gy, and we have
(@', h(a’, rec’(h) [ryaryy)) € rec’(h) by the definition of rec’(h). And if x # o', then if g : R[{x}] — B is such that
g C rec’(h), then, a fortiori, g C rec(h), and therefore (x, h(x, g)) € rec(h) by rec(h) being h-closed. But since x # a’
this means that (x, h(x, g)) € rec’(h), and therefore rec’(h) is h-closed, against the minimality of rec(h). Therefore, by
(i) and (ii), rec(h) exists and is a total function rec(h) : A — B.

To prove uniqueness, suppose that there is another function, say, g, satisfying the conditions stated in the theorem.
Then we must have g € R(), which forces the set-theoretic containment rec(h) C g. But this implies rec(h) = g, since,
in general, given any two sets X and Y, and any two functions f, f* € [X—Y], whenever f C f’ we must have f = f’.
[m]

Exercise 92 Prove that the length of the concatenation of two lists is the sum of their lengths. Since in List({1}) the list
concatenation operation _- _ becomes natural number addition, this means that, given any set A, we must show that the
function length = map(!,) : List(A) — List({1}), satisfies the equality:

(YL I' € List(A)) length(l - I') = length(l) - length(I’).

(Hints: (i) use well-founded induction on (List(A),2); (ii) you may be more ambitious and prove the much more
general equality (YI,I' € List(A)) map(f)(I - I') = map(f)() - map(f)') for any f : A — B, getting the result
for length = map(!4) as a special case. Note that proving more general theorems is not necessarily harder: in many
cases it is easier! I call this approach “generalize and conquer”).

88

Part 11

Universal Algebra, Equational Logic
and Term Rewriting

89

Chapter 12

Algebras

The traditional realm of algebra was the solution of polynomial equations on numerical domains such as the integers
Z (the so-called Diophantine equations), the rationals Q, the reals R, and the complex numbers C. In the 20th-century,
thanks to the set-theoretic notion of mathematical structure pioneered by researchers such as Richard Dedekind, the
notion of Abstract Algebra, as the study of equationally-defined set-theoretic structures with given operations, was
vigorously pursued under the leadership of researchers such as Emmy Noether (a classic textbook, gathering the ideas
around Emmy Noether and still in use today, is that of van der Waerden [435])).

Abstract Algebra greatly broadened the very notion of algebra in two ways. First, the traditional numerical domains
such as Z, Q R, and C, were now seen as instances of more general concepts of equationally-defined algebraic struc-
ture, which did not depend on any particular representation for their elements, but only on abstract sets of elements,
operations on such elements, and equational properties satisfied by such operations. In this way, the integers Z were
seen as an instance of the ring algebraic structure, that is, a set R with constants 0 and 1, and with addition _ + _ and
mutiplication _ * _ operations satisfying the equational axioms of the theory of rings, along with other rings such as
the ring Z; of the residue classes of integers modulo k, the ring Z[x;, .. ., x,] of polynomials on » variables, and so on.
Likewise, Q, R, and C were viewed as instances of the field structure, that is, a ring F' together with a division operator
_/-, so that each nonzero element x has an inverse 1/x with x = (1/x) = 1, along with other fields such as the fields
Z,, with p prime, the fields of rational functions Q(x, ..., x,), R(xi,...,x,), and C(xy, ..., x,) (whose elements are
quotients p/q with p, g polynomials and g # 0), and so on. A second way in which Abstract Algebra broadened the
notion of algebra was by considering other equationally-defined structures besides rings and fields, such as monoids,
groups, modules, vector spaces, and so on. This intimately connected algebra with other areas of mathematics such
as geometry, analysis and topology in new ways, besides the already well-known connections with geometic figures
defined as solutions of polynomal equations (the so-called algebraic varieties, such as algebraic curves or surfaces).

Universal Algebra (the seminal paper is the one by Garett Birkhoff [4]), takes one more step in this line of general-
ization: why considering only the usual suspects: monoids, groups, rings, fields, modules, and vector spaces? Why not
considering any algebraic structure defined by an arbitrary collection X of function symbols (called a signature), and
obeying an arbitrary set E of equational axioms? And why not developing algebra in this much more general setting?
That is, Universal Algebra is just Abstract Algebra brought to its full generality.

Of course, generalization never stops, so that Universal Algebra itself has been further generalized in various
directions. One of them, which we will fully pursue in this Part[[|and which, as we shall see, has many applications to
Computer Science, is from considering a single set of data elements (unsorted algebras) to considering a family of such
sets (many-sorted algebras), or a family of such sets but allowing subtype inclusions (order-sorted algebras). Three
other, are: (i) replacing the underlying sets by richer structures such as posets, topological spaces, sheaves, or algebraic
varieties, leading to notions such as those of an ordered algebra, a topological algebra, or an algebraic structure on a
sheaf or on an algebraic variety; for example, an elliptic curve is a cubic curve having a commutative group structure;
(ii) allowing not only finitary operations but also infinitary ones (we have already seen examples of such algebras with
infinitary operations —namely, complete lattices and complete semi-lattices— in §7.5)); and (iii) allowing operations
to be partial functions, leading to the notion of a partial algebra. Order-sorted algebras already provide quite useful
support for certain forms of partiality; and their generalization to algebras in membership equational logic provides full
support for partiality (see [36,39])).

91

12.1 Unsorted X-Algebras

Unsorted algebras are algebras with a single set of data elements. Since, as we shall see, algebras are the models of
theories in equational logic, and equational logic is a sublogic of first-order logic, we should first of all make explicit
the syntax of equational theories, so that an algebra will then be a set-theoretic interpretation of such a syntax. As
explained in the syntax of any theory in first-order logic consists of: (i) set of symbols for constants; (ii) a set of
function symbols; and (ii) a set of predicate symbols. In equational theories, however, the only predicate symbol is the
built-in symbol ‘=" for equality. Therefore, we only need to specify the syntax of constants and function symbols. This
is done by providing a so-called signature X specifying such symbols.

Definition 15 An unsorted signature X is an N-indexed family ¥ = {F,},cn, where elements f € F, are called the n-ary
function symbols of . The 0-ary symbols c € F, are called the constant symbols.

The n-ary function symbols will be interpreted in algebras as operations of n arguments. Recalling the bijection
A = [1-A] : a — a, explored in detail in Exercise between elements of a set @ € A and functionsa: 1 — A: 0+
a, plus the fact that A’ = 1, constants are viewed as functions of zero arguments.

For example, the following signatures define the syntax of well-known algebraic structures:

o X, the signature of Dedekind-Lawvere natural numbers, has Fy = {0}, F, = {s}, and F,, = @ forn > 1.
® X y0n, the signature of Monoids, has Fy = {1}, F) = @, F, = {_* _},and F,, = @ forn > 2.

e X;p, the signature of Groups, has Fy = {1}, F| = (O, F,={_%_,and F, = @ forn > 2.

e XrnG, the signature of Rings, has Fo = {0, 1}, Fy ={-}, F, ={_+__*_},and F,, = @ forn > 2.

® Xpp, the signature of Fields, has Fy = {0, 1}, Fy = {-_, OY,F={_+__+_),and F, = @ forn > 2.

where we either list a symbol as a character or list of characters, as in s, to indicate that s will be displayed with a prefix
syntax, so that s applied to x will be denoted s(x), or if we wish to use a convenient “mix-fix” syntax display we follow
the useful convention of indicating the argument positions in the syntax of each function symbol by using underbars ‘_’
as for example in (_)™! to indicate that applied to an argument x will yield (x)™!, and _ + _, to indicate that applied to
arguments x and y will yield x + y.

A model M of an (unsorted) first-order theory is set M together with an interpretation in M for the constants,
function symbols, and predicate symbols in the theory’s signature. That is, a constant c is interpreted as an element
cm € M, an n-ary function symbol f is interpreted as a function fy, : M" — M, and an n-ary predicate symbol P is
interpreted as an n-ary relation Py € M". In particular, if ¥ is an unsorted signature as in Definition[T3]above with no
predicate symbol, such a model is called an algebra. The only vagueness left in the above, informal definition is all this
talk about “interpretation.” Can we get rid of such vagueness? That is, can we make the notion of interpretation precise
in set-theoretic terms? Of course!

Definition 16 Given an unsorted signature ¥ = {F,},en, a X-algebra A is an ordered pair A = (A, _a), where A is the
set of elements of the algebra, and _g is called its structure or interpretation function, and is an N-indexed function
-A = {7ﬂ,n F,— [An_>A]}neN-

That is, _4 interprets each n-ary function symbol f as a function fg : A" — A. Implicit in the notion of unsorted
Y-algebra A = (A, _x), when viewed as a special case of a model of an unsorted first-order theory, is the intepretation
of the built-in equality predicate =, which is interpeted as the identity relation on A. That is, =4 = id, C A.

Note that the notion of X-algebra imposes no particular equational axioms on an algebra. This is not the role of Z,
which only deals with syntax. Such axioms must be explicitly specified by a set E of equations, so that an equational
theory is then, as we will see in more detail in a pair (%, E), with E a set of equations between expressions built
from the syntax of ¥ and variables. For example, the theories of groups and rings are, respectively, equational theories
of the form (Xgp, Egp), and (Zrng, Erng), Where Egp is the set of equations axiomatizing the theory of groups, and
Erne is the set of equations axiomatizign the theory of rings. Of course, many X;p-algebras do not satisfy the axioms
Esp and therefore are not groups; and many Xgyg-algebras do not satisfy the axioms Egyc and therefore are not rings.
The whole point of universal algebra is that, given a signature X, there can be many sets E of equations, giving rise to
different theories (Z, E), (X, E’), etc. From this point of view, X-algebras are the most general class of algebras possible
for the signature X, that is, the class of algebras defined by the empty set of equations, i.e., by the theory (X, @).

In abstract algebra books, except for vector spaces and modules, algebraic structures are typically unsorted. For
example, X on-algebras satisfying the equations Eyoy = {x*1 = x, 1xx = x, (x*y)*z = x*(y*z)}, are called monoids.
For A any set, the set List(A) = |JArray(A) of lists of elements of A defined in Sectionis a monoid, with _ % _
interpreted as string concatenation, i.e., a; ...a, * by...b, = a,...a, b, ...b,, and 1 interpreted as the empty string @.
Likewise, N has two obvious commutative monoid structures (i.e., monoids satisfying also x*y = yx): a multiplicative
one, where 1 is interpreted as 1 € N and _ * _ is interpreted as natural number multiplication _* _: NX N — N, and

92

an additive one, where 1 is interpreted as 0 € N and _ * _is interpreted as natural number addition -+ _: NX N — N.
Likewise, Z, Q, R, and C have each a multiplicative, commutative monoid structure, and an additive, commutative
monoid structure. But there is more. The just-described additive commutative monoid structures for Z, Q, R, and C,
can be naturally extended to commutative group structures, by interpreting the symbol (_)™! as the minus operation -_
in, respectively, Z, Q, R, and C. The additional group theory axiom not already included in the commutative monoid
axioms is: x * (x"') = 1, which in its additive interpretation takes the form: x + (-x) = 0. Furthermore, Since a
commutative ring combines an additive group structure with a multiplicative monoid structure, plus the distributivity
axiom x * (y+2) = (x*y) + (x * 2), it is easy to check that Z, Q, R, and C have all a commutative ring structure. Finally,
Q-{0}, R-{0}, and C-{0}, are also commutative multiplicative groups, with * interpreted as multiplication, and with the
inverse operator (_)"! interpreted as the multiplicative inverse function 1/_in Q-{0}, R-{0}, and C-{0}. That is, Q, R, and
C are not only commutative rings, but also commutative ﬁeldﬂ

Of course, N has also a Xp;-algebra structure, with O interpreted as O € N, and s as the successor function s = An €
N. n U {n}. Likewise, the residue classes modulo k, Z; have also a Xp; -algebra structure, with O interpreted as 0 € Z,
and s interpreted as the function: An € Z;. if n < (k-1) then n+ 1 else O fi. Note that the X5, -algebra N actually satisfies
no equations (except the trivial one x = x), but the X, -algebra Z; satisfies the equation s*(x) = 0.

Note, finally, that there is a substantial abuse of notation in all the above: one often uses the same notation, say, N,
to denote both the set itself and its intended algebraic structure, and talks of the additive monoid N or the X, -algebra
N. Also, one often uses symbols like 0,1, s, _+ _,_* _, and -_, fo also denote the correspondinresponding functions
in the intended algebra. This is just the customary abuse of notation in mathematics. Whenever notation is abused,
by confusing data sets with algebras and function symbols with functions, one should always keep clearly in mind the
essential distinction between sets and algebras; and between the syntactic level of function symbols in a signature X,
which as such are still uninterpreted, and the semantic level of actual functions, which interpret such function symbols
in a given X-algebra. To be fully precise, one should use a different notation for each structure, and qualify the function
symbols by their interpretation. For example, one could write Ny, = (N, {Oy, +u}) for the additive monoid structure,
and Ny ; = (N, {Oy, sn}) for the X, -algebra structure, on the set N.

Exercise 93 Let Xp; = {F,},en be the Dedekind-Lawvere signature, that is, Fo = {0}, F| = {s}, and F,, = @ forn > 1.
And let A = {a,b,c}. How many different Xp;-algebras A = (A, _q) can be defined on the set A? Can you give a
general formula counting, for any finite set B and any unsorted signature X = {F,},en With \J,aq F» finite, how many
Y-algebras B = (B, _g) there are on B? For example, can your formula predict exactly how many such algebras will
there be on the above set A if we add to Xp; binary function symbols _+ _and _ X _, so that now Fy = {_+ _,_X _}?

12.2 Many-Sorted X-Algebras

The passage from unsorted to many-sorted algebras is the analogue in Algebra of the passage in Computer Science
from untyped programming languages to typed programming languages. This is more than an analogy since, as we
shall see later, equational logic can itself be used as a programming language, which can be untyped if we adopt
an unsorted equational logic, or can instead be typed using a many-sorted or order-sorted equational logic. In a many-
sorted signature we allow a set S of rype nameaﬂcalled sorts; and then each function symbol is typed in S, by specifying
the list of its argument sorts, and the sort of its result sort. Here is the precise definition:

Definition 17 A many-sorted signature X is an ordered pair £ = (S, F), where S is called the set of sorts, and F =
{F\.show.s)eLisis)xs 18 the (List(S) X S)-indexed set of its function symbols.

Ifw=s...s,and f € F,,;, we then display f as f : s1...s, — s, to indicate that it has argument sorts w = s; ... s,
and result sort s. A constant of sort s is a function symbol ¢ € F , usually denoted c : nil — s, since the empty string
@ is usually denoted by nil.

Note that an unsorted signature is essentially the same thing as a many-sorted signature with a singleton set of
sorts, say, S = {U}, where we think of U as the “universe” sort. The only notational difference between a 1-sorted
signature £ = ({U}, F) and an unsorted one £ = {F,},ay, is that instead of denoting a function symbol f of n arguments
as f € Fynyy we leave the universe sort U implicit and write instead f € F,.

At the level of algebras, unsorted algebras are naturally generalized to many-sorted algebras.

!Properly speaking, the theory of fields is not an equational theory, since division by 0 is undefined. We can view a field both as a
partial algebra, and as a model of a non-equational first-order theory.

2 Again, such type names, even if they have suggestive-sounding names such as Nat, Bool, or List, are still unintepreted names:
they will be interpreted by corresponding sets in a given algebra.

93

Definition 18 For ¥ = (S, F) a many-sorted signature, a many-sorted X-algebra is a pair A = (A, _a), where A =
{As}ses is an S -indexed set, and _g, called the structure or interpretation map, is a List(S) X S -indexed function

-A = {*ﬂ,W,S . Fw,s i [AWHAS]}(w,s)eList(S)xS . f = fﬁ

where, by defintion, if w = nil, then ANl = A0 = 1, ifw=s:1—S8:0 s, then AS = A, and if w = s1...5, with
n> 1, then A" = Ay X ... XA,,.

That is, in A = (A, _#), each constant symbol ¢ : nil — s is interpreted as an element c4 € Ag, each f : s — s
as a function fz : Ay — Ay, and each f : s51...5, — s as a function fz : A;, X ... X A;, — Ay. Therefore, a
many-sorted algebra A = (A, _g) is a sort-preserving interpretations of X, where each sort s is interpreted as a set Ay,
and each function symbol f in F is intepreted as a function fz respecting its arity sorts and its result sort.

A well-known example of a two-sorted X-algebra is a vector space. The signature £ = (S, F) has S = {Scalar, Vector},
and F has the function symbols: F' = {0 :— Scalar,1 :— Scalar, —_ : Scalar — Scalar, _+ _ : Scalar Scalar —
Scalar, _ * _ : Scalar Scalar — Scalar, _ - _ : Scalar Vector — Vector,6 — Vector, —_ : Vector — Vector, _ + _ :
Vector Vector — Vector}. A vector space is exactly a X-algebra for this signature such that: (i) the set of scalars is
a commutative field, (ii) the set of vectors is a commutative group, and (iii) scalar multiplication satisfies the laws:
a-w+Vv)=(@-v)+@-v),@a+by-v=(@-vy+@b-v),1-v=v,and (a*b)-v = a- (b-v). For example, by
choosing R as the set of scalars with the usual addition, substraction, and multiplication operation on reals, and R? as
the set of vectors, with vector addition (a, b,c) + (@’,b’,c’) = (a + a’,b + b’,c + ¢’), and with scalar multiplication
d-(a,b,c) =(d+*a,d+b,d*c), we get the usual 3-dimensional Euclidean vector space. By relaxing the requirement on
scalars to be just a commutative ring instead of a field, and keeping the vectors also as an abelian group with the same
equations for scalar multiplication, we get the more general notion of a module. For example, by choosing Z as the
set of scalars with the usual addition, substraction, and multiplication operation on reals, and 73 as the set of vectors,
again with the usual vector addition and scalar multiplication, we get the module of 3-dimensional vectors with integer
coordinates.

Other examples of Z-algebras can be provided by choosing a signature with set of sorts S = {List, Nat}, and with
function symbols nil : nil — List, _; _ : List List — List, 0 : nil — Nat, s : Nat — Nat, and length : List — Nat.
Using the sort names as hints, the most “obvious” Z-algebras are algebras interpreting Nat by N, List by List(A), for A
aset,and 0 by 0 € N, s by An € N. n U {n}, nil by nil € List(A), _; _ as list concatenation in List(A), and length as the
function length : List(A) — N which can be defined by well-founded recursion (see by the recursive equations:
length(nil) = 0, length(a) = 1 for each a € A, and length(a, a; ... a,) = s(length(a; ... a,)). However, as already
mentioned, it can be misleading to take the hints given by the sort names too literally, since many other interpretations
are possible. For example, an equally natural family of X-algebras is obtained by interpreting Nat by N, List by P;,(A),
for Aaset,and 0 by 0 € N, s by An € N. n U {n}, nil by @ € Py;,,(A), _; - as set union in Py;,(A), and length as the
cardinality function || : #f;,(A) — N which assigns to each finite set X € P;,(A) the number of its elements (for
more on cardinals and the cardinality function see §§?? and ??).

12.3 Order-Sorted X-Algebras

In Computer Science one uses many diftferent types of data. Therefore, an unsorted (usually called unyped) setting is
a bad idea or, if you wish, an inferior technology: it is an unending source of silly bugs that could have been caught if
typing had been enforced by a type checker. Often, what amounts to a many-sorted type checking discipline (sometimes
under the description of a “simply typed” language) is adopted in many language designs (imperative or declarative,
and in either a first-order or a higher-order setting). However, simply typed languages are not expressive enough to deal
with partiality issues, such as division by 0, or assigning a type to the head of a list / when [is empty.

An order-sorted typing discipline, in which types are arranged in type hierarchies by subtype inclusion, such as,
for example, subtype inclusions Nat < Int < Rat from natural to integers and to rational numbers, and where function
symbols can be subsort overloaded, so that, for example, addition _ + _ and multiplication _ % _ can be defined for the
types Nat, Int, and Rat is considerably more flexible than the simply typed discipline offered by many-sorted signatures.
Furthermore, an order-sorted typing discipline can quite easily accomodate many often-occurring partial functions, and
can easily deal with the corresponding type exceptions caused by such functions, which become a nightmare in a simply
typed, many-sorted discipline. Common type exceptions of this kind include those caused by expressions such as: p(0),
to compute the predecessor of 0, 7/0, i.e., division by zero, head(nil), i.e., trying to compute the first element of an
empty list, and fop(empty), i.e., trying to compute the top of an empty stack. The point is that in an order-sorted typing
discipline all these partial functions, p, -/, head, and top become total in approapriate subtypes, namely, the subtypes
NzNat, of non-zero natural numbers, NzRat, of non-zero rationals, NeList, of non-empty lists, and NeStack of nonempty
stacks.

This typing flexibility is further enhanced by the possibility of giving the benefit of the doubt to expressions that,
although in principle meaningful, are detected at parse time to be potentially problematic. For example, it is not clear

94

at parse time which of the fractions 3/(4 + ((—3) * 3)) and 3/(4 + ((—2) = 2)) will have a nonzero denominator, so
both should be given the benefit of the doubt, waiting until after they are evaluated to detect type errors. Instead,
the expression 3/true is utter nonsense and should be immediately rejected by a parser as meaningless. Technically,
this extra typing flexibility is achieved as follows. Type names, which we always call sorts, are arranged in subsort
hierarchies forming a poset (S, <), which, as a graph, may have different connected components (see Excercise[67). To
give the benefit of the doubt to meaningful expressions such as 3/(4 + ((=3) * 3)) which cannot be properly typed at
parse time (because the parser cannot infer that (4 + ((—3) * 3) has sort Nz/nt), what we can do is: (i) add a fresh new
sort, say Ty, strictly bigger than all sorts in each connected componenﬂ [s] of the poset of sorts (S, <); and (ii) add
for each operator f : s;...s, — s in X a new, overloaded operator f : T ;... Ty, — T[s]. This is what Maude
(see [10]) automatically does, denoting the “kind” T4 by just [s]. In this way, expressions that would not parse in the
original signature X, but that are still meaningful, can be given the benefit of the doubt at parse time as expressions at
the kind level. That is, both 3/(4 + ((=3) = 3)) and 3/(4 + ((—2) = 2)) will be parsed as having kind [Rat]. A typing
error in the evaluation of an expression now means that the evaluated expression has a kind [s], but has no sort s in the
original signature X. For example, although the expression 3/(4 + ((—3) = 3)) evaluates to -3/5 of sort NzRat without any
problems, the expression 3/(4 + ((—2) = 2)) will evaluate to 3/0 of kind [Rat]. Therefore, having a kind but not having a
sort means that the corresponding functional expression is partial and is undefined for the given arguments. Note that
returning a typing error in the form of an evaluated expression of kind [s] gives much more information than returning
an “undefined” value such as L.
Here is the precise definition of an order-sorted signature:

Definition 19 An order-sorted signature X is an ordered pair X = ((S, <), F) where: (i) (S, <) is a poset, called the
poset of sorts, and (ii) (S, F) is a many-sorted signature.

That is, an order-sorted signature is just a many-sorted signature to which we have added a partial order relation of
subsort inclusion between its sorts. Note that we can recover many-sorted signatures as the special case of order-sorted
signatures of the form X = ((S, @), F), that is, signatures where sorts are never related by subsort inclusion. This means
that order-sorted signatures generalize many-sorted signatures, which, in turn, generalize unsorted signatures. And, as
we shall see shortly, the same happens for algebras: order-sorted algebras generalize many-sorted algebras, which, in
turn generalize unsorted algebras. In the spirit of Universal Algebra, we should develop the relevant concepts and prove
everything at the greatest possible level of generality. Since any result about order-sorted algebras is automatically a
result about many-sorted and unsorted algebras as special cases, from now on all further developments will always be
carried out at the order-sorted level.

But in this case, the drive for greater generality is not some kind of Bourbaki-like obsession: it is eminently practical
from the computer science point of view: why using a loser technology such as unsorted signatures and algebras when
a much more expressive and useful order-sorted language technology is available? Paradoxically, it is precisely the
disregard for practical computer science applications of equational logic and term rewriting to equational specification
and programming that lies behind “vanilla flavored,” unsorted approaches that cater to theoreticians, but are impractical
for real specification and programming.

Note that overloading of function symbols was already available in many-sorted signatures: if ¥ = (S, F) is a
many-sorted signature, nothing prevents the same function symbol f from having two different typings as f € F,,,
and f € F,, v, perhaps not just with different argument and result sorts, but also with different numbers of arguments.
For example, if we adopted a prefix syntax for a minus symbol - (so that the argument places are not indicated in the
syntax), we can have typings - : Int — Int, and - : Int Int — Int for unary and binary versions of -. But in a many-
sorted setting such different typings are in principle unrelated in their semantic intepretation. According to Definion|[T8]
provided we preserve type assignments, if (w, s) # (w’, s"), a many-sorted X-algebra A can associate any function with
such typing, fa..s € [A",A] to an f : w — s, and a completely different and unrelated function fa,, ¢ € [AY,Ay] to
an f:w — 5.

Admittedly, in some particular algebras the fact that we are using the same function symbol may have a certain
significance. For example, in the standard intepretation of the function symbols - : Int — Int, and - : Int Int — Int
in Z, these two different typings of - are related by the equation: -(x,y) = x + (-y). But no relation at all need exist in
general. For example, we can have the following two typings of _+ _ in a many-sorted signature: _+ _: Int Int — Int,
and _ + _ : Bool Bool — Bool, and an algebra where Int is interpreted as Z, and _ + _ : Int Int — Int as integer
addition, and where Bool is interpreted as 2 and _ + _ : Bool Bool — Bool as the exclusive or function _ &8 _, which
is unrelated to integer addition, except for the fact that it can indeed be understood as addition in Z,. Since in priciple
there is no connection between the interpretations that can be given to two diffentent typings of a symbol f in a many
sorted signature, such overloading is called ad-hoc overloading.

What about function symbol overloading in an order-sorted signature? We can still have ad-hoc overloading in a
case like _ + _ : Int Int — Int, and _ + _ : Bool Bool — Bool, where there is no semantic relation between the two

3 As explained in Excercice the connected component of a sort s should properly denoted [s]<. It is the equivalence class
associated to s by the smallest equivalence relation < generated by <. In what follows I will abbreviate [s]< to just [s].

95

typings. But we can now also have typings like _ + _ : Nat Nat — Nat, and _+ _: Rat Rat — Rat, which are related
to the typing _ + _ : Int Int — Int in the subsort ordering Nat < Int < Rat. These second typings are an instance of
what is called subsort overloading of function symbols. As we shall see below, the intended semantic relation between
subsort overloaded function symbols in an order-sorted algebra is that they should agree on common data. For example,
2 + 2 should yield 4 as a result, regardless of whether we typed the _ + _ function symbol to have sort Nat, Int, or Rat.
Here is the precise definition.

Definition 20 Given an order-sorted signature ¥ = ((S, <), F), two typings of a function symbol f, f : s1...5, — s
and f : s} ...s, — s', are called subsort-overloaded iff: (i) n = m, that is, they have the same number of arguments,
includingthe case n = m = 0 where both are constants; and (ii) corresponding sorts are in the same connect components,
that is, [s1] = [s1],...,[s,] = [s,], and [s] = [s"]. Otherwise, the typings f : s\...s, — sand f : s]...s, — s" are
called ad-hoc overloaded.

The natural question to ask at this point is: what are the semantic models for interpreting order-sorted signatures?
Why, of course, order sorted algebras!

Definition 21 For X = ((S, <), F) an order-sorted signature, an order-sorted X-algebra is a many-sorted (S, F)-algebra
A = (A, _q) such that:

1. If s< s, then A; C Ay.

2. Ifa : nil — s and a : nil — §" are two subsort-overloaded typings of a constant a in F, i.e., [s] = [s'], then
A il (D) = Aanity (D), i.e., a is interpreted as the same constant (subsort-overloaded constants coincide).

3 Iff:s1...8, — sand [: s ...s5;, — ' are two subsort-overloaded typings of f in F withn > 1, ie,
[si] = [s], 1 <i <n, and [s] = [5], then for each d € A" N A% we have JAs1.505(@ = fﬂ,s’l---s’mS’(ﬁ)’ that
is, subsort-overloaded operations agree on common data.

Of course, conditions (2) and (3) are equivalent to the single condition that for any two subsort-overloaded operators
fiw— sand f : w — s in F, whenever d € A” N A", then fa,,(d) = fa..y(d), which is spelled out into cases
(2) and (3) for the reader’s convenience.

Note that conditions (1)—(3) hold trivially for unsorted and many-sorted algebras, that is, the order-sorted algebra
notion subsumes them as special cases. Therefore, from now on a Z-algebra will always mean an order-sorted Z-algebra.
Condition (1) is entirely natural: syntactic subsort inclusions s < s are semantically interpreted as subset inclusions
A; C Ay on the corresponding data sets. Conditions (2) and (3) take care of the fact that both constants and function
symbols can be subsort-overloaded, in which case the functions interpreting all these typings must agree on common
data. For example, we may have an order-sorted signature ¥ = (({Nat, Int}, <), F)), with subsort order Nat < Int, and
with operations: F = {0 :— Nat,0 :— Int, _+ _: Nat Nat — Nat, _* _: Nat Nat — Nat, _+ _: IntInt — Int,—_:
Int — Int, _x _: Int Int — Int}. Then we can define an obvious order-sorted X-algebra A by interpreting the sort Nat
by the set N of natural numbers, the sort Int by the set Z of integers, but representing numbers in Z not as equivalence
classes, but as n € N if n is positive, and as —n if n is a nonzero negative number, which of course gives us the set-
theoretic inclusion N C Z, as required by (1) for the subsort inclusion Nat < Int. Then we interpret 0, +, * as zero,
number addition, and number multiplication in, respectively, N and Z. Then, we have 04 ,inx(2) = Oanina(@) = 0,
so that (2) holds, and for any (n,m) € N? we have +ayuNana(Ps M) = +AmiNariu(Pom) = 1+ m = n +z m, and
* 7 Nat Nat.Nat (M M) = %71 s N1t (M, M) = sy m = n +z m. That is, addition and multiplication of two natural numbers can
be performed in either N or Z with the same result, which is condition (3).

12.4 Terms and Term Algebras

X-terms are the algebraic expressions that we can form with the function symbols and constants of a given signature
2. In an unsorted setting, any function symbol f of n arguments can be applied to any n terms ?4,...,, to obtain a
new term f(¢,...,t,). For example, we can apply the _ + _ sign to the arithmetic expressions 2 * 3 and 7-9 to get the
arithmetic expression (2 * 3) + (7-9), which in prefix form we would write as +(x(2, 3),-(7,9)). However, in a many-
sorted or order-sorted setting, not all terms are meaningful, so that nonsense terms such as 7 + false or nil + (2 * 3)
should be ruled out. The point is that in a many-sorted or order-sorted setting where S is the set of sorts, we should not
define just a set of terms, but rather an S -indexed family of terms, so that a term ¢ can be typed by its corresponding sort
s by a typing relation ¢ : s, and the indexed family of terms T = {7 }es is such that the elements of T are exactly
those terms ¢ such that 7 : s.

Of course, in an order-sorted setting, a term ¢ can have several typings, since if we have ¢ : s and a subsort
relation s < s’ in the poset of sorts (S, <), then we can also infer that # : s’. For example, when we consider subsorts
Nat < Int < Rat, the term (2 * 3) + (7-9) obviously has sort Int, denoted (2 = 3) + (7-9) : Int, but it has also sort Rat,

96

denoted (2 * 3) + (7-9) : Rat, so that we can further form the fraction term ((2 * 3) + (7-9))/11 : Rat. This suggest
defining the terms of an order-sorted signature X and the typing relation ¢ : s simultaneously by the following inductive
definition (note that, for simplicity, only the prefix form of a term is considered in this definition):

Definition 22 Given an order-sorted signature ¥ = ((S,<), F), a Z-term t of sort s € S, denoted t : s, is a syntactic
expression that can be obtained by finite application of the following term formation rules:

1. Foreach f :s;...5, — sinF, ift) : sy,...,t, : 8y, then f(t,...,t,) : s. In particular, if a : nil — sisin F,
then a : s.

2. Ift:sands < s, thent: s'.

We denote by Ts the S -indexed family of Z-terms Ts, = {Tx ;}ses, where, Ts ; denotes the set of Z-terms of sort s. Note
also that, by rule (2), if s < §’, then we necessarily have Ty ; C Ty o .

Note that the X-terms in Ty do not contain any variables: they only contain constants and other function symbols.
They are sometimes called ground Z-terms to make this fact explicit. However, the case of terms with variables, like
(f(x, g(a,y)), where a is a constant and x, y are variables, is just a special case of the above definition. Given an order-
sorted signature X = ((S, <), F), let us consider a (finite or infinite) S-indexed set of variables X = {X;},s, where, we
abbreviate x € X by x : s, and, to avoid any syntactic confusions, we assume that: (i) if s # §’, then X;NXy = @, and (ii)
(UX) N (Uges Frirs) = . That is, the names of the variables are all different, and they are all different from those of the
constants in F. Then we can view Z-terms with variables in X as ground terms on the signature Z(X) = ((S, <), F (X)),
where, by definition, for any s € S, (i) if w # nil then F(X),,; = F,, 5, and (ii) F(X),i1s = Fpis U X;. That is, we just add
to X the variables in X as extra constans. Then a X-term with variables in X is, by definition, just a (ground) (X)-term.

Given an order-sorted signature X, the S -indexed family of terms Ty = {7 }ses can be endowed with a very natural
X-algebra structure as follows.

Definition 23 (Term Algebra). For X = ((S, <), F) an order-sorted signature, the term algebra 75 = (Ts, ;) is defined
by the interpretation map _g; which maps each f : sy ...s, — s in F to the function

f'T}: =At,...,t,) € TZ,S] X... X TZ,sn- f([],.. L) € TZ,S

where if n = 0, so that s, ...s, = nil, (i.e., when f is a constant), then , by convention, f(@) = f. That is, the operation
Srs(i, ..o t) = f(f, ..., t,) acts on a purely syntactic way on the terms t,,. . ., t, to form the new term f(t,,...,t,).

Have we seen term algebras before? Yes, of course! They are just the algebras of data constructors, such as
numbers, lists, or trees (including the abstract syntax trees used in parsing) that we use all the time in computer
science. What Definition 23] makes explicit is that data types are algebras, where the algebraic operations consist on
constructing bigger data structures out of smaller ones. That is, the operations fr, model exactly the concept of a
(free) data constructor in data types. They are therefore very useful, since many data types can be defined as term
algebras. For example, we can represent the natural numbers as terms in Peano notation with an unsorted signature
Zyar With a constant symbol 0 and a unary function symbol s. That is, we get a term model of the natural numbers
N as the term algebra 7s,,, = (Tsyar, -75,4p)> Where, say, the successor of the term s(s(0)) is precisely the term
S75nar (5(5(0))) = 5(s(s(0))). If, instead, we desire a term model of the natural numbers in Zermelo notation, we can use
the unsorted signature Xy,7_, with a constant @ and a unary operation {_}.

Another interesting example is the term algebra of lists with elements in a set A, where 2,57 is the order-sorted
signature with sorts Elt, NeList, and List, subsort inclusions Elt < NeList < List, with F,; g, = A, for A our chosen set
of list elements, and with additional operations nil : nil — List, and a “cons” operator _; _ : Elt NeList — NeList.
Then, the terms of sort List in 75, can be placed in bijective correspondence with the set List(A). For example, if
a,b,c € A, then the terms a, and b have sort Elt, the terms a; b, and a; b; c; a have sort NeList, and the term nil has sort
List.

Yet another example is a term model for binary trees with leaf elements in a set A, where Zyggg is the order-sorted
signature with sorts Leaf, and Tree, subsort inclusion Leaf < Tree, with F 1., = A, and with a binary tree constructor
_A _: Tree Tree — Tree. Then, the terms of sort Tree in Ts,,,, are exactly the binary trees with elements from A in
their leaves. For example, if a, b, ¢ € A, then the terms a, and b have sort Leaf, and (a Ab) Ac, and (b Ac) A(a A (b AD))
have sort Tree.

12.5 A Set-Theoretic Construction of Term Algebras

Strictly speaking, the self-contained nature of these notes has been violated twice. Where? In the introduction of the
first-order language of set theory in and in the definition of Z-terms in Definition That is, the set of formulas
in the language of set theory was defined by a context-free grammar, and the set of X-terms was inductively defined

97

using their signature X by a syntactic construction equivalent to giving a special type of context-free grammar, called
a tree regular grammar (if we allow mix-fix syntax, then sets of terms can be defined and parsed by general context-
free grammars). The point, in both cases, is that it is not immediately clear in which sense the sets of expressions
(formulas or terms) defined by such grammars are definable within set theory. That is, such sets have not been justified
as set-theoretic constructions. Since inductive definitions of expressions in terms of grammars or of signatures are
very intuitive and are used all the time, probably this was not even noticeable, and was not worth remarking on when
the violations occurred. Also, heavy use of the first-order language of set theory was essential from almost the very
beginning, because of the separation axiom. One needs to mentally bootstrap oneself somehow: self-containment is
worth striving for, but may not be fully achievable within reasonable bounds; and if insisted upon to the bitter end it
can easily degenerate into pedantry.

Indeed, for the first-order language of set theory, a reasonable answer to give is that such a language provides
the meta-language in which we carry out our reasoning about sets, so that it would be quite unreasonable to require
a bootstrapping process from within set theory to justify its own metalanguage before set theory itself has even been
defined. Assuming grammars in our meta-language is a very weak assumption, without which one cannot even get off
the ground in defining a first-order theory. However, in the case of a term algebra, we are defining an algebra, that is, a
particular type of set-theoretic structure. Therefore, there is no excuse for not giving a full set-theoretic construction of
term algebras, even if a grammar-based description is helpful and illuminating.

The question, therefore, is how to model the inductive set construction of terms in set theory (first-order formulas
are a special case, using signatures with sorts Term, Variable, and Formula, with Variable < Term). Part ?? will
provide very general methods for defining sets by transfinite induction which, as shown in §??, include the inductive
construction of a set of terms as a special case. However, a solution to this problem not needing anything beyond the
basic set theory of Part[[]can be given and is the subject of this section. The key ingredient for this, more elementary
solution is implicitly contained in the answer to Exercise[72] If you did not take the hint given there and did not solve
Exercise you missed the fun. The answer, of course, is that, given a set A, the sets [n—A] in the N-indexed set
Array(A) = {[n—A]},av all belong to the powerset P([N—A]). In particular, since List(A) = |JArray(A), we have the
set-theoretic inclusions

[n—A] C List(A) € [N—-A].

Given an order-sorted signature X = ((S, <),), we can model terms as strings in an appropriate set of lists, and
use Theorem 6]to construct the S -indexed family of sets T’ as a fixpoint. To avoid syntactic ambiguities, I will assume
that X has no ad-hoc overloading. This is a very mild assumption, since, if it does, it is very easy to rename the ad-hoc
overloaded symbols so that no ad-hoc overloading remains. I will use a slightly more Spartan syntax than prefix syntax,
namely, Polish notation. Therefore, a term f(¢1,...,t,) will be displayed as the string f1, ...%,, where 7 is the Polish
notation display of ¢. For example, the arithmetic expression +(*(2, 3), +(7,9)) is displayed in Polish notation as the
string + * 2 3 + 7 9. Since X has no ad-hoc overloading, the number of arguments of any function symbol f is
uniquely determined, and this makes it easy to unambiguously reconstruct from any term f7; .. .7, in Polish notation
the prefix term f(#,...,%,). The set of strings to which all 2-terms in Polish notation belong is obviously List(|_ F).
But note that we need to generate not a set of terms, but an S-indexed set Ty of such terms. This means that in
our fixpoint construction of Ts we should consider not the powerset P(List(|J F)), but, instead, the complete Boolean
algebra (in particular, complete lattice) [S —P(List(l F'))], where arbitrary sups and infs are defined pointwise, that is,
given H C [S—-P(List(|J F))], we define \V H = As € S. Upey A(s), and A H = As € S. (\jem h(s). The construction
of Ty is then the minimal fixpoint of the functional

T:[S —>7>(List(U F)] — [S —>P(List(U)]
where, for h € [S—>P(List(|J F))], T is defined by the lambda expression
T=2dhAseS. h(s)U{fF...T, € List(U F)l3s1,....80,8 €S)f €Fy 40 AS < SAT € h(s1)A... AT, € h(sy))}.
That is, using Theorem@ we define Ty as the minimal fixpoint T, = \/{T"(1s € S. @) | n € N}.
Exercise 94 Prove in detail that T is a chain-continuous function.

It may be helpful to unpack the above fixpoint construction for a simple example, such as the unsorted signature
2p. of the Dedekind-Lawvere natural numbers. In that case, |J Fp, = {0, s} and, since there is only one sort, T is
essentially a functional T : P(List({0, s})) — P(List({0, s})), and we have:

T(2) =1{0}, T*@)=1{0,50}, T?(@)=1{0,50,s50},..., 7" (@) ={0,50,...,s.7. s0},...

as expected.
So far we have just defined the S-indexed set T, not the term algebra 7. But doing this is quite easy. Just note
that for each f € (J F we have a function f_ : List((J F) — List((JF) : w — fw, and for each n € N we have the

98

n-fold append function append,, : List(\J F)" — List((J F), with append (@) = nil, and append,,. (Wi, ..., Wys1) =
wy append, (W, ..., Wpy1). Then, foreach f : s, ..., — sin F, we define f7; as the function:

Srs =A@, ..., 1) € Tey X ... X Tx . fappend,(ii,...,1,) € Ty,

So we are done. There is, however, one nagging question left: how do we represent function symbols, that is, the
elements of the set | J F' in set theory? There are essentially two answers. The first answer is that, as I have already
mentioned and I further discuss in §??, one can use a set theory with atoms instead of building all sets ex nihilo from
the empty set. Then, any desired function symbols can be assumed to be atoms, that is, basic elements of sets which
are not themselves sets. The second answer consists in explaining how to represent symbols in pure set theory. There
are of course many ways to encode such symbols. The simplest one is perhaps an ASCII-like encoding as the one used
in any computer (digital computers, after all, operate on a very restricted fragment of pure set theory!), where the basic
characters of an alphabet are placed in bijective correspondence with bit vectors, that is, with the set 2" for a suitable
n, and then identifiers, viewed as character strings, are placed in bijective correspondence with List#(2"). This will work
for any X with | F finite or countable, modulo some “padding” to get to the smallest possible 2".

Exercise 95 Assuming that the characters ‘(’ ‘)’ and *, are either available in a set theory with atoms or suitably
encoded in pure set theory, give alternative set-theoretic constructions for Tsx and T in which terms are represented in
prefix notation. Note that we no longer need to require that X does not have any ad-hoc overloading.

12.6 More on Order-Sorted Signatures

Some signatures may be ambiguous, so that the same term denotes two different things. This is of course a source of
confusion which should be avoided. Consider, for example, a many-sorted signature £ with set of sorts S = {A, B, C, D},
a constant symbol a : nil — A, and unary function symbols f :A — B, f:A— C,g: B— D,andg: C — D.
This signature is ambiguous, because the term g(f(a)) denotes two different things: (i) the term obtained by first
applying f : A — B to a and then applying g : B — D; and (ii) the term obtained by first applying f : A — C toa
and then g : C — D. Of course, in other X-algebras we may get completely different results when applying these two
difference sequences of operations to the (interpretation of) a. Consider, for example, the X-algebra V = (V,), where
Va={a}, Vg = {b}, Vc = {c}, and Vp = {d, d'}, and with ay = a, fyas = {(@, D)}, fvac ={(a, o)}, gvsp = {(b,d)}, and
gv.ep = {(c,d")}). The the term g(f(a)) according to interpetation (i) (resp. (ii)) corresponds to the value d (resp. d’) in
V. That is, g(f(a)) denotes two different data elements in “V and therefore is intrinsically ambiguous.

Notice that, in the presence of subsort overloading, being unambiguous does not forbid the possibility of a term
having several sorts. For example, 2 + 2 has sorts Nat, Int, and Rat, using the subsort-overloaded typings - + _ :
Nat Nat — Nat, _+ _: Int Int — Int, and _+ _: Rat Rat — Rat. Yet, 2 + 2 is a perfecly unambiguous term. That
is, in a many-sorted signature X like the one given above, ambiguity will manifest itself by the presence of different
parses for a term, such as parses (i) and (ii) above. But in an order-sorted signature a term may have different parses
without any ambiguity, provided they are all related in the subsort ordering. How can we capture this idea? I call an
unambiguos order-sorted signature a sensible signature. Here is the definition.

Definition 24 An order-sorted signature £ = ((S, <), F) is sensible iff: (i) for any constants of the form ¢ : nil — s,
and c : nil — s, we must have [s] = [s']; and (ii) for any function symbols with same number n of arguments, n > 1,
ofthe form f . sy...s, — s,and f : s} ...s, — 5, if [s1] = [s1],...,[s,] = [s,], then we must have [s] = [s'].

Notice that condition (ii) was the one violated by our ambiguous signature, since for f : A — Band f : A — C,
we have [A] = [A] = {A}, but [B] = {B} # {C} = [C]. Notice also that subsort overloaded constants such as
0 : nil — Nat and 0 : nil — Int are allowed, but ad-hoc overloaded constants such as 0 : nil — Nat and
0 : nil — Bool are forbidden by (i). However, ad-hoc overloaded function symbols like _ + _ : Nat Nat — Nat, and
_+ _: Bool Bool — Bool are allowed, provided (ii) is satisfied or they have different numbers of arguments. Note,
finally, that subsort-overloaded symbols automatically satisfy conditions (i)—(ii), so no restriction is placed on them.
Since sensibility is such a mild condition and avoids ambiguity, from now on all signatures will be assumed sensible.

As already mentioned, in an unambiguous order-sorted signature, a term ¢ may still have different sorts. But which
sorts? Here is the answer.

Lemma 11 [fX is sensible, for any X-term t, ift : sandt: §', then [s] = [s].

Proof. We can prove this result by well-founded induction on the immediate subterm relation f(ty,...,t,) > t; (see
§I1.1). The case for constants follows by condition (i). Suppose now that f(t1,...,t,) : s, and f(t1,...,1,) : 5 with
[s] # [s']. This means that we must have f : sy ...s, — sy, and f : s} ...s;, — s}, with s; < sand 57 < 5, and with
1D S1,.. .ty s spand ty @S], ... t, s, Butsince X is sensible and [s] # [s'], we must have an i, 1 < i < n, such that
[si] # [s;]. which contradicts the induction hypothesis that t; : s; and t; : s implies [s;] = [s}]. O

99

Admittedly, since whenever we have 7 : s and s < s’ we also have ¢ : s’, a term may have many sorts, although if
is sensible all such sorts must belong to a single connected component of (S, <) by Lemma[T1] But, in a sense, when
we passed from the typing ¢ : s to the typing 7 : §" using s < §’, we lost information, since the typing ¢ : s is more
precise. For example, O : Nat is more precise than O : Rat, i.e., gives us more information about 0. This sugest the
following question: given a term ¢, what is the most precise information we can have about its typing? Assuming, as it
is always the case in reasonable signatures, that (S, >) is a well-founded set, the most precise type information about ¢
is the set of minimal elements in the order (S, <) of the set sorts(t) = {s € S | ¢ : s}. Obviously, the most informative
answer possible about the typing of 7 is when the set sorts(r) has a minimum element, which is the least sort possible for
t; that is, when the set of minimal elements of sorts(¢) is a singleton set. We denote the least sort of ¢, when it exists, by
Is(t). It is easy to give examples of sensible signatures where some terms do no have a least sort. Perhaps the simplest
is X with § = {A,B,C}, A < C, B < C and a single constant a with a : nil — A and a : nil — B. Obviously,
sorts(a) = {A, B, C}, has two minimal elements, namely, A and B, so there is no least sort for a. The property that each
term ¢ has a least sort is so useful, that it deserves a name of its own.

Definition 25 A sensible signature T is called preregular iff for each X-term t € | Tx), the set sorts(t) = {s€ S |t : s}
has a minimum element, denoted ls(t), where X is such that for each s € S, X, is a sigleton set,

The reason why we define the notion of preregular signature not for ground terms, but for terms over a set X of
variables that has exactly one variable for each sort, is that we want preregularity to be preserved when we extend X to
2(X); but this might fail to be the case if for some sorts s € S the set Ts , is empty. Consider, for example, a signature X
with § = {A,B,C}, A < B, A < C and a subsort-overloaded unary function symbol with f : B— Band f : C — C.
Then we have | Ty = @, so, every ground X-term trivially has a least sort. However, as soon as we add a variable x : A,
the term f(x) has two minimal typings, namely, f(x) : B, and f(x) : C, and therefore has no least sort. The need for
considering terms with variables in Definition @ can be avoided, so that the definition only mentions ground terms,
provided X has nonempty sorts, where, by definition, X has nonempty sorts iff for each s € S we have Ty ; # @.

Is there a way to syntactically check that a sensible signature X is preregular? Indeed, there is, thanks to the
following characterization of preregular signatures in [21]], where the notion of preregular signature was first proposed
and studied.

Lemma 12 Let X = ((S, <), F) be a sensible signature. The the following are equivalent:
1. X is preregular.

2. Foreachw € List(S), if f € Uqy). w 2w, ses Fur.s» then the set of sorts {s € S | 3w’ € List(S). w' 2w A f € F\y 4}
has a minimum element.

where, the order (S, >) is extended to the set List(S) in the obvious way: sy...s, 2 s|...s, iff s; > s, 1 <i<n

Proof. To see that (1) =)(2), suppose (2) fails. This means that we have w € List(S) and f € F,y gy, f € Fy
with w',w" > w, and with s’ and s” minimal elements in the set {s € S | W’ € List(S). w' > w A f € F,,,}. Let
W =S81...8, n =0, then the typings f(x; : S1,...X, : Sp) : 8, and f(x| : §1,...%, :) : 8" are both least possible, so
X is not preregular.

The proof that (2) = (1) is by well-founded indution on the immediate subterm relation. In the base case of
constants, i.e., when w = nil, condition (2) trivially implies that each constant symbol ¢ has a least sort. Consider
now a term f(t,...t,) € U Txx), where, by the induction hypothesis, ls(t;) = si,...1s(t,) = s,. Then, by (2), the set
{seS | eList(S). W =s1...5, A f €F,} has a minimum element, say, s’. That is, there isan f : w — §" in X
withw' > sy ...s, giving the smalles possible typing f(t,...t,) : 8, that is, Ls(f(t,,...t,)) = ', as desired. O

Exercise 96 Prove thatZ = ((S, <), F) is preregular iff 2(X) is preregular for any S -indexed set of variables X satisfy-
ing the usual requirement that: (i) if s # §', then X, N Xy = @, and (ii) ({J X) N (Uses Fuirs) = @.

We call a sensible signature order-sorted signature £ = ((S, <), F') topped, iff each connected component [s] as a
top element. If a signature is not topped, it is very easy to extend it to one that is so.

Definition 26 Let X = ((S,<), F) be a sensible order-sorted signature. Its top completion X7 = ((ST,<"),F") is
obtained from X by: (i) extending (S, <) to the poset (S7,<"), where each connected component [s] in (S, <) having a
top element is left unchanged, but if [s] lacks a top element, a new one, denoted Ty, is added above all elements of [s].
The operations F are left unchanged, that is, for each (w, s) € List(S ") xS T we have: F, . = F,,; if (w, s) € List(S)X$,

and F, . = @ otherwise.

Exercise 97 Let X = ((S, <), F) be an order-sorted signature with top completionX" = ((S™,<"), F"). Prove that:
1. IfXis topped, then X" = X. In particular, (X7)T = X7,

2. Foreach s €S we have Ts y = Ty ;.

100

3. If [s] lacks a top element in (S, <), then, Tsr v, = Uyeq Ts.v-

4. If X is sensible, so is 7.

5. If X is preregular, so is X7.

Finally, as pointed out in @ to give terms the benefit of the doubt it is useful to complete an order-sorted
signature X by adding a “kind” at the top of ech connected component (even if X is topped!), and overloading all
function symbols at the kind level. In this way, any term that could eventually evaluate to a term having a sort in the

original signature is given the benefit of the doubt. Error or undefined terms, such as 7/0, are modeled as terms with a
kind which do not evaluate to a term with a sort. Let us denote by X be the signature thus obtained.

Definition 27 Given an order-sorted signature & = ((S, <), F), its kind completion T = ((/S\,%, F)) is obtained from
2 by: (i) extending (S, <) to the poset (S,<), where for each connected component [s] in (S, <) we add a new sort,
denoted [s], above all sorts in [s], and (ii) for any f : s;...s, — sin F, (n 2 0), we add an overloaded version of f
at the kind level, f : [s1]...[s,] — [s]in F. We call a signature of the form X a kind-complete signature.
Exercise 98 Ler X = ((S, <), F) be an order-sorted signature with kind completion 3. Prove that:

1. For each s € S we have Ts ; = Ts , that is no new terms are created below the kind level.

2. If X is sensible, so is 3

3. If X is preregular, so is o)

101

102

Chapter 13

Term Rewriting and Equational Logic

13.1 Terms, Equations, and Term Rewriting

Before discussing equations and term rewriting, I introduce some useful concepts and notation for terms, subtems,
contexts, and term replacement. Throughout I assume an order-sorted signature £ = ((§, <), F), and its extension
2(X) = ((S,<), F(X)) by adding an S-sorted set of variables X. In a X-term f(z,...,t,), the #1,...,t, are called its
immediate subterms, denoted t; < f(t,,...,t,), 1 <i < n. Note that the inverse relation <”' = > is well-founded, and
was already described and used in §TT.1]for the special case of arithmetic expressions. A term u is called a subterm of
tiff ¢ >* u, and a proper subterm of 1 iff ¢ >* u. Note that, as an immediate consequence of Lemma [I0]in the
relation >* is also well-founded and a strict order. Given a term ¢ € | Txx), we denote by vars(z) the set of its variables,
that is, vars(r) = {x € X | ¢t >* x}. A term ¢ may contain different occurrences of the same subterm u. For example,
the subterm g(a) appears twice in the term f(b, h(g(a)), g(a)).

One way to make clear where a subterm is located is to replace such a subterm by a single hole, that is by a new
constant [] addecﬂ to the signature X to indicate where the subterm u was before we removed it. For example, we can
indicate the two places where g(a) occurs in f(b, h(g(a)), g(a)) by f(b, h([]), g(a)) and f(b, h(g(a)),[]). A term with a
single occurrence of a hole is called a context. We write C[] to denote such a term. Given a context C[] and a term u,
we can obtain a new termE] denoted C[u], by replacing the hole [] by the term u. For example, if C[] = f(b, h([]), g(a))
and u = k(b,y), then Clu] = f(b, h(k(b,y)), g(a)). Of course, if C[] is the context obtained from a term ¢ by placing
a hole [] were subterm u occurred, then we have the term identity + = C[u]. That is, we can always decompose a
term into a context and a chosen subterm, where if t = C[u], then the decomposition of 7 into the context-subterm pair
(CI1, u) is succinctly indicated by the more compact notation C[u]. For example, we have, among others, the following
decompositions of our term f(b, h(g(a)), g(a)):

F (b, h(g(@), g(@) = f(b, h([g(@)]), g(@)) = f(b, h(g(a)), [g(@)]) = f(b, [h(g(a))], g(a)) = [f (b, h(g(a)), §(a))]

where in the last decomposition the context part is the “empty context” []. This is very useful, since such decompositions
indicate where in a term we either have replaced one subterm by another, or could perfom such a replacement.

Definition 28 (Equations and Equational Theories). Given a sensible order-sorted signature ¥ = ((S,<), F), a -
equation is an atomic formula t = t', where t,t' € | Txx),, and where we require that t = t' is well typed, in the
sense that there are sorts s,s’ € S such that t € Tsx) s, t' € Tsx)y, and [s] = [s']. This is obviously less demanding
than requiring that t and t' have a common sort; but it is equivalent to such a requirement if X is a topped signature.
An (unconditional) equational theory is then a pair (X, E), with X a sensible order-sorted signature, and E a set of
Z-equations.

In an equational theory (X, E) all equations ¢t = ¢’ € E are implicitly assumed to be universally quantified as
(VX1 : 81,0, X2 8y) E=1

with vars(t = t') = {x; : $1,..., X, : S,}, where, by definition, vars(t = t') = vars(t) U vars(t’).

'In a kind-complete order-sorted signature £ with more than one connected component, we should add a new constant [] of kind
[s] for each kind [s]. To avoid ambiguity, one can qualify the hole constant by its corresponding kind, as []jy].

20f course, if the hole constant had kind [s], then u should have a sort in [s]. In this way, C[u] will always be a well-formed
2-term. For example, (3 + 6) = [false] is a nonsense term obtained this way, because the whole [] that it replaced has kind [Natural],
but was replaced by a Boolean term in a different kind. I will assume throughout that this well-kindedness requirement is followed, so
that C[u] is always a well-formed Z-term.

103

The proof theory of equational logic is already familiar to anybody with a high-school education from its use in
elementary algebraic manipulations. That is, equational deduction is just the systematic replacement of equals by equals
using the given equations E. For example, in algebraic manipulations of polynomials we may use ring theory equations
such as: (1) x+y = y+x, (2) xxy = y*x,(3) (x+y)+z2 = x+(¥+2), 4) x+0 = x, (5) xx1 = x, (6) x*x(y+2) = (x*y)+(x*2),
and so on, to prove, for example, the polynomial equality y + (z + (0 + (1 * x)) = (y + z) + x by the following sequence
of replaments of equals by equals:

B y+Ge+0+1x)D)=y++[1*0)+0)=y+C+[1xxD)=y+c+xx1D=[y+c+0)]=0+2)+x

where I indicate at each point the subterm where an equation is applied by the corresponding term decomposition. The
first step has been taken applying equation (1) (in either direction), the second applying equation (4) from left to right,
the third applying equation (2) in either direction, the fourth applying equation (5) from left to right, and the last step
applying equation (3) from right to left.

We can make the above proof of equality (}) more informative by giving a name, say ALG, to the above set (1)—(6)
of equations, and indicating a proof step applying an equation from left to right by t — 4,5 ¢, a proof step from right
to left by t <—4;6 ¢, and a proof step where we do not indicate the direction (that is, it might be either t —4;6 ¢, or
t <416 ¥ —in some special cases, like for equations (1) and (2), it may be both— and we do not specify which) by
t &4 . With this notation we obtain the more informative proof:

y+E+[0+1x0)]) ©ar6 y+@+[(1#0)+0]) =are y+@+[15x]) arc y+(z+[xx1]) 2ar6 Y+ @+X)] —ae O+2)+x.

13.1.1 Term Rewriting

Note that certain equations, for example equations (4) and (5) above, have a natural use, when applied from left to
right, as algebraic simplification rules. This is because their righthand side is clearly simpler, so that applying them
systematically from left to right leads to a simpler expression; that is, to a so-called simplified, or reduced form of the
original expression.

Even if an equation’s righthand side does not have an obviously simpler appearance, certain directions for apply-
ing an equation lead to special syntact forms for fully simplified expressions that are often preferred. For example,
applying equation (6) (distributivity) from left to right will lead to the standard way of displaying polynomials as sums
of products, whereas applying equation (4) (associativity of addition) will right-associate sums, which makes them
more readable than some random sum of monomials like (mm; + my) + (m3 + (m4 + (ms))), which gets simplified to
my + (my(+(m3(+my +ms)))). Therefore, algebraic simplification produces a special type of equational proofs, called al-
gebraic simplification proofs, where equations are always applied from left to right. Here is an algebraic simplification
proof with equations in ALG for a polynomial expression:

(x40 (r+ @+ DN+X" =arg (ex(y+[zxID)+x" Dare [ex(+2)]4X" —are [((oxp)+(xx2)+x"] D arg (0ry)+((xx2)+x7)

This process of reduction, i.e., of algebraic simplification is called term rewriting. We can make this process explicit
by choosing and orientation for an equation. That is, we can orient an equation ¢ = ¢’ from left to right as a so-called
rewrite rule t — t’, and from right to left as the rewrite rule ' — z. Of course, some orientations are better than others.
For example, the equation x * 0 = 0 has a much better orientation as a rewrite rule x * 0 — 0 than as a rewrite rule
0 — x=0, not only because 0 is a simpler term than x * 0, but also because it has fewer variables. The main trouble with
using the orientation 0 — x * 0 for algebraic simplification is that we have to guess what term should x be instantiated
to, since in principle there may be an infinite number of possible instantiations. For this reason, many authors rule out
orientations ¢ — ¢’ such that vars(t’) € vars(t). 1 will however not impose any restrictions on rewrite rules, although
such restrictions will indeed be needed for some applications. Here are the precise definitions of rewrite rule, and of a
collection of rewrite rules as a term rewriting system.

Definition 29 (Rewrite Rules and Term Rewriting Systems). Given a sensible order-sorted signature £ = ((S, <), F), a
Y-rewrite rule is a sequent t — t', where t,t' € | Txx), and where we require that the rule t — t' is well typed, in the
sense that there are sorts s,s" € S such that t € Tsx) s, t' € Tsx)y, and [s] = [s']. This is obviously less demanding
than requiring that t and t' have a common sort; but it is equivalent to such a requirement if is a topped signature.
A term rewriting system (7RS) is then a pair (Z, R), with X a sensible order-sorted signature, and R a set of Z-rewrite
rules.

We should now formalize the process of term rewriting in a term rewriting system (X, R). The first matter that
needs to be made precise is the notion of a rule’s instance. For example, in the last simplification step of the above
simplification proof we have used the rule (x + y) + z = x + (y + z) by instantiating it with the substitution 0 =
{(x, (x * y)), (3, (x * 2)), (z, x')}, where we think of 8 as a function 0 : {x,y,z} — Tg;(xyzvp- SiNCe we are in a
typed, order-sorted setting, variables have sorts, and substitutions must preserve such sorts. The general definition is as
follows:

104

Definition 30 (Substitutions). Let £ = ((S, <), F) be a sensible order-sorted signature, and let X, Y be S -indexed sets
of variables. Then a substitution 6 is an S -indexed function 0 = {6, : X; — Txy)s}ses, mapping the variables of X
to X-terms with variables in Y. If X is finite, say, X = {x; : s1,...,%, : S,}, then the S-indexed function 6 can be
unambiguously specified by a finite set of the form 6 = {(x1,t1), ..., (X, t,)} such that t; : s;, 1 <i<n.

Given atermt € | J Txx), its instantiation by 6, denoted 10, is defined inductively by:

1. x0=0(x), xe X
2. al = a for each constant a : nil — sin X

3. f(ul,...,uk)H = f(btlg,...,btke).
For example, for 6 = {(x, b), (v, (0 * ¢))}, we have (x + y)§ = b + (0 % ¢), and (y * x)0 = (0 = ¢) * b.

Exercise 99 (Plugging a subterm into a context as substitution instantiation). Let X be a sensible kind-complete sig-
nature, and let [s] be one of its kinds. Let Y be an indexed set of variables, and consider the extended indexed set of
variables Y, where Y5 = Yig W[}, and Y}, ¢ = Yy otherwise. That is, Y| is obtained from Y just by adding a single
new variable [] of kind [s]. Call a term C € |J Tseyy with a single occurrence of the constant [] a context with hole of
kind [s]. We typically write C as C = C[]. Let now u € Tsy)5. Prove that the term Clu] € \J Tx(y, obtained by plugging
u in the whole [] of C[] is exactly the instantiation C[16, for 0 : Y|} — Tx(y, the substitution such that 0([1) = u, and
0(y) = y otherwise.

We are now ready to characterize the term rewriting relation and rewrite proofs.

Definition 31 (The Rewrite Relation and Rewrite Proofs)El Let ¥ = ((S, <), F) be a sensible, kind-complete signature
with nonempty sorts, let (X, R) be a term rewriting system, and let Y = {Y},cs be an S -indexed set of variables.El Then
an R-rewrite step is a pair (u,v), denoted u —g v, such that u € \J Txy) and there is a rewrite rulet — t € R, a
substitution 0 : vars(t — t') — Txy), and a term decomposition u = C[t0] such that v = C[t'0], where, by definition,
vars(t — t') = vars(t) U vars(t’).

Since X is kind-complete, if t > t' € R and u = C[t0] : [s], then we must have v = C[t'0] : [s], that is, — never
produces ill-formed terms, i.e., -y is a binary relation -rC (| Tx(y))*. Furthermore, —p is kind-preserving,ﬂ ie, if
U—pVv,u—>gw v:s, andw: s, then[s] = [s].

We denote by —} the transitive closure of —g, and by — the reflexive-transitive closure of —g. A (X, R)-rewrite
proof is, by definition, either a term t € |) Txy), witnessing a 0-step rewrite proof t —% t, or a sequence of R-rewrite
steps of the form ty —g t| =gty ...t =g t,, withn > 1, witnessing an n-step rewrite proof to —5 t,.

For example, the algebraic simplification sequence discussed earlier in this Section is a 4-step rewrite proof wit-
nessing ((x+0)*(y+(z* 1)) +x" =%, ; (x*y)+((x*2)+x"), where — 4, is the one-step rewrite relation associated to the

set of left-to right rewrite rules { — ' | r = ¥ € ALG}, which we shall later denote by ALG ={t > ¢’ |t =1 € ALG}.

13.1.2 Equational Proofs

The notion of an equational proof, that is, a sequence of steps of replacement of equals by equals using equations
E, is a trivial instance of the notion of a rewrite proof. Given an equational theory (Z, E), all we need to do is to

- <« -

consider proofs in the term rewriting system (X, £ U E'), where, by definition, E is the set of left-to-right orientations
- — —

E ={t— 1t |t="1 € E}; and E is the set of right-to-left orientations £ ={t' —>t|t=1¢ € E}.

3To simplify the exposition I am assuming a sensible order-sorted signature X that is kind-complete (see Def. . This assumptions
allows a considerably simpler treatment of term rewriting because, thanks to kind completeness, a rewrite step can never result in a non-
well-formed term. Since any order-sorted signature X can be naturally extended to a kind-complete one, in practice this assumption
does not entail any real loss of generality. I also assume that £ has nonempty sorts, since this avoids the need for introducing explicit
quantifiers.

“4For generality’s sake, I will assume that ¥ has a countably infinite set of variables Y for each s € S, that is, there is a bijective
S -indexed function @ : ¥ — Ny but this requirement is not essential: any S-indexed set of variables ¥ can be used. That is, the
relation —p is in fact parameterized by the chosen family of variables Y.

SFor —p to be kind-preserving, the assumption that T is sensible is crucial, since this ensures Lemma For a simple counterex-
ample, consider X with sorts A, B, and C, with corresponding constant symbols @, b,c,and f : A — B, f : A — C, and R with rules:
f(x:A) > band f(x: A) — c. Then we have f(a) —r b, and f(a) —r ¢, but [B] # [C].

105

Definition 32 (The Equality Relation and Equational Proofs).El Let (X, E) be an equational theory with L = ((S, <), F)
a sensible, kind-complete signature with nonempty sorts, and Y an S -indexed set of variablesﬂ Then an E-equality step

is, by definition, a (E) U (E)—rewrite step u —aug v denoted u < v, where u,v € | Ty

We denote by <. the transitive closure of <, and by <7, the reflexive-transitive closure of <. <7 is called the
E-equality relation, and is often abbreviated to =g. It is also called the relation of equality modulo E.

A (I, E)-equality proof is by, definition, either a term t € | Txy), witnessing a 0-step E-equality proof't <> t, or a
sequence of E-equality steps of the form ty &g t| ©p th... 1, ©f t, withn > 1, witnessing an n-step equality proof
o &% b

For example, the sequence of equality steps (f) discussed earlier in §13.1]is a 5-step equality proof witnessing
Yy+@E+ 0+ *x) &f; 0+2)+x
Notational Convention. Since in many applications a set of equations E will always be used from left to right, we shall

., . - .
often abbreviate the rewrite relations s —>LE, and —>%, associated to the term rewriting system (X, E) by, respectively,

—p, >, and —7,. Likewise, we will abbreviate the rewrite relations —, -, and >, associated to the term rewriting
E E

system (Z, E) by, respectively, <, <%, and <.

Exercise 100 The theory of groups has an unsorted signature with a constant 1, a unary function (™" and a binary
function _o _and has the following equations G:

e yol=x

e xo(yoz)=(xoy)oz

e xo()'=

Give G-equality proofs in the sense of Definition[32]for the following theorems of Group Theory:
o lox=x

° ()c)’1 ox=1
° ()coy)’l :y’1 ox’!

(Hint: if you prove any of those theorems, then you can use them as lemmas to prove some of the others.)

Exercise 101 Prove that the E-equality relation =g defines an equivalence relation on \J T y), and also on Tsy) s for
each kind [s] € § /<.

Prove also that, under the assumptions of Definition @ =g does not depend on the set Y of variables, chosen to
define the equality relation =g. That is, given any two S -indexed sets of variables Z, Y with Z C Y, we have in fact two
equality relations, which should be notationally distinguished as =%C ((Ts(z))?, and =5£C (U Tx))?. You are asked to
prove that for any terms u,v € \J Tsz) we have u =% v iff u =%, v. The requirement that * has nonempty sorts is essential
for this to be the case, even in the many-sorted case. That is, there are signatures X and equational theories (£, E) such
that there are S -indexed sets of variables Z C Y and terms u,v € | Txz) such that u ig v, but u =§ v (see, [38)120]).

13.2 Term Rewriting and Equational Reasoning Modulo Axioms

Certain equations are intrinsically problematic for term rewriting. Consider, for example, the commutativity equations
x+y=y+x,and x*y =y * x. Since the idea of term rewriting is to simplify a term to hopefully get a fully simplified,
equivalent term, a commutativity equation is intrinsically problematic for two reasons: (i) applying a commutativity
equation we do not obtain a simpler term, but only a “mirror image” of the original term; for example, (x * 7) + (0 * y)
is rewritten by the commutativity equation to its mirror image (0 * y) + (x * 7); and (ii) even worse, we can loop when
applying such equations, never reaching a fully simplified term, as in the infinite, alternating sequence

(xxD+0xy) a6 Oxy) + (xx7) 56 (xxT)+(0%y) 246 Oxy) + (xx7) 216 ...

To simplify the exposition I am assuming a sensible order-sorted signature X that is kind complete and has nonempty sorts (see
@). These two assumptions allow a considerably simpler treatment because: (i) no explicit use of universal quantifiers is needed
(thanks to the nonempty sorts); and (ii) the replacement of equals by equals can never result in a non-well-formed term (thanks to kind
completeness). If ¥ has some empty sorts, a treatment with explicitly quantified equations (Yx; : s1,...,X, @ s,) ¢ = ¢’ is needed,;
and if it is not kind complete, care must be taken not to generate non-well-formed terms (see, e.g., [36]). The fact that the presence of
empty sorts requires an explicit treatment of universal quantifiers in order to have a sound (and of course complete) inference system
for equational deduction is well-known, even for many-sorted equational logic, since [38.20].

7 Again, with a countably infinite set of variables for each sort s € S for generality’s sake, although this requirement is not essential:
any S-indexed set Y can be used.

106

Of course, this does not block us, humans, from simplifying the above polynomial to (7 * x). But a standard imple-
mentation of term rewriting can easily loop when commutativity equations are used as rewrite rules. The solution to
this problem, provided by many symbolic algebra systems, and by equational programming languages such as OBJ3
[22], ASF+SDF [46], CafeOBJ [17], ELAN [6], and Maude [10], is to build in certain, commonly occurring equational
axioms, such as the above commutativity axioms, so that rewriting takes place modulo such axioms. For example, we
can decompose our equations ALG into a built-in, commutative part C = {x +y = y + x, x # y = y * x} and the rest, say,
ALGy ={(x+yY)+z=x+@+2,x+0=x,x%1 =x,x*(y+2) = (x*Y) + (x *z)}, and then rewrite with the equations
in ALG from left to right applying them, not just to a given term ¢, but to any other term ¢ which is provably equal to t
by the equations C, that is, any ¢ such that r =¢ #’. This, more powerful rewrite relation is called rewriting modulo C,
and is denoted — 4;6,/c. For example, we can simplify the expression ((0 + x) * (1 *y) + 7)) +zto (x * y) + ((x * 7) + 2)
in just four steps of rewriting with —4;¢,,c as follows:

(O+x)# (L) + 7)) +2 > arGysc (x*((1xy)+T))+2 = arcyic (xx (Y +T)+2 =arcyc (xy)+(x*T7)+2 >arGy/c (xxy)+((x*T)+2)

What rewriting modulo axioms such as C achieves is raising the level of abstraction at which we simplify expressions,
bringing it closer to the human level. The point is that, since equality modulo a set of axioms like C is an equivalence
relation (see Exercise @, rewriting with —4;6,,c achieves the effect of rewriting not just terms, but C-equivalence
classes of terms.

But why stopping with commutativity? How about associativity? An associativity equation such as (x +y) + z =
x + (y + 2) does certainly not have any looping problems; but parentheses around associative operators are a nuisance
that can block the application of equations which can “obviously” be applied by humans. For example, the equation
x + —x = 0 can be applied modulo associativity and commutativity to the expression ((x + y) + z) + —(y + (z + X))
in one step of rewriting modulo the following set AC of associativity and commutativity axioms for - + _ and _ * _,
AC={x+y=y+x,xxy=y*x,(x+y)+z2=x+ Y +2),(x*y)*z=x=(y=*z)}, using from left to right the set of
equations ALG; = {x+0=x,x* 1 =x,x*(y+2) = (x*y) + (x % 2),x + —x = 0}, to the fully simplified form:

(x+y)+2)+ -+ (z+ X)) 2arcyac 0.

That is, when rewriting modulo AC: (i) the order of the arguments does not matter (because of commutativity, C),
and (ii) parentheses do not matter (because of associativity, A). In fact, when rewriting modulo associativity (A), or
associativity-commutativity (AC), we can disregard parentheses altogether, and write an expression like ((x+y)+z)+x’
without such parentheses as x +y + z + x’, as it is standard practice in mathematics textbooks.

Likewise, we could also build in the unit element axioms U = {x + 0 = x,x * 1 = x}. Or any combination of C,
and/or A, and/or U axioms could be built in. In fact, the idea of building in a set B of equational axioms, so that we
rewrite with a set of rules R modulo B, is entirely general, and is captured by the notion of a rewrite theory.

Definition 33 Let X be a sensible order-sorted signature. A rewrite theoryEl
is a triple (£, B, R), where B is a set of Z-equations, and R is a set of Z-rewrite rules.

Rewriting with R modulo B can then be formalized as follows.

Definition 34 (Rewriting and Rewrite Proofs Modulo B). Let (X, B, R) be a rewrite theory such that T is sensible and
kind-complete. Then an R-rewrite step modulo B is a pair (u,v) € Té(y), denoted u — g v, such that there are terms
',V € Tyyy withu =g u', W' =g V', and V' =p v, that is, we have u =g u’ —g V' =g v. We call —g/p the one-step
R-rewrite relation modulo B, and denote by —% /5 the relation =p, called the O-step R-rewrite relation modulo B, by
—>1§/B the transitive closure of =g, and by s the relatiorﬂ —>,§/B U =p3.

An R-rewrite proof modulo B is either: (i) a pair (u,v) € Tg(y), with u =g v, witnessing a 0-step R-rewrite modulo B
proof, or (ii) a sequence of R-rewrite steps modulo B of the form vo —gig Vi =g/ V2 ... Vael —r/B Va» 1 = 1, witnessing
an n-step proof vo =y Va.

8The traditional use of rewriting modulo axioms has been to reason efficiently, and at a high level of abstraction, in an equational
theory (X, E U B) where the equations E are applied from left to right as rewrite rules modulo B. This is the main use we will make
of rewrite theories (Z, B, R) in these notes; that is, to perform simplification modulo B in the equational theory (£, B U eq(R)), where
eq(R) are the equations associated to the rules R. However, in rewriting logic [35 37, a rewrite theory (X, E, R), has (Z, E) as its
underlying equational theory, but the rules R are not interpreted as equations at all, but as concurrent transitions in a concurren system,
whose states are axiomatized as E-equivalence classes of terms. Futhermore, the equations E in the equational theory (X, E) typically
decompose as a disjoint union G U B, where the equations G can be used as simplification rules modulo B; that is, in a simpler rewrite
theory (%, B, G) used for efficient equational reasoning, as the ones we will consider here. In the Maude language [10], both equational
theories of the form (Z, B U G), called functional modules, and rewrite theories of the general form (X, G U B, R) with a concurrent
system semantics, called system modules are executed by rewriting with two different rewrite relations, namely, — ¢, for equational
simplification, and —g,p for concurrent transitions. Maude’s functional modules are further discusses in §2?.

9Note that, in general, —>; /B does not coincide with the reflexive-transitive closure of —g/p, but only contains it. It should be
thought of as the reflexive-transitive closure of —g,p modulo B.

107

A term u € |J Ty, is said to be in R/B-normal form ift Au). u —pgyp W, that is, iff u cannot be further rewritten
with R modulo B. Also, given a term ¢ € (J Ty, we say that u is a R/B-normal form of tiff t —% ; u, and u is in
R/B-normal form, which we abbreviate to ¢ _)}e /5 U-

Exercise 102 (Deconstructing Rewriting Modulo). What rewriting modulo B accomplishes is to raise the level of
abstraction by “building in” B-equality proofs. This suggests that, at the heavy price of losing the higher level of
abstraction thus gained, we can “deconstruct” a rewrite theory (£, B, R) into a semantically equivalent term rewriting

-«
system (£,R U B U B), were we now make explicit each single step of B-equality. But is this true? Prove that if ¥ is
sensible and kind-complete, then for any two X-terms t,1" €) Tsy) we have t =, 1" iff t —>;u§u§ r.

Exercise 103 (Equational reasoning modulo axioms). Consider an equational theory of the form (£,E @ B) with £

sensible and kind-complete. Then we can consider the rewrite theory (Z, B,E) U <11?), and abbreviate the rewrite relation
o5 10 Jjust < g/p. This captures the idea of doing equational reasoning with E modulo the axioms B, which is what
we humans do when performing algebraic reasoning, and what smart implementations of equational reasoning do as
well. But is it correct? Prove that for any X(Y)-terms t,t" we have the equivalence:

——
EV

t=popt © teoppt.

(Hint: use Exercise[102).

13.3 Sort-Decreasingness, Confluence, and Termination

Given a rewrite theory (Z, B, R), which executabilty conditions should be placed in practice on the rules R so that we
can effectively use it for equational simplification modulo B in the associated equational theory (£, BU eg(R)), in which
the rules t — ¢’ € R are now understood as equations ¢ = ¢’ € eq(R)?

As already mentioned for the example of the problematic rule 0 — x = 0 associated to the equation x * 0 = 0 when
oriented from right to left, the most basic requirement is:

(1) for each t — ¢’ € R, any variable x occuring in t' must also occur in t.

Otherwise, t — t' is problematic as a rewrite rule, since we have to guess how to instantiate the extra variables in ¢, and
there can be an infinity of guesses. For example, if we tried to use the rule 0 — x*0 to “simplify” the term (a+b)+0, we
could obtain (a+b) + (0%0), or (a+b) + (z+0), or (a+b)+ ((c *d)*0), and so on, depending on whether the substitution
we chose was 6 = {(x,0)}, or 8 = {(x, 2)}, or 8 = {(x, (c * d))}, and so on. Instead, if we apply the equation x + 0 = x to
the same term, there is only one substitution possible to simplify (a + b) + 0, namely, 6 = {(x, (a + b)}. Note that, under
assumption (1), if # — v, then no new variables are introduced in v; that is, we always have vars(v) C vars(u).

The additional requirement that X is preregular is also very useful for efficient rewriting. This is because, for a
rewrite step C[t6] — C[r'0] with arule t — ' in R to be legal, we need to check that 6 is well-sorted; that is, that for
each (x : s,u) € 0 we indeed have u : s. But for X preregular this just becomes the easy syntactic check /s(u) < s.

A second important requirement is:

(2) sort-decreasingness, that is, for each t — ' € R, sort s € §, and substitution 6§ we should have the
implication 0 : s = 1’0 : s.

It is then easy to check by well-founded induction on the context C below which a rewrite C[t0] — C[t'0] takes place,
that under condition (2) the rewrite relation — preserves sorts, that is, if u —g v, then u : s = v : s. This is of
course always the case for unsorted or many-sorted rewriting, but it can fail to hold for order-sorted rewrite theories
and, unless the signature X is kind-complete, can lead to non-well-formed terms. Consider, for example, a subsort
inclusion Natr < Set, where Nat has operators 0 and s, and Ser has a set union operator _ U _, that is, we view each
natural number # as a singleton set. Then the rule x — x U x with x of sort Set fails to be sort-decreasing, since, for n a
variable of sort Nat, the substitution 6§ = {(x, n)} is such that n : Nat, but n U n does not have sort Nat. This does indeed
lead to ill-formed tems, since we then have the rewrite s[0] — s[0 U 0], where the term s(0 U 0) is not a well-formed
term, unless the signature is kind-complete, so that both s and _ U _ are lifted to the kind [Sez]. Sort decreasingness is
an easily checkable condition, since we do not need to check it on the, in general infinite, set of all substitutions 8: if

{x1 1 8§15....%, ¢ s} = vars(t — t'), we only need to check it on the, typically finite, set of substitutions of the form
(e 2osi,x) 08D (X 2 Sp, 2, 0os))) with s7 < s;, 1 <0 < n, which are called the sort specializations [16]] of the
set of variables {x; : sy,...,x, : s,}. For example, for the above rule x — x U x, the failure was detected for the sort

specialization {(x : Set, x’ : Nat)}, which was abbreviated to 6 = {(x, n)}.

Exercise 104 Let (X, R) be a term-rewriting system with X preregular. Prove that the rules R are sort decreasing iff for
each sort specialization p as defined above and for eacht — t' in R we have: Ls(tp) > Ls(t'p).

108

To see why things can go wrong when sorts are not preserved by rewriting; that is, when the rules are not sort-
decreasing, consider the following simple example. There are two sorts C and D with C < D, a constant ¢ of sort
C, a constant d of sort D, and a subsort-overloaded unary function f : C — C, f : D — D. Let B = @ and
R={c—-d, f(f(x:C)) — f(x:C)}. Now consider the term f(f(c)). Using the second rule we can rewrite it to f(c),
which can be further rewritten to f(d) with the first rule. But if we apply the first rule to f(f(c)) we get f(f(d)) which
cannot be further rewritten! The point is that the rule ¢ — d is not sort-decreasing, so the information that ¢ had sort C
has been lost, and now we are stuck with f(f(d)), since we cannot apply the second rule.

A third requirement is one of determinism: if a term ¢ is simplified by R modulo B to two different terms u# and
v, and u #g v, then u and v can always be further simplified by R modulo E to a common term w. This implies (see
Exercise@below) thatif 1 -3 , wand t =, v, and u and v cannot be further simplified by R modulo B, then we
must have u =g v. This is the idea of determinism: if rewriting with R modulo B yields a fully simplified answer, then
that answer must be unigue modulo B. That is, the final result of a reduction with the rules R modulo B should not
depend on the order of evaluation, i.e., on the particular order in which the rewrites have been performed in the rewrite
sequence. This is precisely captured by the requirement of confluence below. Note that, since the relation u —} v is just
the special case of the relation u —p,, v in which B = @, confluence of R is a special case of confuence of R modulo B.

Definition 35 Let (X, B, R) be a rewrite theory. Then the rules R are called confluent modulo B (resp., ground confluent
modulo B) iff for each t € \J Ty, (resp., for eacht € \J Ts), and each pair of rewrites t =y, u, t =y, v, there is a term
w e Ty (resp., w € UTs) such that u —5 , wand v —y, , w. This condition can be described diagrammatically as
follows (the dashed arrows denote existential quantification):

"\

u * R/BV

S
A £
RIB W *

Therefore, our third requirement of “determinism” is that:

(3) the rules R should be confluent modulo B (or at least (3") ground confluent modulo B if, as when we
use (Z, B, R) as a declarative program, we are only interested in evaluating ground terms).

Note that, without sort-decreasingness confluence may be hard to get, so conditions (2) and (3) should go together. For
example, the already-discussed rewrite rules R = {¢ — d, f(f(x: C)) = f(x: C)}withc : C,d : D, and C < D are not
confluent, even though the two rules have disjoint function symbols. Indeed, we can rewrite f(f(c)) to both f(d) and
f(f(d)), but these two terms cannot be further rewritten.

Exercise 105 (Confluence implies uniqueness of normal forms). Let (X, B, R) be a rewrite theory. Prove that if (X, B, R)
is confluent modulo B, then if t € \J Tx(y) has a R/ B-normal form, then such a normal form is unique up to B-equality,
that is, v is another R/ B-normal form of t iff u =g v.

Because of this uniqueness, if (X, B, R) is confluent modulo B, we call a R]B-normal form of t, it it exists, a R/B-
canonical form of ¢, and denote it, up to B-equality, by cang,g(t).

Exercise 106 (Church-Rosser Property). Call two terms t,t" € | Tsy) joinable with R modulo B, denoted t |g;p t',
iff Gw € UTsw) t =g w A 1" —pp w. Prove that if (£, E U B) is an order-sorted equational theory satisfying

the requirements in Deﬁnition and the rules E are confluent modulo B, then the following equivalence, called the
Church-Rosser property, holds for any two terms t,t' € | Txyy:

t=popt © tlgpt.
where, as usual, we abbreviate t |z, t' to just t L5 t'. (Hint: Use Exercise @)

It is of course highly desirable that rewriting with R modulo B terminates, so that a final, fully simplified result can
be obtained for each term #; so this should be our next requirement.

Definition 36 Let (X, B,R) be a rewrite theory. R is called terminating or strongly normalizing modulo B (resp.,
ground terminating or strongly ground normalizing modulo B), iff —gp is well-founded (resp. —g;3 N(JTs)* is
well-founded). We call R weakly terminating or normalizing modulo B (resp., ground weakly terminating or ground
normalizing modulo B), iff any t € \J Txy, (resp., any t € \J Tx) has a R/ B- normal form.

109

Therefore, a highly desirable fourth requirement is:

(4) the rules R are terminating modulo B, or at least the weaker requirement (4’) that the rules R are
(ground) weakly terminating modulo B.

Exercise 107 Prove that if ¥ has non-empty sorts, then given a rewrite theory (X, B, R) where all rules satisfy condition
(1) above, R is terminating modulo B iff R is ground terminating modulo B.

Exhibit a rewrite theory (X, B, R) satisfying condition (1) where £ has non-empty sorts and R is ground weakly
terminating modulo B, but is not weakly terminating modulo B.

Exercise 108 Call a rewrite theory (%, B, R) locally confluent iff whenever we have t —g;p u and t — g5 v, then
u ~LR/B V.

o prove that if (£, B, R) is terminating and locally confluent, then it is confluent (Hint: use well-founded induction)

e exhibit a rewrite theory that is localy confluent but not confluent.

Essentially, requirements (1)—(4) are all we need of a rewrite theory (Z, B, R) so that we can effectively use it for
equational simplification modulo B in the associated equational theory (X, eq(R) U B). Requirement (1) makes rewriting
efficiently implementable, since we do not need to guess the substitution for new variables in the righthand side. Sort
decreasingness (requirement (2)) is essential for simplified terms to remain well-formed, so that they do not go up to
the kind level if kinds are added, and to avoid that rewrites that were possible before do not get blocked because sort
information is lost. Requirement (4) (confluence) is really essential and powerful since, thanks to the Church-Rosser
property (see Exercise [[06), equational deduction can be simulated by equational simplification, in the sense that we
have the equivalence t =.4gup ¢’ © 1 lg/p t'. Requirement (4) (termination, or at least weak termination (4’)), should
not be made into an absolute requirement, but is a very good thing to have.

Of course, even with requirements (1)—(4) all satisfied, unless some further requirements are placed on the equa-
tional axioms B so that they can be effectively “built in,” the rewrite relation — g,z may be hopelessly inefficient (and
in general undecidable), since otherwise we may need to actually perform steps of B-equational deduction explicitly.
Here are three very useful conditions to require about B. The first one is also well-known for unsorted rewriting, but
the remaining two are typical of an order-sorted setting:

e There shoud be a B-matching algorith, that is, and algorithm such that, given X-terms ¢ and #', gives us a finite,
completﬂ set of substitutions 6 such that 10 =g ¢, or fails if no such 6 exists. If 160 =5 ¢’ holds, we say that ¢’
B-matches the pattern ¢.

e The variables in the axioms B should all be at the kind level, i.e., of the form x : [s], for [s] a kind in (S, <), so
that the equations B apply in their fullest possible generality.

e The equations B should be B-preregular, in the sense that, given a B-equivalence class [f]p, the set{s € S | ¢’ €
[t]z A ¢ : s} has a minimum element, denoted /s([¢]), that can be effectively computed.

The first condition holds, for example, for B any combination of associativity and/or commutativity and/or identity
axioms. For such axioms, the second and third conditions are syntactically checkable, as done in fact in the Maude
language [10| 4.4.1 and 22.2.5], where the rules R are also checked and completed so that the first condition achieves
in fact the effect of rewriting in B-equivalence classes [10, 4.8].

Exercise 109 Let (Z, B, R) be a rewrite theory with X preregular and such that each u = v € B has vars(u) = vars(v)

. . . - “—
and is sort-preserving in the precise sense that both Band B are sort-decreasing (note that this is an easily checkable
condition thanks to Exercise . Prove the following:

1. (%, B,R) in B-preregular.

2. Whenever t —gp t', then ls([t]g) = Is(t) > Is(t') = Is([t']), that is, sort-decreasingness holds at the level of
equivalence classes.

Also, for B any combination of A andjor C operators, give examples of rewrite theories (£, B, R) with B sort-preserving
(with a proof of it) and with B failing to be sort-preserving (with a counterexample).

Note that the sort-preservation requirement on B is typically too strong in the presence of identity axioms U (a
good example of lack of sort preservation is the right identity axiom x; nil = x, with x : List, _; _ an associative list
concatenation operator, and with a subsort relation, say, Nat < List). However, identity axioms can be dealt with using
the theory transformation described in [14)].

10Complete in the sense that for any other substitution y not in the set and such that #y =p ¢, there is a 6 in the set such that for each
x € vars(t) we have xy =g x6.

110

13.4 Canonical Term Algebras

Suppose that we have an equational theory (X, E W B), where we use the oriented rules E to simplify X-terms by
rewriting with E modulo B, that is, with the rewrite theory (X, B, E). Suppose, further, that (X, B, ﬁ) satisfies the
executability conditions (1)—(4), or at least the slightly weaker (1)—~(2), and (3’)—(4"). Then, by termination (or at least
weak termination), every term ¢ € |J T can be simplified to a normal form cangs(f), so that we have t —!g gcangp.
And by confluence (or at least ground confluence), cang,5(t) is unigue up to B-equality (see Exercise@]). Furthermore,
by the Church-Rosser property (see Exercise [T06) we have the following extremely useful equivalence for any #,7 €
(J T (which also holds for terms with variables ¢,¢' € | Txy, if (Z, B, E) is confluent):

t =pwB l‘, (=1 tlE/B [=Y canE/B(t) =B canE/B(t').

This is indeed very powerful! In order for us to know if two terms ¢,¢" are provably equal in the theory (X, E @ B) all
we need to do is to reduce them to canonical form with — g5 and perform the equality test cang,g(t) = cangp(t’),
which if B has a B-matching algorithm is a decidable test. Of course, for the special case B = @, this becomes a test for
syntactic equality cang(t) = cang(t').

This suggests considering the terms in £/B-canonical form as the values of an algebra. Let us consider a simple
example, namely, an unsorted signature X with a constant 0, a unary successor function s, and a binary addition function
+, and the following set E of equations: E = {x+0 = x, x+ s(y) = s(x+y)}. It is easy to check that the term rewriting
system (Z, E) is confluent and terminating. It is also easy to check that the set of ground terms in E-canonical form is
the set Cansg = {0, 5(0), s(s(0)), ..., s"(0),...}, that is the natural numbers in Peano notation. This is certainly a set of
values, but for which algebra? Well, for each operation on such values, we can agree that the result of the operation is,
by definition, its canonical form. That is, we can define a XZ-algebra Cy/r = (Cang)g, ¢, y) as follows:

1. Ocyp = cang(0) = 0.
2. foreach r € Canyg, scy,; (1) = cang(s(t)) = s(b).
3. foreach (t,¢') € Cang/E, t+eyp V' = cang(t +1).

Obviously, in cases (1) and (2), terms like 0, or s"*'(0) are already in canonical form, so the results are just purely
syntactic, like in a term algebra. But case (3) is different. Let us try some examples:

e 0+¢,; 0=0

o 5(0) ¢y 5(0) = s(s(0))

o 5(5(0)) +¢y 5(5(0)) = 5(s(s(s(0))))

o s(s(5(0))) +c5 5(5(0)) = s(s(s(s(s(0)))))

So, it turns out that the function - +¢, ;. - is just the addition function on natural numbers! What could be more natural!
So, the algebra Cy/ of terms in E-canonical form is just the algebra of natural numbers with the standard intepretation
for the symbols 0, s, and _ + _.

Here is the general definition, under the weakest possible assumptions.

Definition 37 (Canonical Term Algebra). Let (X, E W B) be an equational theory satisfying conditions (1)—(2), which
is also (3") ground confluent, and (4") weakly terminating. Then the S -indexed set Cansjgp = {Cansg g }ses, Where
for each s € S we define Cansjpps = {[cangp()]g € Txq/=p | t € Tyq AN I € [cangp(t)]p,t' : s}, can be
given a X-algebra structure called the canonical term algebra associated to the theory (X, E W B) and denoted Cy g p =
(Cansyg p, ¢y), Where the structure map cy ,, assigns to each f : w — s in X the function fcy,p, : Cang,pp —
Cansg g 5, which is defined:

o forw = nil, by the identity fCE/E,B(Q) = cangp(f), and

o forw=s...5, n 21, by the function
fCL/E,R = A[t11s,...,[t.]p) € Cangjp s, X ... X Cangppy,. [cangp(f(t1, ..., 1))]5.

Exercise 110 Prove that under the assumptions ofDeﬁnilion@thefunction Jesjps = Altls, .- ., [tlp) € Cangyg p.s, ¥
... X Cansjpp,. [cangp(f(t],...,1;))]p is well-defined, that is, it does not depend on the choice of representatives
€ltlp 1<isn

111

13.5 Sufficient Completeness

Consider again our equations £ = {x + 0 = x,x + s(y) = s(x + y)} on the unsorted signature X with symbols 0, s and
_+ _. And observe the interesting point that its set Cans/g of canonical forms is precisely the set T, of terms in the
Dedekind-Lawvere signature with symbols 0 and s. That is, the addition symbol has completely disappered! This is
as it should be, since the equations £ = {x + 0 = x, x + s(y) = s(x + y)} provide a complete definition of the addition
function on natural numbers. Note that we obviously have a strict inclusion Zp; C X.

This is a more general fact, not just about numbers, but about any equational theory (£, E @ B) satisfying conditions
(1)—(2) and (3")—(4"), where some operations in a subsignature 2 C X (in our example X5, C X) are used as data con-
structors, and the remaning operations in £-Q are viewed as functions operating on data built with the data constructors
Q and returning as result another data value built with the constructors Q. The definition of the function associated to a
function symbol f € Z-Q is given by the equations E modulo B or, more precisely, by the function fc,,, , associated to
f in the canonical term algebra Cy/z 3. In our example, we had 2-Xp; = {_ + _}, and the function _ +¢, p - Was just the
addition function on natural numbers.

This is useful, because we can then ask the question: have we given enough equations to fully define all functions
in 2-Q? This exactly means that the defined function symbols should disapper from any ground term after such a
term has been fully reduced, so that its canonical form has only constructor symbols. This would fail, for example,
if we had forgotten to define the case of adding 0 to a number, and had tried to define addition by the single equation
x + s(y) = s(x + y). Then we would have terms in canonical form like 0 + 0, s(0) + 0, s((s(0) + 0) + 0), and so on, so
that the + symbol would no longer disappear. For complex specifications, forgetting some corner case like this when
defining a function is not uncommon. Such forgetfulness is called a failure of sufficient completeness, in the sense
that the function f in question has not been sufficiently defined, because some equations are missing. And the failure is
detected precisely by the presence of ground terms in canonical form where the symbol that was supposed to disappears
has not gone away.

Before giving the general definition, we need to make more precise the notion of subsignature.

Definition 38 An order-sorted signature Q = ((S’,<’), G) is called a subsignature of an order-soted signature ¥ =
((S, <), F), denoted Q C %, iff:

1. §'C S and <'C<, and

2. foreach (W', s") € List(S") X S’ there is a subset inclusion G, y C F,» ¢, which we abbreviate with the notation
GCF.

For example, the process of adding variables to a signature gives rise to a subsignature inclusion X € £(X). Likewise,
the top completion (resp. kind completion) of a signature X gives rise to a signature inclusion £ C X7 (resp. X C X).
Here is now our sough-after notion of sufficient completeness, in as general a form as possible.

Definition 39 Ler (X, B, R) be a rewrite theory that is weakly ground terminating, and let Q C T be a subsignature
inclusion where Q has the same poset of sorts as %, that is, ¥ = ((S, <), F), Q = ((S, <), G), and G C F. We say that the
rules R are sufficiently complete modulo B with respect to the constructor subsignature Q iff for each s € S and each
teTs thereisat € T, suchthatt _>}e/3 t.

If X is kind-complete, then the above requirement that for each r € Ty there is at' € Tq, such that ¢ —>}e /B t
should apply only to the sorts s € [s] in each connected component, but not to the kinds [s]. Therefore, the sufficient
completeness requirement for R modulo B should be placed on a signature X before kind-completing it to . This is
because, since terms that have a kind [s] but not a sort s, correspond to undefined or error expressions, such as 7/0, or
p(0) for p the predecessor function on natural numbers, it is perfectly possible that a completely well-defined function
on the right sorts cannot be simplified away when applied to the wrong arguments. For example, we can define the
predecessor function in a theory with sorts Nat and NzNat with subsort inclusion Nat < NzNat, subsignature Q of
constructors: s : Nat — NzNat, 0 : nil — Nat, and defined function symbol p : NzNat — Nat, with the single
equation p(s(x)) = x, with x : Nat. This theory is obviously sufficiently complete, that is, the canonical forms of all
ground terms are all Q-terms. However, in its kind completion we have the term p(0) : [Nat], which is in canonical
form, because p is only defined for nonzero natural numbers.

Therefore, if we have identified for our rewrite theory (Z, B, R) a subsignature of Q of constructors, a fifth and last
requirement should be:

(5) the rules R are sufficiently complete modulo B.

Condition (1) is syntactically checkable, and so is condition (2). Confluence is a decidable property for (Z, B, R)
when B consists of associativity, and/or commutativity, and/or identity axioms and any associative operator is also
commutative. Since term rewriting can simulate Turing machines (see, e.g., [2} 5.1]), because of the halting problem

112

termination is undecidable. Sufficient completeness is also decidable for (£, B, R) when R is weakly terminating modulo
B, and B consists of associativity, and/or commutativity, and/or identity axioms and any associative operator is also
commutative, if for any t — ¢’ € R, any variable x of # occurs only once in ¢ (the so-called left-linearity of t — t').

Maude (see [10]) automatically checks condition (1), can automatically check confluence and condition (2) with
its Church-Rosser Checker (CRC) tool [15], and also condition (5) under the above assumptions with its Sufficient
Completeness Checker (SCC) tool [25]. Although termination is undecidable, it can be proved in practice for many
equational theories using Maude’s Termination Tool (MTT) [13]. When the equations E are conditional (see §[E]), both
confluence and sufficient completeness become undecidable, but it is still possible to use the above tools and Maude’s
Inductive Theorem Prover (ITP) to establish such properties for many specifications.

113

114

Chapter 14

Conditional Rewriting and Conditional
Equational Logic

Unconditional equational logic can express most algebraic properties, but not all of them. Consider, for example, the
unsorted algebra of lists of natural numbers, with set of elements Lis#(IN), and with a constant nil and a binary operation
_-_interpreted, respectively, as the empty list @ and as list concatenation. Now consider any three lists /, ’, " € List(N),
and suppose that the list equality /- I’ = /- I” holds; then we must also have the equality = [”. This is called the left
cancellation property of lists, since in the equality /- = [- [we can “cancel” [on the left. Likewise, if the equality
I"-1=1"-1holds, then we must also have the equality / = I”’, which is called the right cancellation property.

These two properties cannot be expressed by ordinary (unconditional) equations. They are instead conditional
properties of the form: (i) if /- /' =1[-1”, then I’ = I”, expressing left cancellation; and (ii) if /' - [=" - [, then I’ = [",
expressing right cancellation. Such implications, where in general the condition may not be a single equation but a
conjunction of such equations, are called conditional equations and are written

by t=¢if uy=viA...Au,=v,

where when n = 0 (no equations in the condition), we get the unconditional equation ¢t = ¢’ as a special case. That
is, conditional equations generalize unconditional ones and provide a strictly more expressive logic. For example, the
above two cancellation laws can be expressed by the conditional equations

l/ :l,/l"f l'll =l'lll
r=rifr-1=10-1
Here is the general definition.

Definition 40 (Conditional Equations and Conditional Equational Theories). Given a sensible order-sorted signature
Y, a X-conditional equation is an implication formula uy = vy A ... A u, =v, = t =1, hereafter written in the above
form (b), where t =t and u; = vy,...,u, = v, are -equations. A conditional equational theory is then a pair (X, E),
with X a sensible order-sorted signature, and E a set of conditional Z-equations.

In a conditional equational theory (%, E) all conditional equations t = ¢ if u; =v; A ... A u, = v, are implicitly
assumed to be universally quantified as

Vxp i 81, Xy is) t= if uy=vi Ao Au,=v,
with vars(t =t if uy =vi A ... Au, =v,) =1{x; : S,..., %, : Sy}, where, by definition, vars(t = ¢ if u; =
Vi A oo AU, =vy,) =vars(t) Uvars(t') Uvars(uy) Uvars(vi) U ... Uvars(u,) U vars(v,).

The notions developed for (unconditional) term rewriting and equational logic in Chapter [13| generalize to the
conditional case. The goal of this chapter is to explain you how. Let us begin with conditional term rewriting.

14.1 Conditional Term Rewriting and Conditional Equality

Definition 41 (Conditional Rewrite Rules and Conditional Term Rewriting Systems). Given a sensible order-sorted
signature ¥, a Z-conditional rewrite rule is an implication formula of the formu; —* vi A ... A u, 5" v, = t -1,
hereafter written in the form

t=>t 0f up oV AL AU, oY,

115

where t — t' is a Z-rewrite rule, and for each 1 < i < n, the terms u; and v, have sorts in the same kind [s;]. Note
that in the above notation, each condition u; —* v; is abbreviated fo just u; — v;. A conditional term rewriting system
(CTRS) is then a pair (£, R), with X an sensible order-sorted signature, and R a set of conditional X-rewrite rules.

The intuitive idea about how a conditional rewrite rule t — ¢ if u; — vi A ... A u, — v, is used is that we
can apply it to perform a rewrite # — v if u and v can be decomposed as u = C[t6] and v = C[¢'6] for a substitution
O:vars(t =t if uy = vi A ... Au, > v,) — Txy), and we can prove that the rule’s condition is satisfied for 6,

that is, that the conjunction
00 =" vif@ A ... A u,—-"v,0
holds. Note that when n = 0 (no equations in the condition) this specializes to (unconditional) term rewriting.

Let us see an example. Consider the CTRS (X, R), with X having sorts Nat, List, and Bool, constants O of sort Nat,
nil of sort List, and true, false of sort Bool, with unary function symbols s of sort Nat, and card : List — Nat, and binary
function symbols _V _ : Bool Bool — Bool, _; _: Nat List — List, _ = _: Nat Nat — Bool, and _ € _: Nat List — Bool,
and with R consisting of the following rules (where b : Bool, n,m : Nat, and [: List):

e trueV b — true

e falsevb —b

e 0=0 - true

o 0= s(n) — false

o s(n) =0 — false

e s(n)=s(m)>n=m

e n € nil — false

ene(ml) > m=m)Vvnel

e card(nil) - 0

o card(n;l) — s(card(D)) if nel— false

o card(n;l) — card(l) if nel— true
Intuitively, - V _ is Boolean disjunction, _; _ is the obvious list constructor, - = _ is the equality predicate on natural
numbers, _ € _is list membership, and card counts the number of non-repeated elements in a list. Therefore, if the rules
capture this intuition, we should be able to compute, for example, card(s(0); (0; (s(0); nil))) =3 s(s(0)).

We can try to apply to the term card(s(0); (0; (s(0); nil))) the next-to-last rule; but we cannot, because when we try to
evaluate its condition we get: s(0) € (0; (s(0); nil)) —x (s(0) = 0) Vv (s(0) € (s(0); nil)) —g false V (s(0) € (s(0); nil)) —¢
(s(0) € (s(0); nil)) —r (s(0) = s(0)) vV s(0) € nil > (0 = 0)V s(0) € nil > true v s(0) € nil -y true. But this
means that we can apply the last rule to perform the rewrite card(s(0); (0; (s(0); nil))) —x card(0; (s(0); nil)), and now,
since we can easily check that 0 € (s(0); nil) —} false, we can apply the next-to-last rule to perform a second rewrite
card(0; (s(0); nil)) —¢ s(card(s(0); nil)). In a similar way, the next-to-last rule can be applied to s(card(s(0); nil)) to get
a third rewrite s(card(s(0); nil)) —r s(s(card(nil))), which rewrites in a fourth and last step to s(s(0)), as expected.

14.1.1 Conditional Term Rewriting and Conditional Equality as Inference

The interesting question now is: how can we define the conditional rewrite relation —z? The question is interesting
because —y is recursive; that is, to just perform a single rewrite step we need to use its reflexive-transitive closure —}
to evaluate the rule’s condition. So —5 needs somehow to be defined in terms of itself!

This suggests viewing a CTRS (Z, R) as a theory in a simple logic with two kinds of formulas, namely, formulas
of the form ¢t — ¢, and of the form t —* ¢, where the provable formulas are defined inductively by the following three
rules of inference:

Definition 42 (Conditional Term Rewriting as Inference). Let (£,R) be a CTRS with £ = ((S, <), F) a sensible and
kind-complete signature with nonempty sorts, and let Y = {Y}ses be an S -indexed set of variables. Then we say that
the sequentt — t (resp. t —* t') is provable in (Z,R), denoted (X,R) + t — t', or, more briefly, t —g t' (resp.
E,R)rt =" 1, ort =, ') iff it can be derived by a finite application of the following inference rules:

o Reflexivity. For eacht e | Ts(Y), o7

e Replacement. Fort — ¢ if uy - vy A ... A u, = v, arule in R with set of variables X, 6 : X — Tx(Y) a
substitution, and term decompositions u = C[t6] and v = C[t'6)],

wml -*vif ... u,0 ->"v,0
C[t6] — C[r'8]

116

o Transitivity
H—h th o' 13

Hh o't
We saw in §13.1.2]that equality in an unconditional equational theory (Z, E) can be trivially reduced to rewriting in
the unconditional TRS (X, £ U E). Can a similar rabbit be pulled out of the hat in the conditional case? The answer is

yes! But we need to make clear what we mean byTE) and f Given a conditional equational theory (%, E) we define:
) f:{t—m’ if uy > viA...ANu,—>v|@=¢tif uy=vi A... ANu,=v,) €R},and
. (I:T={t’—>t if uyp = viA...ANu, ==t if uy=vi AN... \Nu, =v,) €R}.

Note that we have chosen a left-to-right orientation for the conditions in both cases.

We can now trivially reduce equality in a conditional equational theory to conditional rewriting in the CTRS (Z,E U
<1z?) as follows.

Definition 43 (The Conditional Equality Relation). Let (X, E) be a conditional equational theory with T a sensible,
kind-complete order-sorted signature with nonempty sorts, and Y an S -indexed set of variables. Then a conditional
E-equality step is, by definition, a conditional (_E) U (E)—rewrite step u = 2uE denoted u <g v, where u,v € | Tx(y).

Similarly, the conditional E-equality relation, also called the relation of equality modulo E, is, by definition, the
binary relation —>Z‘_E>U<E_) on |J Tsy), denoted <7, or, more briefly, =g. That is, by definition,

-
u=pv © E,EUE)ru-"v.

Notational Convention. Since in many applications a set of conditional equations E will always be used from left

-
to right, we shall often abbreviate the conditional rewrite relations — and —>i‘E,, associated to the CTRS (%, E) by,

-
respectively, — and —7. Likewise, we will abbreviate —, and —>%, associated to the CTRS (X, E) by, respectively,
g and <.

14.1.2 Proofs for Conditional Term Rewriting and Conditional Equality

Recall that in Deﬁnitionan (unconditional) (X, R)-rewrite proof was defined as either a term ¢ € | Tx(y), witnessing
a O-step rewrite t —} ¢, or a sequence of R-rewrite steps of the form ty —g t; =g t...t,.1 =g t,, Withn 2> 1,
witnessing fo —} f,. Likewise, in Definition [32] an (unconditional) (X, E)-equality proof was defined as either a
term t € |J Tx(y), witnessing a O-step E-equality ¢ <7 ¢, or a sequence of E-equality steps of the form
to opt) ©pt... .ty ©F t,, withn > 1, witnessing £, HE t,. But this idea of a proof as a linear sequence
of steps will notr work for either conditional rewriting proofs or conditional equality proofs. Why not? Well,
since conditional equality proofs are a special case of conditional rewrite proofs we can focus on why the
proof sequence idea breaks down for conditional rewrite proofs.

The problem is that to prove a single conditional rewrite step u —pg v applying a rule, say, t —
Y if uy > vy A... Au, > v, in R with a substitution 6 we also need to prove that the substitution
instance of the rule’s conditions u;6 —* vi8 A ... A u,6 —* v,,0, expanded out in their reflexive-transitive
sense, can be rewritten. But carrying out any of the (possibly many-step) rewrites u;0 —* v;,0 may require
applying other conditional rules whose conditions also have to be proved. So it is turtles all the way down!

So, what can we do? What we can do is to apply a very useful methodological principle in mathematics
that I call the generalize and conquer principle. That is, solving a possibly much more general problem
than the original one is often simpler than solving the original problem you had. So, what is the much more
general problem? Obviously, the much more general problem is finding an answer to the question: what is
a proof in any logic? But to solve this much more general problem we need to solve an even more basic
problem, namely, answering the question: what is a logic? We may get a little dizzy for a moment with so
much generality; but we should not lose our nerve. If the generalize and conquer priciple is worth its salt,
the more general the question, the easier should the answer be in many casesﬂ

'Obviously not in all cases, since there are many generalizations of specific results which either are false or no answer as to their
truth of falsity is currently known, so that legions of mathematicians are busy trying to give answers. A more general result is a more
powerful and valuable result and there is no general free lunch: one often needs to work very hard to achieve that extra generality. The
generalize and conquer priciple is obviously not a general law. It is instead a very useful heuristic principle that can save a lot of effort
if one can solve in one blow a possibly infinite number special cases. So the general idea is: you try first to think of a more general
problem (the more general the better) and try to solve that. If you succeed you are lucky, since you have then solved many problems,
including your original one, in one go. But if your conjecture is false or you cannot find a way to solve it at such a general level, then
you work your way down into gradually less general versions of it containing your original conjecture as a specail case.

117

So, what is a logic? The word “logic,” even in the specific sense of a formal logic, has several senses.
There are two sides to it. One the one hand, by a logic we mean a language of formulas together with some
rules of inference that allow us to prove the theorems of the logic. On the other hand a logic is a language
to reason correctly about something, some domain of knowledge. Consider, for example, equational logic.
For unconditional order-sorted equational logic, Definition [32] gives us exactly what we need for the first
side of this logic, since given an unconditional equational theory (Z, E), the theorems of (Z, E) are exactly

the equations ¢ = ¢’ for wich we can prove that t =g t' by rewriting with the TRS (2,_E) U <11?). But what is
the domain of knowledge about which we can reason correctly with equational logic? Obviously, Universal
Algebra! That is, an equational theory (Z, E) describes syntactically a semantic domain, namely, the class
of all Z-algebras that satisfy the equations E. For example, if (Z, E) is the theory of monoids, then the
semantic domain it describes is obviously the class of all monoids.

Building on prior work of Goguen and Burstall, who axiomatized the semantic domain part of a logic
in their theory of institutions [19]], I have given a general, axiomatic answer to the question “what is a
logic?” in both its deduction and its semantic domain aspects in the theory of general logics that I initiated
in [34]. But here we just need to get a handle on the deduction side of a logic, which is quite easy to do in
a summarized formE] answering in one blow our two questions: (i) what is a proof? and (ii) what is a logic
(in the deduction sense)?

A logic L has a (parametric) syntax in which we can define its formulas. For example, the syntax
of unconditional order-sorted equational logic is parameterized by the chosen signature X, and then its
corresponding formulas are the X-equations. A theory S in L is then a choice of syntax together with a set
of formulas in such a syntax. For example, a theory (Z, E) in unconditional equational logic is exactly this:
we fix X and specify a set E of Z-equations as the theory’s axioms. Proofs in L are then defined by proof
trees, which can be built up by finite application of the logic’s inference rules, which are parameterized by
each theory S.

Definition 44 The set of (finite) proof trees for a theory S in a logic L and the head of a proof tree are
defined inductively as follows. A proof tree is

e cither an open goal, simply denoted as ¢, where ¢ is a formula in the language of S; then, we define
head(p) = ¢.

e or a non-atomic tree with ¢ as its head, denoted as

T, - T
LT
2
where ¢ is a formula in the language of S, A is an inference rule in L, and Ty,...,T, are proof trees
such that
head(T\) --- head(T,)
@

is an instance of A for the theory S.

We say that a proof tree is closed whenever it is finite and contains no open goals.E] Finally, we say that
a formula ¢ is provable in S, denoted S + ¢ if an only if we can build a closed proof tree T such that
head(T) = .

That is, a proof tree with open goals is a proof attempt, which sometimes may never be completed, whereas
a closed proof tree is an actual proof, proving a theorem in the theory S.

Notice the difference between ¢, an open goal, and @, a goal closed by a rule without premises. For
example, in the inference system below, an equation ¢ = ¢ is still an open goal, but it can be closed as the
closed proof tree 7 = ¢ by applying the Reflexivity inference rule. Likewise, if (t = ') € E, and 6 is a

2What here I call a logic is a particular style of presenting an entailment system in the sense of [34]. For termination purposes, a
topic I will consider in this notion of logic has been used to give a general notion of operational termination of a theory in
[12].

30pen goals appear at the leaves of a proof tree; but they can be closed by the application of inference rules with no premisses. For
example, an open goal ¢ = 7 can be closed by applying a Reflexivity inference rule in the uncondtional ordered-sorted equational logic
inference system presented below.

118

substitution applied to vars(t = "), we can then close any open goal of the form C[t6] = C[¢'6] as the closed
proof tree C[t6] = C[t'6] by applying the Replacement inference rule.

To bring all these notions home, let us begin by asking the question: what is a possible choice of
inference rules A for unconditional order-sorted equational logic? A simple choice for A is the following,
parameterized by a theory (Z, E) with X sensible, kind-complete, and with nonempty sorts:

e Reflexivity. For each t € | Tx(Y), =7

e Replacement. For either (t = ') € Eor (' =1) € E, with X = vars(t = 1), 0 : X — Tx(Y) a
substitution, and term decompositions u = C[#6] and v = C[t'6],

Cl[#0] = C[1'0]

e Transitivity. For#,7,1" € | Tx(Y),
— 4 Y)
t=t =t
t=t"

Exercise 111 (Sequence Proofs Generalized as Closed Proof Trees). Given an (unconditional) order-sorted equational
theory (X, E), show that u =g v, that is, u = v has a proof in (X, E) in the sequence sense of Definition |32|iff we can
build a closed proof tree T such that head(T) = u = v.

For the theory of semigroups, with unsorted signature ¥ having a single binary function symbol _ - _, and E the
associativity axiom (x-y)-z = x-(y-z), build a closed proof tree proving the equality (x;-x;)-(x3-x4) = (x1 - (X2 - X3)) - X4.

So, now that we have answered the more general question of what is a proof in a logic, we have thus
found an answer to our original question: what is a conditional rewriting proof? (which answers as a
special case the question: what is a conditional equality proof?). The answer is now obvious. Conditional
rewriting is a logic where syntax is parameterized by order-sorted signatures X, the atomic sentences are
of the form ¢+ — ¢’ and t —* ¢, with t,#' € Ty(y) having sorts in the same kind, and where we also allow
implications of the form u; —* vi A ... A u, »* v, = — t', which we write in abbreviated form
ast =t if uy — vi A ... Au, = v,. A theory in this logic is exactly a CTRS (X, R). And the
rules of inference to prove those atomic formulas which are the theorems of (Z, R) are precisely the rules of
Reflexivity, Replacement, and Transitivity in Definition

For example, in the CTRS defining the cardinality of lists of natural numbers after Definition the
conditional rewrite s(card(s(0); nil)) —* s(s(0)) has the following (closed) proof tree:

s(0) € nil — false s(s(card(nil))) — s(s(0)) s(5(0)) =% s(s(0))
s(card(s(0); nil)) — s(s(card(nil))) s(s(card(nil))) —>* s(s(0))
s(card(s(0); nil)) —* s(s(0))

Exercise 112 (An Inference System for Order-Sorted Conditional Equational Logic). As explained in Definition
conditional equality proofs in an order-sorted conditional equational theory (X, E), with a sensible, kind-complete
order-sorted signature with nonempty sorts, are just proofs in the CTRS (Z,E) u (E). However, order-sorted conditional
equational logic is a logic in its own right and therefore deserves an inference system of its own. Prove that (Z,_E) u (E) F
u —* v, therefore proving u =g v in the sense of Definition iff we can prove (Z,E) v+ u = v using the following
inference system:

e Reflexivity. Foreacht € UTx(Y), 77—
o Replacement. For either (t =t if uy=vi A ... Nu,=vw)€eE or(=t if uy=viA...ANu,=vy)€eE
with set of variables X, 6 : X — Tx(Y) a substitution, and term decompositions u = C[t0] and v = C[t' 0],

wl=v0 ... u,0=v,0
C[19] = C[r'6]

o Transitivity
HhH=n Ih=181

Hh =8

119

14.2 Conditional Term Rewriting Modulo Axioms

As we did for unconditional rewrite rules in we can raise the level of abstraction of conditional
rewriting by building in an equational theory B. Here are the definitions.

Definition 45 Let X be a sensible order-sorted signature. A rewrite theory is a triple (X, B, R), with (£, B)
an unconditionaﬂ order-sorted equational theory, and R a set of conditional Z-rewrite rules.

Conditional rewriting with R modulo B is then be formalized as follows.

Definition 46 (Conditional Rewriting Modulo B). Let (£, B, R) be a conditional rewrite theory such that ¥
is sensible, kind-complete and has nonempty sorts; and let Y = {Y}ses be an S -indexed set of variables.
Then we say that the sequent t — t' (resp. t =% t’) is provable in (Z, B, R), denoted (£, B,R) + t — ', or,
more briefly, t —g/p t' (resp. (X, B,R) -t =", ort _’2/3 ') iff it can be derived by a finite application of

the following inference rules:

e Reflexivity. For eacht,t’ € |y Ts(Y) such thatt =g t’,

e Replacement. Fort — ' if u; — vi A ... A u, — v, a rule in R with set of variables X,
0 : X — Ts(Y) a substitution, and term decompositions C[t0], C[t'6] such that u =g C[t0] and
v =p C[1'0],
w0 -"vi0 ... u,0-"v,0

u—v

e Transitivity
Hh —n o A)

th ="t

Exercise 113 (A CTRS (X, R) as a special case of a Rewrite Theory (X, @,R)). Prove that for a CTRS (£,R) with £
sensible, kind-complete and with nonempty sorts, we have the equivalence:

CR+rt->"Y o Co,Rrr-o"t

where the first deduction uses the inference system of Definition 2] and the second deduction uses the inference system
of Definition That is, as in the unconditional case, conditional rewriting modulo axioms contains conditional
rewriting as the special case B = @.

Exercise 114 (General Transitivity). Notice that the Transitivity inference rule for conditional rewrite theories is not
fully general, since the first premise must be a one-step rewrite. However, this lack of generality is only apparent. Prove
the following for (X, B, R) a conditional rewrite theory such that X is sensible, kind-complete and has nonempty sorts
and 1, l‘,, e U Tz(y).'

1. C,B.R+t—>t = EBRFrt-o"Y1.

2. & BRrt—->"t N E,B,RF - = EBRrt-o" 1.

3 EBRrt—>" ANEBRF -t = EBRFt"1.

4 EBRrt—>t ACBRF -t" = EBRFt*1".

(Hints: (i) since the proper subtree relation among proof trees is well-founded, you can use it to prove (2) by well-
founded induction; (ii) consider getting (3) and (4) from (1) and (2)).

Exercise 115 As a sanity check, prove that if the rules R in (X, R) are unconditional, then:
1. (Z,R) + t > t in the sense of DefinitionH2]iff t —g t’ in the sense of Definition[31] and
2. (Z,R)+t =" 1 inthe sense of Definitiond2]iff t —, t' in the sense of Definition[51]
That is, Definition 2] specializes to Definition[3I|when (Z, R) is a TRS.
(Hints: (i) (2) does not automaticaly follow from (1). That is, since in the inference system of Definition[d2]the notation
t —y t' is purely formal, we do not know a priori that t —} t' in the sense of (X,R) v t =" t' means the reflexive-

transitive closure of t —g t' in the sense of Definition 31} this has to be proved; (ii) use Exercises and in
combination).

“In the full generality of rewriting logic decribed in [8], and also in the Maude language [10], the equational theory (Z, B) can be
conditional. However, for our present uses in Universal Algebra it is sufficient to consider unconditional equational theories (X, B).

120

Exercise 116 As a sanity check, prove that if the equations E in (X, E) are unconditional, then:
1. t &g 1 in the sense of DefinitionH3|iff t & 1’ in the sense of Definition[32] and
2. t &} 1 in the sense of Definitiond3|iff t <}, ' in the sense of Definition|32}

That is, Definition[d3]specializes to Definition[32|when (Z, E) is unconditional.
(Hint: use Exercise[I13).

Exercise 117 Prove that, given a conditional equational theory (2, E) satisfying the requirements in Definition[43] the
conditional E-equality relation =g is an equivalence relation on | Ty and on Txy,y for each kind [s] in 2.
(Hint: use Exercises[I13|and[IT4)in combination).

Exercise 118 (Deconstructing Conditional Rewriting and Conditional Equality Modulo; generalizes Exercises
and [I03). At the heavy price of losing the higher level of abstraction gained by reasoning modulo B, we can “de-
construct” a conditional rewrite theory (X, B, R) into a semantically equivalent term rewriting system (X, R U Bu E).
Similarly, we can deconstruct equational reasoning with E modulo B into standard equational reasoning with E U B.
Prove that if ¥ is sensible, kind-complete and has nonempty sorts, then, for any two X-terms t,t' € | Ty, we have :

-

I. &BRrt—*t & (ERUBUB)Ft—*1.
-

2. &, BLEVUE)rt—>"t & t=gupt.

(Hints: (i) use well-founded induction on the proper closed proof subtree relation to prove (1); (ii) use Exercise (1)
to reformulate the equivalence (1) as the equivalence:

SBRFt—7VEBR > & (SRUBUB)FI—FVESRUBUB) LT

since this latter equivalence may make it easier to carry through your well-founded induction; (ii) reduce (2) to (1)).

14.3 Executability Conditions for Conditional Rewrite Theories

What executability conditions should we impose on a conditional rewrite theory (X, B, R) —extending con-
ditions (1)—(4) in @ for (X, B, R) unconditional— so that it can be efficiently implemented? Some
extensions to the condional case are straightforward, and others, like those for (1) and (4), are rather subtle,
so I postpone discussing them until §14.3.2]and ??.

Let us begin with the straighforward extensions. First of all, regarding requirements on B such the exis-
tence of a B-matching algorithm nothing has changed: the same requirements apply here for the exact same
reasons. Next, consider condition (2) on sort-decreasingness. What should the notion of sort-decreasingness
be like for a conditional rewrite rule t — ¢ if u; — vi A ... A u, — v, in (X, B,R)? There are two
answers, one easy and another of more theoretical than practical interest. The easy answer is that, by def-
inition, t = ¢ if u; = vy A ... A u, — v, is sort-decreasing iff t+ — #' is so. The more theoretical and
more exact answer is thatt — ¢’ if u; > vi A ... A u, — v, is sort-decreasing iff for each substitution 6
such that (X, B,R) + u;0 =" v;0, 1 < i < n, we must have for any sort s € S that 76 : s = 6 : 5. Of course,
sort decreasingness in the first sense is a sufficient condition for sort-decreasingness in the second sense.
From now on I will only call a conditional rule “sort decreasing” in the first sense, because, although cer-
tainly a stronger condition than strictly necessary, it is very easily checkable, whereas checking the second
definition is in general undecidable.

14.3.1 Confluence and the Church-Rosser Property in the Conditional Case

An even easier extension is that of condition (3), confluence, since the same definition of confluence and
ground confluence modulo B in Definition [35]applies to the conditional case, by just replacing the uncondi-
tional rewrite theory (X, B, R) in Definition |35|by a conditional rewrite teory (X, B, R). Likewise, the notion
of joinability modulo B, t |g/p t’', extends without any changes to the conditional case.

However, even though the generalization of confluence to the conditional case couldn’t be more straight-
forward, the generalization of its key property, namely, the Church-Rosser property, which, being so easy
in the unconditional case, was left as Exercise@ is not so easy to establish in the conditional case. Since
it is such a fundamental property, allowing a very efficient reduction of order-sorted equational logic to just
ordered-sorted rewriting, I give a full proof below.

121

Theorem 15 (Church-Rosser Propery for Confluent Order-Sorted Conditional Rewrite Theories). Let
(Z, EUB) be a conditional order-sorted equational theory with X sensible, kind-complete and with nonempty

4
sorts and such that (X, B, E) is confluent. Then, for any two terms t,t’" € | Ts(y), we have the equivalence:
t =FuB = l‘J,E/B .

Proof. Since equational reasoning is more powerful than rewriting, the implication (<) holds not just for
Z, B,_E)) confluent, but for any (X, B,E), as shown in the following Lemma.

Lemma 13 Let (2, E U B) be a conditional order-sorted equational theory with X sensible, kind-complete
and with nonempty sorts. Then, for any two terms t,t' € \JTsyy, t L/t = t =pup t'.

Proof. t |g/p t' iff there is a term v € | J Txy) such that t —>*E/B vandt —>*E/B v, which is equivalent to

- — o - < - <
E,B,E)+t —>*vand (X,B, E) v v =" t'. But this implies that (£,B,EUE)+t ->*vand (X,B,E U E) +
v —* ', which by Exercise[[14|and Exercise[II8}(2) implies t =gp t', as desired. O

We can prove the implication (=) by well-founded induction on the proper closed proof subtree relation.
e SR el SR B T = SR
Indeed, by definition, t =gop V' f C,EUEUBUB)Ft >t or(C,EUEUBUB)Ft—-"t. That
is, t =gup t' iff we can build a closed proof tree T for the goal t — t" or the goal t =" ' in the theory
(2,_E) V) (E V) 73) u E). We now reason by cases on the shape of T, using well-founded induction to assume
the result for smaller subtrees. If T was built using the Reflexivity inference rule, then t = t' and the result
follows trivially. If T was built using the Replacement inference rule we can distinguish three cases:

1. We used a rule in 7?) v (13, and then t |g/p t' follows trivially from the Reflexivity inference rule in

Definition

. ﬁ . . . ﬁ q &
2. We used a rule in E, which implies (£,B,E U B U B) + t — ', which by Exercise (1) implies
Z, B,f U 73) U <§) F t =% ¢/, which by Exercise (1) is equivalent to t —>*E/B t', which by the
Reflexivity inference rule in Definition 46|trivially implies t Lg/p t', as desired.

3. We used a rule in E which by the same reasoning implies t' —7 B b which by the Reflexivity

inference rule in Deﬁnitiontrivially impliest |g/p t', as desired.

The only remaining case is a closed proof tree T built by the Transitivity inference rule. This means
that there is a term u € | Txy)y and smaller closed proof trees Ty, T, proving, respectively, the formulas
t = uand u =" t'. The well-founded induction hypothesis then gives us t |g/p u and u |g/p t', so there

H
are terms v,V € | J Txy) such that t —>*E/B v, u —>*E/B v, U —>Z/B Vv, and ' —>E/B V. But since (X, B, E) is
confluent, there is then a term w € \J Tx(y) such that v =y, w, and v — /g W» Which by Exercise (2)
trivially implies t |gp t', as desired. O

As for the unconditional case, sort-decreasigness, although not strictly required for conditional conflu-
ence, is in practice very important, since its absence can easily block conditional confluence. Consider,
for example, a CTRS (Z, R) where X has sorts A and B with A < B, constants a, b of respective sorts A, B,
and function symbols f,g : A — A,and f : B — B; and, forx : A, R = {a — b,g(x) = a, f(x) >
x if g(x) — x}. Note that the lefthand sides of these rules do not have any function symbols in common.
However, we have f(a) —r a —g b, and f(a) —r f(b), but, since a and f(b) cannot be further rewritten,
we do not have b |g f(b).

14.3.2 Operational Termination

Termination of a conditional rewrite theory (Z, B, R) is a bit subtle. Naively, one could imagine that the
unconditional notion of termination extends to the conditional case in a straightforward way. That is, that
it is enough to require that —g/p is well-founded. But this is a mistake. Consider, for example, the very
simple unsorted CTRS (Z, R) where X has just three constants a, b, ¢, and withR = {a = b if a — c}.

It is easy to see that, since its condition can never be fulfilled, nothing can be rewritten with this con-
ditional rewrite rule. That is, the relation —p is the empty set! Therefore, it is trivially well-founded.

122

However, any reasonable interpreter mechanizing conditional rewriting will loop when trying to rewrite the
constant a. Why? Because such a mechanization, to be correct, must, implicitly or explicitly, build a proof
tree which, if the computation terminates, will eventually be closed. Using the rule a — b if a — c, the
interpreter will try to build a proof tree with the goal @ — b at its root. It will then try to build a proof tree
for its condition a — ¢, but since the only rule isa — b if a — ¢, and b # ¢, it can only do so by using
the Transitivity inference rule to build first a proof tree for a — b, and then another for » — c¢. But then it
is turtles all the way up, since what the interpreter ends up building is the infinite proof tree:

. _)*‘
57 b c
a—"*c
a—b

Of course, well foundedness of —g is always a necessary condition. But, as the above example shows,
it is not a sufficient condition for a conditional rewrite theory (X, B, R) to terminate. What the example
actually shows is that —unlike unconditional termination, which might be called one-dimensional, since
it is the absence of infinite sequences— conditional termination is instead what might be called a two-
dimensional notion, since it is an absence of infinite proof trees. That is, we can loop either horizontally, as
in the unconditional case, by building an infinite sequence of rewrites; or we can loop vertically, even just
when attempting a single rewrite step. So we need a better notion of termination. A number of conditional
temination notions have been proposed (see, e.g., [41] for a very good survey up to 2002); but some of them
are clearly wrong. For example, there is one called “effective termination” according to which the above
example terminates!

So, what can we do? Why, of course, apply the generalize and conquer principle! Why not trying to
find an adequate notion of termination, not just for conditional rewriting, but for any logic? It may in the
end be simpler; and it will certainly be much more widely applicable.

The notion of termination we are looking for should capture the idea that a theory § in a logic £
terminates iff, given any goal formula ¢ in the language of S, a machine implementation of the logic, an
interpreter for L, will never loop when trying to find a closed proof T proving goal ¢. Duran, Lucas,
Marché, Urbain, and I defined this notion in [12] and called it operational termination, to emphasize the
fact that it captures the practical notion of a machine implementation of £ never looping when trying to
prove a goal ¢ in the language of S.

More concretely, we also assumed that all the inference rules A of £ are such that it makes sense for a
machine implementation to try to solve the inference rule’s conditions for an instance of any such rule A of

the form
©1 P

¥

by working sequentially from left to right by trying to find first a closed proof tree T for subgoal ¢, then
another such T, for subgoal ¢,, and so on, until (if successful) finding a closed proof tree T, for subgoal
¢y, thus obtaining a closed proof tree for goal ¢. We called the proof attempts that the interpeter can buidl
this way well-formed proof trees. Lack of operational termination then coincides with the presence of an
infinite well-formed proof tree, such as the one shown above for the goal @ — b using the conditional rule
a — b if a — c. Here are the precise definitions:

Definition 47 A proof tree T is a proper prefix of a proof tree T’ if there are one or more open goals
@1y -s@n in T such that T' is obtained from T by replacing each ¢; by a non-atomic proof tree T; having
¢; as its head. We denote thisas T C T'.

An infinite proof tree is an infinite increasing chain of finite trees, that is, a sequence {T;}ien such that
for all i, T,' C Tin.

Definition 48 We say that a proof tree T is well-formed if it is either an open goal, or a closed proof tree,
or a proof tree of the form

T, - T
LT
¥
where for each j, 1 < j < n, T; is itself well-formed, and there is an i < n such that T; is not closed, for
any j < iTjis closed, and each of the Ti,1 ,...,T, is an open goal. An infinite proof tree is well-formed if

123

it is an ascending chain of well-formed finite proof trees. S is called operationally terminating if no infinite
well-formed tree for S exists.

Our application of the generalize and conquer principle thus solves in one blow the problem of finding
a proper notion of termination, not just for a CTRS (X, R), or, more generally, for a conditional rewrite
theory (X, B, R), but for theories in many other logics. For example, the original stimulus in [[12] came from
the need to find a proper notion of termination for theories in membership equational logic [36, 7], which
generalizes order-sorted equational logic and combines equalities ¢ = ' and membership predicates ¢ : s
for s a sort. For another example, if our logic £ is Horn logic, then a (pure) Prolog interpreter is a Horn
logic interpreter which evaluates subgoals from left to right. Operational nontermination of a Horn theory
S, whose sentences are clauses of the form P(7) if Pi(f]) A ... A Py(£), is then the possibility that a
Horn logic implemention (not necessarily a given Prolog interpreter) could generate an infinite well-formed
proof tree when trying to solve a some goal formula ¢ in the language of S.

Note that for a goal ¢ in a theory S of logic L there could simultaneously exist a closed proof tree T
proving ¢, and an infinite well-formed proof tree T attempting to prove the same goal ¢. This is exactly
what happens, even for unconditional rewrite theories (Z, B, R), when (X, B, R) is weakly teminating: there
may exist a terminating sequence t —g,p!t" and also an infinite rewrite sequence from ¢ trying to reach ¢’.
Likewise, this can happen for conditional rewrite theories, Hon logic, theories, and theories in many logics.

Therefore, whether an interpreter happens to loop trying to build an infinite proof tree may crucially
depend on the interpreter’s strategy, which dictates the choices the interpreter makes. Since — because of
their depth first search strategy— Prolog implementations are incomplete (that is, they may fail to find a
proof for a goal ¢ when such a proof exists), a closed proof tree T for a given goal ¢ may exist, but a Prolog
interpreter may “go down the deep end” building a 7*° and never finding the existing closed proof tree T'.
Of course, if the Prolog program S is operationally terminating this will never happen, so that the Prolog
interpreter will then, for any goal ¢ in the language of S, either: (i) stop with a closed proof tree T proving
goal ¢, that is, proving S + ¢, or (ii) fail to find any such closed proof tree in finite time; that is, after a finite
number of failed proof attempts the interpreter will stop with failure, showing that S ¥ ¢.

Exercise 119 (Unconditional Termination is Operational Termination). Prove than an unconditional rewrite theory

(Z, B,R) is teminating in the standard well-founded sense of Definition [36] iff, when viewed as a special case of a
conditional rewrite theory, it is operationally terminating using the inference system of Definition [#6]

124

Bibliography

(1]

(2]
(3]

[4]

(5]
(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]
(18]

[19]

(20]

[21]

J. Avigad and S. Feferman. Godel’s functional (“Dialectica”) interpretation. In S. Buss, editor, Handdbook of
Proof Theory, pages 337-405. Elsevier, 1998.

F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

J. Barwise. An introduction to first-order logic. In J. Barwise, editor, Handbook of Mathematical Logic, pages
5-46. North-Holland, 1977.

G. Birkhoff. On the structure of abstract algebras. Proceedings of the Cambridge Philosophical Society, 31:433—
454, 1935.

G. Birkhoff. Lattice Theory. American Mathematical Society, 1948.

P. Borovansky, C. Kirchner, H. Kirchner, and P.-E. Moreau. ELAN from a rewriting logic point of view. Theoret-
ical Computer Science, 285:155-185, 2002.

A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in membership equational logic. Theo-
retical Computer Science, 236:35-132, 2000.

R. Bruni and J. Meseguer. Semantic foundations for generalized rewrite theories. Theor. Comput. Sci., 360(1-
3):386-414, 2006.

G. Cantor. Contributions to the Founding of the Theory of Transfinite Numbers. Dover, 1955. Originally published
in Math. Annalen XLVI, 481-512, 1895, and XLIX, 207-246, 1897.

M. Clavel, F. Durén, S. Eker, J. Meseguer, P. Lincoln, N. Marti-Oliet, and C. Talcott. All About Maude — A
High-Performance Logical Framework. Springer LNCS Vol. 4350, 2007.

R. Dedekind. The Nature and Meaning of Numbers. Dover, 1963. Part II of Essays on the Theory of Numbers in
the Dover edition.

F. Durén, S. Lucas, C. Marché, J. Meseguer, and X. Urbain. Proving operational termination of membership
equational programs. Higher-Order and Symbolic Computation, 21(1-2):59-88, 2008.

F. Durén, S. Lucas, and J. Meseguer. MTT: The Maude Termination Tool (system description). In IJCAR 2008,
volume 5195 of Lecture Notes in Computer Science, pages 313-319. Springer, 2008.

F. Durén, S. Lucas, and J. Meseguer. Termination modulo combinations of equational theories. In Frontiers of
Combining Systems, 7th International Symposium, FroCoS 2009, Trento, Italy, September 16-18, 2009. Proceed-
ings, volume 5749 of Lecture Notes in Computer Science, pages 246—262. Springer, 2009.

F. Duran and J. Meseguer. A Church-Rosser checker tool for conditional order-sorted equational Maude specifi-
cations. in Proc. WRLA’10, Springer LNCS 6381, 2010.

F. Durédn and J. Meseguer. On the Church-Rosser and coherence properties of conditional order-sorted rewrite
theories. J. Algebraic and Logic Programming, 2012. Available online 11 Jan. 2012.

K. Futatsugi and R. Diaconescu. CafeOBJ Report. World Scientific, AMAST Series, 1998.

K. Godel. The Consistency of the Axiom of Choice and the Generalized Continuum Hypothesis with the Axioms
of Set Theory. Princeton U.P., 1940. Annals of Mathematical Studies, Vol. 3.

J. Goguen and R. Burstall. Institutions: Abstract model theory for specification and programming. Journal of the
ACM, 39(1):95-146, 1992.

J. Goguen and J. Meseguer. Completeness of many-sorted equational logic. Houston Journal of Mathematics,
11(3):307-334, 1985. Preliminary version in: SIGPLAN Notices, July 1981, Volume 16, Number 7, pages 24-37.

J. Goguen and J. Meseguer. Order-sorted algebra I: Equational deduction for multiple inheritance, overloading,
exceptions and partial operations. Theoretical Computer Science, 105:217-273, 1992.

125

(22]

(23]

(24]

[25]

[26]

(27]

(28]
[29]

(30]

(31]

(32]
(33]
[34]

(35]

(36]

(37]
(38]

(39]

(40]

(41]
[42]
[43]

[44]

[45]

[46]

[47]

(48]
[49]

J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud. Introducing OBJ. In Software Engineering
with OBJ: Algebraic Specification in Action, pages 3—167. Kluwer, 2000.

N. Goldenfeld and C. Woese. Biology’s next revolution. http://www.hhmi.org/news/lindquist2.html,
2007.

P. Halmos. Naive Set Theory. Van Nostrand, 1960.

J. Hendrix, J. Meseguer, and H. Ohsaki. A sufficient completeness checker for linear order-sorted specifications
modulo axioms. In Automated Reasoning, Third International Joint Conference, IJCAR 2006, pages 151-155,
2006.

H. Hermes. Enumerability, Decidability, Computability. Springer Verlag, 1969.

T. Jech. About the axiom of choice. In J. Barwise, editor, Handbook of Mathematical Logic, pages 345-370.
North-Holland, 1977.

P. Johnstone. Notes on Logic and Set Theory. Cambridge University Press, 1987.

F. W. Lawvere. An elementary theory of the category of sets. Proceedings, National Academy of Sciences,
52:1506-1511, 1964.

F. W. Lawvere. The category of categories as a foundation for mathematics. In S. Eilenberg, D. Harrison,
S. MacLane, and H. Rohrl, editors, Proc. Conf. Categorical Algebra, La Jolla 1965, pages 1-20. Springer-Verlag,
1966.

F. W. Lawvere. Continuously variable sets: Algebraic Geometry = Geometric Logic. In Proc. Logic Colloquium
(Bristol 1973), pages 135-153. North-Holland, 1975.

S. Mac Lane and I. Moerdijk. Sheaves in Geometry and Logic. Springer Verlag, 1992.
J. Meseguer. Order completion monads. Algebra Universalis, 16:63-82, 1983.

J. Meseguer. General logics. In H.-D. E. et al., editor, Logic Colloquium’87, pages 275-329. North-Holland,
1989.

J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical Computer Science,
96(1):73-155, 1992.

J. Meseguer. Membership algebra as a logical framework for equational specification. In F. Parisi-Presicce, editor,
Proc. WADT 97, pages 18-61. Springer LNCS 1376, 1998.

J. Meseguer. Twenty years of rewriting logic. J. Algebraic and Logic Programming, 81:721-781, 2012.

J. Meseguer and J. Goguen. Initiality, induction and computability. In M. Nivat and J. Reynolds, editors, Algebraic
Methods in Semantics, pages 459-541. Cambridge University Press, 1985.

J. Meseguer and G. Rosu. A total approach to partial algebraic specification. In Proc. ICALP’02, pages 572-584.
Springer LNCS 2380, 2002.

P. D. Mosses. Denotational semantics. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science,
Vol. B, Chapter 11. North-Holland, 1990.

E. Ohlebusch. Advanced Topics in Term Rewriting. Springer Verlag, 2002.
B. Russell. Introduction to Mathematical Philosophy. George Allen & Unwin, 1920.

D. Scott. Outline of a mathematical theory of computation. In Proceedings, Fourth Annual Princeton Conference
on Information Sciences and Systems, pages 169-176. Princeton University, 1970. Also appeared as Technical
Monograph PRG 2, Oxford University, Programming Research Group.

D. Scott and C. Strachey. Toward a mathematical semantics for computer languages. In Microwave Research
Institute Symposia Series, Vol. 21: Proc. Symp. on Computers and Automata. Polytechnical Institute of Brooklyn,
1971.

B. van der Waerden. Algebra (vols. I and 1I). Ungar, 1970.

A. van Deursen, J. Heering, and P. Klint. Language Prototyping: An Algebraic Specification Approach. World
Scientific, 1996.

J. van Heijenoort, editor. From Frege to Godel — A Source Book in Mathematical Logic, 1879-1931. Harvard
Univ. Press, 1967.

P. Winkler. Mathematical Mind-Benders. A. K. Peters Ltd., 2007.
L. Zadeh. Fuzzy sets. Information and Control, 8:338-353, 1965.

126

http://www.hhmi.org/news/lindquist2.html

	I Basic Set Theory
	Introduction to Part I
	Set Theory as an Axiomatic Theory
	The Empty Set, Extensionality, and Separation
	The Empty Set
	Extensionality
	The Failed Attempt of Comprehension
	Separation

	Pairing, Unions, Powersets, and Infinity
	Pairing
	Unions
	Powersets
	Infinity

	Relations, Functions, and Function Sets
	Relations and Functions
	Formula, Assignment, and Lambda Notations
	Images
	Composing Relations and Functions
	Abstract Products and Disjoint Unions
	Relating Function Sets

	Simple and Primitive Recursion, and the Peano Axioms
	Simple Recursion
	Primitive Recursion
	The Peano Axioms

	Binary Relations on a Set
	Directed and Undirected Graphs
	Transition Systems and Automata
	Relation Homomorphisms and Simulations
	Orders
	Sups and Infs, Complete Posets, Lattices, and Fixpoints
	Equivalence Relations and Quotients
	Constructing Z and Q

	Sets Come in Different Sizes
	Cantor's Theorem
	The Schroeder-Bernstein Theorem

	Indexed Sets
	Indexed Sets are Surjective Functions
	Constructing Indexed Sets from other Indexed Sets
	Indexed Relations and Functions

	From Indexed Sets to Sets, and the Axiom of Choice
	Some Constructions Associating a Set to an Indexed Set
	The Axiom of Choice

	Well-Founded Relations, and Well-Founded Induction and Recursion
	Well-Founded Relations
	Constructing Well-Founded Relations

	Well-Founded Induction
	Well-Founded Recursion
	Examples of Well-Founded Recursion
	Well-Founded Recursive Definitions: Step Functions
	The Well-Founded Recursion Theorem

	II Universal Algebra, Equational Logic and Term Rewriting
	Algebras
	Unsorted -Algebras
	Many-Sorted -Algebras
	Order-Sorted -Algebras
	Terms and Term Algebras
	A Set-Theoretic Construction of Term Algebras
	More on Order-Sorted Signatures

	Term Rewriting and Equational Logic
	Terms, Equations, and Term Rewriting
	Term Rewriting
	Equational Proofs

	Term Rewriting and Equational Reasoning Modulo Axioms
	Sort-Decreasingness, Confluence, and Termination
	Canonical Term Algebras
	Sufficient Completeness

	Conditional Rewriting and Conditional Equational Logic
	Conditional Term Rewriting and Conditional Equality
	Conditional Term Rewriting and Conditional Equality as Inference
	Proofs for Conditional Term Rewriting and Conditional Equality

	Conditional Term Rewriting Modulo Axioms
	Executability Conditions for Conditional Rewrite Theories
	Confluence and the Church-Rosser Property in the Conditional Case
	Operational Termination

