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Definition of Many-Sorted Algebras

For Σ = (S, F,G) a many-sorted signature, a many-sorted
Σ-algebra is a pair A = (A,_A), where:

1. A is a sort symbol interpretation function, choosing for each
sort/type symbol s ∈ S a corresponding data set As

interpreting that sort. Therefore, if S = {s1, . . . , sn}, then A is
a function:

A : {s1, . . . , sn} ∋ si 7→ Asi ∈ {As1 , . . . , Asn}, 1 ≤ i ≤ n

where the As1 , . . . , Asn need not be different sets.

Notation. We denote the sort interpretation function A as
A = {As}s∈S , call A an S-indexed set, and think of it as a
parametric family of sets, parameterized by s ∈ S.
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2. _A is a function symbol interpretation function, choosing for
each:

• constant a : ϵ → s in G an element aA ∈ As

• function symbol f : s1 . . . sn → s in G, n ≥ 1, a function
fA : As1 × . . .×Asn → As.

Notation: if w = s1 . . . sn, we write Aw = As1 × . . .×Asn . For
f : s1 . . . sn → s we then write fA : Aw → As.

In summary, for Σ = (S, F,G), a Σ-algebra A = (A,_A) interprets:

• each sort/type symbol s ∈ S as a data set As

• each (typed) function symbol f as a constant or function fA

that respects its typing information in G.
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Examples of Many-Sorted Algebras

For Σ the signature of the module NAT-LIST we can define several
algebras:

1. (Strings of naturals). We interpret the sort Natural as the set
N of natural numbers, and the sort List as the set of strings
N∗. The interpretation function for the constants and
operations is then as follows: (i) all operations in the
submodule NAT-MIXFIX are intepreted as the algebra N of
natural numbers; (ii) nil is interpreted as the empty string;
(iii) _._ is interpreted as the function that concatenates a
natural number on the left of a string; and (iv) length is
interpreted as the function measuring the length of a string.

2. (Sets of naturals). We interpret the sort Natural as the set N
of natural numbers, and the sort List as the set Pfin(N) of
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finite subsets of N. The interpretation function for the
constants and operations is then as follows: (i) all operations in
the submodule NAT-MIXFIX are intepreted as the algebra N of
natural numbers; (ii) nil is interpreted as the empty set ∅; (iii)
_._ is interpreted as the function inserting a natural number
on a set of naturals; and (iv) length is interpreted as the
cardinality function |_| : Pfin(N) ∋ U 7→ |U | ∈ N.

For another series of examples, consider the many-sorted signature
Σ in the picture below.
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The following are then examples of Σ-algebras:
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1. (n-dimensional rational, real, and complex vector spaces). The
sort Scalar is interpreted by, resp., Q, R, C. The sort Vector
by, resp., Qn, Rn, Cn. The operations of sort Scalar are
interpreted on, resp., Q, R, and C, as done for the signature of
NAT-MIXFIX. The constant 1 is intepreted as the number 1 in
all cases. Vector addition is intepreted in all three cases as:

(x1, . . . , xn) + (y1, . . . , yn) =def (x1 + y1, . . . , xn + yn)

The constant 0⃗ is interpreted as the zero vector (0, n. . ., 0). The
operation symbol _._ is intepreted by the definition:
λ.(x1, . . . , xn) =def (λ ∗ x1, . . . , λ ∗ xn).

2. (n-dimensional integer modules). Exactly as above, but using
Z as scalars, and Zn as vectors.

3. (n-dimensional natural semi-modules). Exactly as above, but
using N as scalars, and Nn as vectors.
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Definition of Order-Sorted Algebras

Given an order-sorted signature Σ = ((S,<), F,G) an order-sorted
Σ-algebra is defined as a many-sorted (S, F,G)-algebra A = (A,_A)

such that:

• In A = {As}s∈S , if s < s′ then As ⊆ As′

• if f is subsort overloaded, so that we have, f : s1 . . . sn → s, and
f : s′1 . . . s

′
n → s′, with si ≡≤ s′i, 1 ≤ i ≤ n, and s ≡≤ s′, then:

◦ if n = 0, so that s1 . . . sn = s′1 . . . s
′
n = ϵ, then f is a

constant and we have f ϵ,s
A = f ϵ,s′

A (subsort overloaded
constants coincide)

◦ otherwise, if w = s1 . . . sn and w′ = s′1 . . . s
′
n, if

(a1, . . . , an) ∈ Aw ∩Aw′ , then
fw,s
A (a1, . . . , an) = fw′,s′

A (a1, . . . , an) (subsort overloaded
operations agree on shared data)
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Examples of Order-Sorted Algebras

For Σ the signature of NAT-LIST-II we can define, among others,
two different order-sorted algebra structures:

1. Interpret the sort NzNatural as N>0, Natural as N, s, p, and
_ + _ in the usual way, NeList as N+, List as N∗, nil as the
empty string ϵ, _._ as left concatenation with a natural, and
first, rest and length in the usual way.

2. We can instead interpret both NzNatural and Natural as Z, s,
p, and _ + _ as those functions extended to all integers,
NeList as Z+, List as Z∗, nil as the empty string ϵ, _._ as
left concatenation with an integer, first, rest and length in
the usual way.

9



Order-Sorted Term Algebras

For ((S,<), F,G) an order-sorted signature, an obvious Σ-algebra is
the term algebra TΣ = (TΣ,_TΣ), where the family of data sets
TΣ = {TΣ,s}s∈S and its symbol interpretation function _TΣ are
mutually defined in an inductive way by:

• for each a : ϵ → s in Σ, aTΣ
= a ∈ TΣ,s

• for each f : w → s in Σ, with w = s1 . . . sn, n > 0, the function
fTΣ

: TΣ,s1 × . . .× TΣ,sn → TΣ,s maps the tuple
(t1, . . . , tn) ∈ Tw

Σ to the expression (called a term)
f(t1, . . . , tn) ∈ TΣ,s

• if s < s′, then TΣ,s ⊆ TΣ,s′
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Examples of Terms for the NATURAL Specification

TNATURAL,NzNatural =

{s 0, s s 0, s s s 0, s p s 0, s(0 + s 0), . . .}

TNATURAL,Natural = TNATURAL,NzNatural ∪ {0, p s 0, (0 + 0), . . .}.

Although the mathematical definition of terms uses prefix notation,
Maude allows general mixfix notation. This is just a (very useful)
parsing and pretty-printing facility. If one insists (by giving the
command set print mixfix off .) Maude can print even mixfix
terms in prefix notation. For example, s_(_+_(0,s_(0))) instead
of s(0 + s 0).
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The Algebra Defined by a Functional Module

Consider a functional module fmod (Σ, E) endfm with (Σ, E)

order-sorted and Ω ⊆ Σ the constructor subsignature.

In the unsorted case we saw that, under reasonable assumptions on
E, the meaning (i.e., semantics) of fmod (Σ, E) endfm is its
canonical term algebra CΣ/E . We can now explain the more
general case when (Σ, E) is order-sorted.

As before, the constructors Ω define the data elements of fmod
(Σ, E) endfm belonging to the constructor term algebra
TΩ = (TΩ,_TΩ

). Instead, all the Σ-terms belong to the term
algebra TΣ = (TΣ,_TΣ

). In fmod (Σ, E) endfm, Σ-terms should
evaluate to constructor terms (data values) in TΩ. But, under what
conditions on E can we define CΣ/E?
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Properties Needed to Define CΣ/E

Defining the symbol interpretation function _CΣ/E
of

CΣ/E = (TΩ,_CΣ/E
) requires three properties of E:

(1). Unique Termination. For any Σ-term t, repeatedly applying
the equations E to t as left-to-right simplification rules in any order
always terminates with a unique result, denoted t!E . I.e., the
Maude command “red t .” always terminates.

(2). Sufficient Completeness. Simplification of any Σ-term t always
terminates in a constructor term t!E ∈ TΩ.

(3). Sort Preservation. If t ∈ TΣ,s, s ∈ S, then t!E ∈ TΩ,s. This
property holds automatically in the unsorted and many-sorted
cases, but may fail for (Σ, E) order-sorted.
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Defining CΣ/E

Properties (1)–(3) will allow us to define CΣ/E . To see why this is
so, we need the notion of an S-indexed function:

Given two S-indexed sets A = {As}s∈S , and B = {Bs}s∈S , an
S-indexed function f from A to B is an S-indexed set f = {fs}s∈S

such that for each s ∈ S, fs is a function fs : As −→ Bs. We then
write f : A −→ B.

By Unique Termination, Sufficient Completeness and Sort
Preservation, for each s ∈ S we have a function
_!E,s : TΣ,s ∋ t 7→ t!E ∈ TΩ,s. That is, an S-indexed function:

_!E : TΣ → TΩ

which is precisely the function implemented in Maude by the red
command. How is CΣ/E defined? See the next slide.
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Defining CΣ/E (II)

Let fmod (Σ, E) endfm be a functional module with order-sorted
signature Σ and constructor subsignature Ω, were the E satisfy
properties (1)–(3). Thus, we have an S-indexed function
_!E : TΣ → TΩ. Assume ∀t ∈ TΩ, t!E = t. The semantics of fmod
(Σ, E) endfm is the canonical term algebra CΣ/E = (TΩ,_CΣ/E

),
where _CΣ/E

maps:

• any constant a :→ s in Σ to aCΣ/E
= a!E ∈ TΩ,s.

• any f : w −→ s in Σ, |w| = n ≥ 1, to the function:

fCΣ/E
: Tw

Ω ∋ (t1, . . . , tn) 7→ f(t1, . . . , tn)!E ∈ TΩ,s.

Therefore, for any (t1, . . . , tn) ∈ Tw
Ω , fCΣ/E

(t1, . . . , tn) is the result
returned by the Maude command red f(t1,...,tn) . For
Σ = NAT-LIST, CΣ/E is the algebra defined in pg. 3 (1).
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Maude Programming = Mathematical Modeling

The slogan:

Maude Programming = Computable Mathematical Modeling

sounds good. But what does it really mean? Is it really true?

Yes, it is true. When you write a Maude functional module fmod
(Σ, E) endfm meeting conditions (1)–(3), what you do is exactly to
define a mathematical model, namely, the Σ-algebra CΣ/E . This
model is furthermore computable using Maude’s red command: is
a computable algebra.

CΣ/E is precisely the model you had in mind when you wrote fmod
(Σ, E) endfm. You wanted to define some data and some functions
on that data. That’s exactly what CΣ/E is.
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Sensible Signatures

A signature Σ can be intrinsically ambiguous, so that a term may
denote two completely different things. Consider for example the
following many-sorted signature:

sorts A B C D .
op a : -> A .
op f : A -> B .
op f : A -> C .
op g : B -> D .
op g : C -> D .

The term g(f(a)) is an ambiguous term of sort D denoting two
completely different things.
A mild condition ruling this out, yet allowing ad-hoc overloading, is
the notion of a sensible signature, namely one such that whenever
we have f : s1 . . . sn −→ s and f : s′1 . . . s

′
n −→ s′, then

(s1 ≡≤ s′1 ∧ . . . ∧ sn ≡≤ s′n) ⇒ s ≡≤ s′.
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Sensible Signatures (II)

Lemma. If Σ is a sensible order-sorted signature, then for any term
t in TΣ we have,

t ∈ TΣ,s ∧ t ∈ TΣ,s′ ⇒ s ≡≤ s′

Proof: By induction on the depth of t.

We define the depth of a term as follows: constants have depth 0,
and terms of the form f(t1, . . . , tn) have depth
1 +max(depth(t1), . . . , depth(tn)).

For depth 0, t = a is a constant, and a ∈ TΣ,s iff there is
a : nil → s′′ in Σ with s′′ ≤ s. Similarly, if a ∈ TΣ,s′ there is
a : nil → s′′′ in Σ with s′′′ ≤ s′. By Σ sensible we have s′′ ≡≤ s′′′,
and therefore, s ≡≤ s′.
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Sensible Signatures (III)

Assuming the result true for depth ≤ n, let t = f(t1, . . . , tn) have
depth n+ 1. If we have t ∈ TΣ,s ∧ t ∈ TΣ,s′ , this forces the
existence of f : w′′ −→ s′′ and f : w′′′ −→ s′′′, with s′′ ≤ s and
s′′′ ≤ s′ and such that (t1, . . . , tn) ∈ Tw′′

Σ ∩ Tw′′′

Σ .

By the induction hypothesis this forces w′′ ≡≤ w′′′, where if
w′′ = s′′1 . . . s

′′
n and w′′′ = s′′′1 . . . s′′′n , the notation w′′ ≡≤ w′′′

abbreviates the conjunction s′′1 ≡≤ s′′′1 ∧ . . . ∧ s′′n ≡≤ s′′′n . And by Σ

sensible this forces s′′ ≡≤ s′′′, and therefore, s ≡≤ s′. q.e.d.

19



Preregular Signatures

A sensible order-sorted signature Σ = ((S,<), F,G) is called
preregular iff for each Σ-term t (possibly with variables X), the set
of sorts

Sorts(t) = {s ∈ S | t ∈ TΣ(X),s}

includes a least element of such set in the poset (S,<), called the
least sort of t and denoted ls(t). That is:

ls(t) ∈ Sorts(t) ∧ ∀s′ ∈ Sorts(t), ls(t) ≤ s′.

Maude automatically checks the preregularity of the signature Σ of
any module entered by the user and issues a warning if Σ is not
preregular.
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Kind-Complete Order-Sorted Signatures

Terms in an order-sorted signature Σ are given the benefit of the
doubt if we extend Σ to a signature Σ□ by: (i) adding a new sort
[s], called a kind, to each connected component [s], with,
(∀s′ ∈ [s]) [s] > s′, and (ii) lifting each operator f : s1 . . . sn → s,
n ≥ 1, to the kind level as: f : [s1] . . . [sn] → [s].

Example. Let Σ have sorts NzNat and Nat with NzNat < Nat ,
constant 0 of sort Nat and operators s : Nat → NzNat and
p : NzNat → Nat . The term p(p(s(s(0)))) does not parse in Σ. But
it parses in its kind completion Σ□, that adds: (i) a kind [Nat ],
with [Nat ] > Nat , and operators s : [Nat ] → [Nat ] and
p : [Nat ] → [Nat ].

Σ is called kind-complete if it has already been completed that way,
i.e., if is of the form: Σ = Σ□

0 for some Σ0 ⊆ Σ.
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Variables

Note that in our definition of Σ-terms we only allowed constants
and terms built up from them by other operation symbols, so-called
ground terms. Therefore, terms with variables, such as those
appearing in the equations

vars N M : Natural .
eq N + 0 = N .
eq N + s M = s(N + M) .

do not seem to fall within our definition. What can we say about
such terms? First, note that N and M are variables in the
mathematical sense, not at all in the sense of variables in an
imperative language. Second, we can reduce the notion of terms
with variables to that of terms without variables (ground terms) in
an extended signature.
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A Sample Extended Signature

We can extend the signature of our above example by adding the
variables as additional constants to get the new signature,

sort Natural .
op 0 : -> Natural .
op N : -> Natural .
op M : -> Natural .
op s_ : Natural -> Natural .
op _+_ : Natural Natural -> Natural .

in which a term such as s(N + M) is now a well-defined term of sort
Natural.
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The Extended Signature Σ(X)

The general way of extending a signature Σ = ((S,<), F,G) with
variables is as follows. We assume a family X = {Xs}s∈S of sets of
variables for the different sorts s ∈ S in the signature Σ. Such that:

• variables of different sorts are different, i.e., Xs ∩Xs′ = ∅ if
s ̸= s′

• the variables in X are different from the constants in Σ, i.e.,
(∪s∈SXs) ∩ {a | ∃s ∈ S, (a : ϵ → s) ∈ G} = ∅.

Then we define Σ(X) = ((S,<), F (X), G(X)), where:
F (X) = F ⊎X, and G(X) = G ⊎ {x : ϵ → s | x ∈ Xs ∧ s ∈ S}. I.e.,
we just add to Σ each x ∈ Xs as a constant x : ϵ → s.
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The Term Algebra TΣ(X)

Therefore, Σ-terms with variables in X are the elements of the
term algebra TΣ(X) associated to the extended signature Σ(X).

Note that if Σ is a sensible signature, then it is trivial to check that
Σ(X) is also, by construction, a sensible signature. Therefore, all
the results holding for ground terms in sensible signatures do hold
likewise for terms with variables.

One can likewise prove that if Σ is preregular, then Σ(X) is also
preregular.
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Substitutions

For an order-sorted signature Σ = ((S,<), F,G) and S-indexed
families of variables X = {Xs}s∈S , and Y = {Ys}s∈S , a
substitution is an S-indexed family of functions of the form:

θ : X −→ TΣ(Y )

For example, for Σ an unsorted signature of arithmetic expressions,
X = {x, y, z}, and Y = {x, y, z, x′, y′, z′}, a particular θ can be the
assignment:

• x 7→ (x+ y′) ∗ z

• y 7→ (x′ − y′)

• z 7→ z′ ∗ z′

Notation: θ = {x 7→ (x+ y′) ∗ z, y 7→ (x′ − y′), z 7→ z′ ∗ z′}.
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Substitutions Extend to Terms

If Σ is a sensible signature, a substitution θ : X −→ TΣ(Y ) extends
in a unique way to an S-indexed function:

_θ : TΣ(X) −→ TΣ(Y )

defined recursively by:

• xθ = θ(x)

• f(t1, . . . , tn)θ = f(t1θ, . . . , tnθ)

For example, for the above θ we have,

(x+ (y ∗ z))θ = ((x+ y′) ∗ z) + ((x′ − y′) ∗ (z′ ∗ z′)).
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