
Program Verification: Lecture 8

José Meseguer

Computer Science Department
University of Illinois at Urbana-Champaign

1



Overlaps as Unification Problems

We reduced confluence (under the termination assumption) to
joinability of context-free nested simplifications with overlap. But
note that we can have a context-free overlap situation with
equations u = v and u′ = v′ (again, with disjoint variables) if and
only if there is a nonvariable position p in u and a substitution θ

such that,

(†) upθ = u′θ.

Therefore, finding all possible context-free nested simplifications
with overlap can be reduced to finding, for all pairs of equations
u = v and u′ = v′ in E and all nonvariable positions p in u, all
solutions to (†). Problems of the form (†) are called unification
problems.

2



Unification

In general, the unification problem consists in, given terms t and t′

whose sorts are in the same connected component, finding a
substitution θ that makes them equal, so that we have identical
terms, tθ = t′θ. The substitution θ is then called a unifier of t and
t′.

Under very reasonable conditions on Σ, such as finiteness , this
problem is decidable in a very strong sense. Namely, we can
effectively find a finite set of unifiers {θ1, . . . θn}, that are the most
general possible, in the sense that for any other substitution
µ : vars(t = t′) −→ TΣ(V ) such that tµ = t′µ, we can always find a
θi, say, θi : vars(t = t′) −→ TΣ(X), and a substitution
ρ : X −→ TΣ(V ) such that for each x ∈ vars(t = t′) we have
xµ = xθi ρ.

3



B-Unification

The standard unification problem is to try to unify two terms. But
we have already encountered situations, such as the relation
−→E⃗/B , in which it is very useful to deal not with terms, but with
equivalence classes of terms modulo some equational axioms B.

Therefore, it is natural, given a set of equational axioms B, such as
the associativity, commutativity, and identity of some operators, to
generalize the unification problem to the following B-unification
problem: given an equation t = t′ are there substitutions θ such
that

tθ =B t′θ.

4



B-Unification (II)

For B any combination of associativity, commutativity, and
identity axioms, there are known algorithms that can find a family
of most general unifiers for each given unification problem t = t′.
However, for the case of associativity alone, or of associativity and
identity alone, this family of most general unifiers may be infinite.

In particular, for Σ a finite signature, if we choose B to be any
combination of associativity, commutativity and identity axioms for
different (subsort-overloaded) binary operators in Σ, except
associativity without commutativity, there is indeed an algorithm
that, given an B-unification problem, either declares the problem
unsolvable, or finds a finite set of most general unifiers solving it.
Such a B-unification algorithm is used by the Church-Rosser
Checker.

5



More on Unification

So far we have said nothing about unification algorithms, that can
effectively find a set of most general unifiers or declare the
corresponding problem unsolvable.

Unification is indeed a vast research area, and the more we can do
in this course is to give a flavor for the key ideas. This can be done
quite well by considering the simplest version of the unification
problem, for which, if the given equation has a solution, then it has
a unique most general unifier.

6



More on Unification (II)

This simplest version is the case of a sensible many-sorted
signature Σ without ad-hoc overloading.

The key idea of a unification algorithm is to transform the original
equation we want to solve into a set of equations equivalent to the
original equation, in the sense that both sets have the same
solutions.

We then stop either with failure, or with a set of equations in solved
form, that is, equations having the shape, {x1 = t1, . . . , xn = tn},
where the xi do not appear in the tj . But this is just another garb
for a substitution θ = {(x1, t1), . . . , (xn, tn)}.

7



The Unification Algorithm

We can describe the unification algorithm, à la Martelli-Montanari,
as a set of inference rules, that transform a set of equations E into
another set of equations that is equivalent to it from the solvability
point of view, or into the constant failure. The following inference
rules assume a many-sorted signature, make the equality symbol
commutative, and use a global set V of variables:

• Delete:
{E, t = t}

{E}

• Decompose:

{E, f(t1, . . . , tn) = f(t′1, . . . , t
′
n)}

{E, t1 = t′1, . . . , tn = t′n)}

8



The Unification Algorithm (II)

• Conflict:

{E, f(t1, . . . , tn) = g(t′1, . . . , t
′
m)}

failure
if f 6= g

• Coalesce:
{E, x = y}

{E{x 7→ y}, x = y}
if x, y ∈ vars(E), x 6= y

• Check:
{E, x = t}

failure
if x ∈ vars(t), x 6= t

9



The Unification Algorithm (III)

• Eliminate:
{E, x = t}

{E{x 7→ t}, x = t}

if x 6∈ vars(t), t 6∈ V, x ∈ vars(E).

We can illustrate the use of these inference rules by finding the
most general unifier for a relatively simple, yet nontrivial,
unification problem, namely, solving the equation,

f(g(x, h(y)), z) = f(z, g(k(u), v))

for which the above rules give us the following transformations:

{f(g(x, h(y)), z) = f(z, g(k(u), v))} −→ (Decompose)

10



The Unification Algorithm (IV)

{g(x, h(y)) = z, z = g(k(u), v)} −→ (Eliminate)

{g(x, h(y)) = g(k(u), v), z = g(k(u), v)} −→ (Decompose)

{x = k(u), v = h(y), z = g(k(u), v)} −→ (Eliminate)

{x = k(u), v = h(y), z = g(k(u), h(y))},

which is the desired most general unifier, yielding the identity,

f(g(k(u), h(y)), g(k(u), h(y))) = f(g(k(u), h(y)), g(k(u), h(y))).

11



Unification Modulo Commutativity

To illustrate the case of B-unification in a many-sorted signature
Σ, let us assume that B = Comm is a collection of commutativity
axioms for some binary symbols Σcomm ⊆ Σ. The inference rules
for unification modulo commutativity are:

• Delete:
{E, t = t}

{E}

• Decompose: (f ∈ (Σ− Σcomm))

{E, f(t1, . . . , tn) = f(t′1, . . . , t
′
n)}

{E, t1 = t′1, . . . , tn = t′n)}

12



Unification Modulo Commutativity (II)

• Decompose-C: (f ∈ Σcomm)

{E, f(t1, t2) = f(t′1, t
′
2)}

{E, t1 = t′1, t2 = t′2)} ∨ {E, t1 = t′2, t2 = t′1)}

• Conflict:

{E, f(t1, . . . , tn) = g(t′1, . . . , t
′
m)}

failure
if f 6= g

• Coalesce:
{E, x = y}

{E{x 7→ y}, x = y}
if x, y ∈ vars(E), x 6= y

13



Unification Modulo Commutativity (III)

• Check:
{E, x = t}

failure
if x ∈ vars(t), x 6= t

• Eliminate:
{E, x = t}

{E{x 7→ t}, x = t}
if x 6∈ vars(t), t 6∈ V, x ∈ vars(E).

Note that now, because of Rule Decompose-C, there can be several
solutions to a unification problem. Also, we define failure as an
identity element for _ ∨_.

We can illustrate the use of these rules by finding the most general
unifiers modulo commutativity when Σcomm = {g}.

14



Unification Modulo Commutativity (IV)

Let us apply these rules to solve the equation,

f(g(h(y), x), z) = f(z, g(k(u), v))

{f(g(h(y), x), z) = f(z, g(k(u), v))} −→ (Decompose)
{g(h(y), x) = z, z = g(k(u), v)} −→ (Eliminate)
{g(h(y), x) = g(k(u), v), z = g(k(u), v)} −→ (Decompose-C)

{x = v, k(u) = h(y), z = g(k(u), v)} ∨ {x = k(u), v = h(y), z =

g(k(u), v)} −→ (Conflict ∨ Eliminate)

failure ∨ {x = k(u), v = h(y), z = g(k(u), h(y))} =

{x = k(u), v = h(y), z = g(k(u), h(y))}

applying the resulting unifier we obtain the identity,
f(g(h(y), k(u)), g(h(y), k(u))) =comm f(g(k(u), h(y)), g(k(u), h(y))).

15



Where to Go from Here

We can only sketch how to go from here to more general unification
algorithms, such as B-unification in an order-sorted signature Σ.

First of all, note that the presence of overloading and subsorts will
typically move us from a single most general unifier to a finite set
of them. This is because of the presence of subsort overloaded
operators, which may lead to several different solutions. Note also
that, in the presence of subsorts, even apparently innocent
equations such as x : s = y : s′ may lead to failure, because the
sorts s and s′ may not have any common subsort. For example, in
an INT specification, an equation X = Y, with X of sort NzNat, and
Y of sort NzNeg will fail.

16



Where to Go from Here (II)

Chapter 15.1 of the Maude book gives a detail presentation of the
inference rules for order-sorted C-unification and gives an
implementation that you can use in Maude for experimentation.

The latest version of Maude provides general order-sorted
unification algorithm modulo any combination of C and/or A

and/or U axioms. Since the set of A-unifiers of an equation can be
infinite, Maude provides a finite set and a warning if more solutions
may exist.

The Church-Rosser Checker uses unification modulo any
combinations of associativity, commutativity, and identity axioms;
but may not generate all critical pairs [giving a warning] for
associativity without commutativity axioms.

17



Where to Go from Here (III)

For a survey of unification algorithms modulo axioms see:

J.-P. Jouannaud and C. Kirchner, “Solving Equations in Abstract
Algebras,” in J.-L. Lassez and G.Plotkin, eds., Computational
Logic: Essays in Honor of Alan Robinson.

For order-sorted B-unification see:

J. Meseguer, J.A. Goguen, and G. Smolka, “Order-Sorted
Unification,” J. Symbolic Computation, Volume 8, 1989, pages
383–413.

J. Hendrix and J. Meseguer, “Equational Order-Sorted Unification
Revisited,” Electr. Notes Theor. Comput. Sci., Vol. 290, 2012,
pages 37–50.

18



What Are Critical Pairs?

Theorem: Let (Σ, B ∪ E) be an order-sorted equational theory,
with Σ B-preregular, E⃗ sort-decreasing, and −→E⃗/B terminating.
Let V = vars(E), and γ : V → V ′ a bijective, sort-preserving
renaming of variables with V ∩ V ′ = ∅. Then, E⃗ is confluent
modulo B iff, for each pair of equationsa u = v in E and u′ = v′ in
Eγ (including (u′ = v′) ≡ (uγ = vγ)) for each nonvariable position
p in u, and for each most general order-sorted B-unifier θ such that
upθ =B u′θ, we have,

(♭) vθ ↓E⃗/B u[v′]pθ.

The corresponding equations vθ = u[v′]pθ, are called the critical
pairs of the equations E modulo B.

aIf B contains associativity axioms, equations E should first be generalized
to B-match “with extension,” Cf. §4.8 in All About Maude.

19



What Are Critical Pairs? (II)

Proof: (For B = ∅). We had already reduced checking confluence to
checking that, for each pair of equations (u = v) ∈ E and
(u′ = v′) ∈ Eγ, for each nonvariable position p in u, and for each
order-sorted unifier µ such that upµ = u′µ, we have,

(♭) vµ ↓E⃗ u[v′]pµ.

But if Unif (up = u′) = {θ1, . . . , θn} is the set of most general
order-sorted B-unifiers for the equation up = u′, then we can find a
θi ∈ Unif B(up = u′) and a substitution ρ such that µ = θi ρ.

Since we know that there is a w such that vθi →∗
E⃗
w and

u[v′]pθi →∗
E⃗
w, we will be done if we prove the following:

20



What Are Critical Pairs? (III)

Substitution Lemma: If t ∗−→E⃗ t′ and ρ is a substitution, then
tρ

∗−→E⃗ t′ρ.

Proof: It is enough to prove the case for t −→E⃗ t′, since then the
case t

∗−→E⃗ t′ follows easily by induction on the number of steps.
But t −→E⃗ t′ means that there is an equation (u = v) ∈ E, position
q and a substitution θ such that t = t[uθ]q and t′ = t[vθ]q.

But note that, by the definition of the function _ρ, we can easily
prove that we have, tρ = tρ[uθρ]q, and t′ρ = tρ[vθρ]q. Therefore,
tρ −→E⃗ t′ρ holds by applying u = v at position q with substitution
θ;_ρ, as desired. q.e.d.

This finishes the proof of the Theorem (for B = ∅). q.e.d.

21



Critical Pair for Self-Overlap of Associativity Rule

22



In Summary

What the Church-Rosser Checker does is:

• it checks that the oriented equations E⃗ are sort-decreasing;

• it forms all the critical pairs for the oriented equations E⃗ and
tries to join them;

• it returns as proof obligations those equation specializations
that it could not prove sort-decreasing, and those simplified
critical pairs that it could not join.

The arguments in Lecture 7 and in this lecture have shown that
this method is correct for checking confluence, under the
termination assumption.

23


