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Program Verification: Lecture 29

Synergy between DM-Check and Maude’s NuITP

In Lecture 28 I explained that DM-Check applies sufficient
conditions that need not be always satisfied.

But the whole point
of the DM-Check design is to combine the proving power of
symbolic model checking with that of inductive theorem proving.

The NuITP is used as a backend with a default strategy for
DM-Check to try to prove implications between constraints when
trying to fold into (subsume) one constrained pattern into another.
But there are many other uses of the NuITP that can play a
crucial role in proving invariants.

In this lecture I will show some examples of NuITP uses that
complement the automatic nature of DM-Check. Let us begin
with the dadlock freedom invariant that we could not prove for
R&W-FAIR in Lecture 28:
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A Pending Proof: Deadlock Freedom of R&W-FAIR

DM-Check> check in R&W-FAIR : (([N’:NzNat]< 0,0 >[ 0 | N’:NzNat]) | true) \/

(([N’:NzNat]< 0,1 >[ 0 | N’:NzNat]) | true) \/

(([N’:NzNat + K:Nat + M:Nat]< M:Nat,0 >[N’:NzNat | K:Nat]) | true) \/

(([N’:NzNat + K:Nat + M:Nat]< N’:NzNat,0 >[M:Nat | K:Nat]) | true) \/

(([N’:NzNat + K:Nat + M:Nat]< M:Nat,0 >[K:Nat | N’:NzNat]) | true) subsumed-by

((([N:Nat]< 0,0 >[ 0 | N:Nat]) | true) \/ (([N:Nat]< 0,1 >[ 0 | N:Nat]) | true)

\/ (([K:Nat + N:Nat + M:Nat + 1]< N:Nat,0 >[M:Nat + 1 | K:Nat]) | true) \/

(([K:Nat + N:Nat + M:Nat + 1]< (N:Nat + 1), 0 >[M:Nat | K:Nat]) | true)) .

Constrained terms on the left that could not be subsumed:

Term 7: [N’:NzNat + K:Nat + M:Nat] < M:Nat, 0 >[N’:NzNat | K:Nat]

Constraint 7: true

Term 8: [N’:NzNat + K:Nat + M:Nat] < N’:NzNat, 0 >[M:Nat | K:Nat]

Constraint 8: true

Term 9: [N’:NzNat + K:Nat + M:Nat] < M:Nat, 0 >[K:Nat | N’:NzNat]

Constraint 9: true
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Proving Containment of Constrained Terms with NuITP

The subsumed-by command is quite useful, even when it does not
succeed;

because it identifies the constrained patterns that could
not be subsumed automatically.

The following general method uses the NuITP to prove
containment for constrained patterns (if actually contained). If a
constrained pattern u | φ could not be shown contained in∨

j∈J vj | ψj by the subsumed-by command for a topmost rewrite
theory R = (Σ,E ∪ B), we can:

1. Extend the equational theory (Σ,E ∪ B) by adding a predicate
p : State → [Bool ] defined by the conditional equations:
{p(vj) = true if ψj}j∈J .

2. Prove in the exteded equational theory the inductive theorem:

φ→ p(u) = true
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Proving Deadlock Freedom of R&W-FAIR

We can extend the equational theory of R&W-FAIR thus:

set include BOOL off .

fmod R&W-FAIR is

sorts NzNat Nat Conf .

subsorts NzNat < Nat .

op 0 : -> Nat [ctor metadata "2"] .

op 1 : -> NzNat [ctor metadata "3"] .

op _+_ : Nat Nat -> Nat [metadata "4" assoc comm id: 0] .

op _+_ : NzNat Nat -> NzNat [ctor metadata "4" assoc comm id: 0] .

op [_]<_,_>[_|_] : Nat Nat Nat Nat Nat -> Conf [ctor metadata "5"] .

op init : NzNat -> Conf .

endfm

fmod ENABLED is protecting R&W-FAIR .

sort MyBool .

op true : -> MyBool [ctor metadata "0"] .

op false : -> MyBool [ctor metadata "1"] .

op enabled : Conf -> [MyBool] [metadata "6"] .

vars N M K I J L : Nat . var N’ M’ : NzNat .
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Proving Deadlock Freedom of R&W-FAIR

eq enabled([N]< 0,0 >[ 0 | N]) = true .

eq enabled([N]< 0,1 >[ 0 | N]) = true .

eq enabled([K + N + M + 1]< N,0 >[M + 1 | K]) = true .

eq enabled([K + N + M + 1]< N + 1,0 >[M | K]) = true .

endfm

Then, the proof that R&W-FAIR is deadlock free is obtained by the
following sequence of NuITP Case (CAS) commands:
genset NZNATG for NzNat is 1 ;; (1 + X:NzNat) .

genset NATG for Nat is 0 ;; 1 ;; (1 + X:NzNat) .

set goal (enabled([N’:NzNat + K:Nat + M:Nat]< M:Nat, 0 >[N’:NzNat | K:Nat]) =

true)/\(enabled([N’:NzNat + K:Nat + M:Nat]< N’:NzNat, 0 >[M:Nat | K:Nat])= true) .

apply cas! to 0 on $3:NzNat .

set goal enabled([N’:NzNat + K:Nat + M:Nat]< M:Nat, 0 >[K:Nat | N’:NzNat])= true .

apply cas! to 0 on $2:Nat .

apply cas! to 0.1 on $1:Nat .
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Proving an Inductive Invariant for BAKERY

Recall the BAKERY example in Lecture 27.

Its initial state is
parametric on a set IS of idle processes. Maude’s LTL Logical
Model Checker was able to prove the mutual exclusion invariant,
but only for a fixed number of idle processes, e.g.,

(lfmc N:Name ; N:Name ; [idle] [idle] |= [] mutex .)

result: true (complete with depth 5)

For the parametric intial state the LTL Logical Model Checker
could not fold the symbolic states into a finte graph: only bounded
model checking was possible:

(lfmc [100] N ; N ; IS |= [] mutex .)

result: no counterexample found within bound 100

However, combining the proving powers of DM-Check and the
NuITP we will be able to:

1 Prove an inductive invariant for BAKERY from N ; N ; IS.
2 Prove the mutual exclusion invariant just by unification.
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result: no counterexample found within bound 100

However, combining the proving powers of DM-Check and the
NuITP we will be able to:

1 Prove an inductive invariant for BAKERY from N ; N ; IS.
2 Prove the mutual exclusion invariant just by unification.
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Proving an Inductive Invariant for BAKERY (II)

Recall again the BAKERY specification, now extended with a few
auxiliary functions used in the constraints of patterns:

fmod NAME is

sorts Name MyBool .

op True : -> MyBool [ctor] .

op False : -> MyBool [ctor] .

op _or’_ : MyBool MyBool -> MyBool [comm] .

op _and’_ : MyBool MyBool -> MyBool [comm] .

op 0 : -> Name [ctor metadata "2"] .

op s : -> Name [ctor metadata "4"] .

op __ : Name Name -> Name [ctor comm assoc id: 0] .

vars N M : Name . var B : MyBool .

eq True or’ B = True . eq False or’ B = B .

eq True and’ B = B . eq False and’ B = False .

op _<=_ : Name Name -> MyBool [metadata "9"] .

eq N <= N M = True [variant] .

eq s N M <= M = False [variant] .

endfm
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Proving an Inductive Invariant for BAKERY (III)

fmod MSET is protecting NAME .

sort MSet . subsort Name < MSet .

op null : -> MSet [ctor] .

op _,_ : MSet MSet -> MSet [ctor assoc comm id: null] .

vars N M : Name . var MS : MSet .

op _in_ : Name MSet -> MyBool .

eq M in (M, MS) = True .

eq M in null = False .

eq M in ((s N M), MS) = M in MS .

eq s N M in (M, MS) = s N M in MS .

endfm

mod BAKERY is protecting NAME .

sorts ModeIdle ModeWait ModeCrit Mode .

subsorts ModeIdle ModeWait ModeCrit < Mode .

sorts ProcIdle ProcWait Proc ProcIdleSet ProcWaitSet ProcSet .

subsorts ProcIdle < ProcIdleSet .

subsorts ProcWait < ProcWaitSet .

subsorts ProcIdle ProcWait < Proc < ProcSet .

subsorts ProcIdleSet < ProcWaitSet < ProcSet .
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Proving an Inductive Invariant for BAKERY (IV)

op idle : -> ModeIdle [ctor] .

op wait : Name -> ModeWait [ctor] .

op crit : Name -> ModeCrit [ctor] .

op [_] : ModeIdle -> ProcIdle [ctor] .

op [_] : ModeWait -> ProcWait [ctor] .

op [_] : Mode -> Proc [ctor] .

op none : -> ProcIdleSet [ctor] .

op __ : ProcIdleSet ProcIdleSet -> ProcIdleSet [ctor assoc comm id: none] .

op __ : ProcWaitSet ProcWaitSet -> ProcWaitSet [ctor assoc comm id: none] .

op __ : ProcSet ProcSet -> ProcSet [ctor assoc comm id: none] .

sort Conf .

op _;_;_ : Name Name ProcSet -> Conf .

var PS : ProcSet . vars N M I J K M1 M2 : Name . var IS : ProcIdleSet .

var WS : ProcWaitSet .

rl [wake] : N ; M ; [idle] PS => s N ; M ; [wait(N)] PS [narrowing] .

rl [crit] : N ; M ; [wait(M)] PS => N ; M ; [crit(M)] PS [narrowing] .

rl [exit] : N ; M ; [crit(M)] PS => N ; s M ; [idle] PS [narrowing] .

endm
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Proving an Inductive Invariant for BAKERY (IV)

mod BAKERY-AUX is

protecting BAKERY . protecting MSET .

op [_,_] : Name Name -> MSet .

op tickets : ProcSet -> MSet .

vars N M I J K M1 M2 : Name .

var IS : ProcIdleSet .

var WS : ProcWaitSet .

var PS : ProcSet .

eq [N,N] = N .

eq [(s N M),N] = null .

eq [N,(s N M)] = [N,(N M)], (s N M) .

*** interval of numbers as a set

eq tickets(none) = null .

eq tickets([idle] IS PS) = tickets(PS) .

eq tickets([wait(N)] PS) = N , tickets(PS) .

eq tickets([crit(N)] PS) = N , tickets(PS) .

endm
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Proving an Inductive Invariant for BAKERY (IV)

Using the above auxiliary functions we can conjecture the following
inductive invariant from the parametric initial state K ; K ; IS:

K ; K ; IS | true

\/

s M ; N ; WS | tickets(WS) = [N,M] /\ N <= M

\/

s M ; N ; [crit(N)] WS | tickets(WS) = [s N,M] /\ N <= M

The parametric initial state is subsumed by the invariant:

DM-Check> check in BAKERY-AUX :

((K:Name ; K:Name ; IS:ProcIdleSet) | true) subsumed-by

(((K:Name ; K:Name ; IS:ProcIdleSet) | true) \/

((s M:Name ; N:Name ; WS:ProcWaitSet) | ((tickets(WS:ProcWaitSet) =

([N:Name, M:Name])) /\ ((N:Name <= M:Name) = True))) \/

((s M:Name ; N:Name ; [crit(N:Name)] WS:ProcWaitSet) |

((tickets(WS:ProcWaitSet) = [s N:Name, M:Name]) /\

((N:Name <= M:Name) = True)))) .

Subsumption satisfied.
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Proving an Inductive Invariant for BAKERY (V)

The invariant check cannot fold a generated constrained pattern:

DM-Check> check-inv in BAKERY-AUX : (K:Name ; K:Name ; IS:ProcIdleSet) | true

\/ (s M:Name ; N:Name ; WS:ProcWaitSet) | (tickets(WS:ProcWaitSet) =

([N:Name, M:Name])) /\ ((N:Name <= M:Name) = True) \/

(s M:Name ; N:Name ; [crit(N:Name)] WS:ProcWaitSet) | (tickets(WS:ProcWaitSet)

= [s N:Name, M:Name]) /\ ((N:Name <= M:Name) = True) .

Invariant could not be proved (no match).

Parent: 1

Term: K:Name ; K:Name ; IS:ProcIdleSet

Constraint: true

Parent: 2

Term: (s M:Name) ; N:Name ; WS:ProcWaitSet

Constraint: (tickets(WS:ProcWaitSet) =[N:Name, M:Name]) /\ N:Name <= M:Name =

True
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Proving an Inductive Invariant for BAKERY (V)

Parent: 3

Term: (s M:Name) ; N:Name ;[crit(N:Name)] WS:ProcWaitSet

Constraint: (tickets(WS:ProcWaitSet) =[s N:Name, M:Name]) /\ N:Name <= M:Name =

True

Child: 9

Parent: 3

Term: (s %1:Name) ; %2:Name ; %3:ProcWaitSet[crit(%2:Name)][crit(%2:Name)]

Substitution: M:Name --> %1:Name

N:Name --> %2:Name

WS:ProcWaitSet --> %3:ProcWaitSet[wait(%2:Name)]

Constraint: ((%2:Name, tickets(%3:ProcWaitSet)) =[s %2:Name, %1:Name]) /\

%2:Name <= %1:Name = True

The output indicates that narrowing derived from Parent 3
Child 9, which cannot be folded. It is the constrained pattern:

s M ; N ; WS [crit(N)] [crit(N)] | N tickets(WS) = [s N,M] /\ N <= M = True

14/20
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Proving an Inductive Invariant for BAKERY (VI)

We will have proved the inductive invariant if we show that the
constraint
N, tickets(WS) = [s N,M] /\ N <= M = True

is unsatisfiable, i.e., that its negation is an inductive theorem. We
can do so for the more general constraint:
N, S:MSet = [s N,M] /\ N <= M = True

by loading into the NuITP the following functional module
extracted from BAKERY-AUX and endowed with an RPO order:
set include BOOL off .

fmod NAME is

sorts Name MyBool .

op True : -> MyBool [ctor metadata "0"] .

op False : -> MyBool [ctor metadata "1"] .

op _or’_ : MyBool MyBool -> MyBool [metadata "7" comm] .

op _and’_ : MyBool MyBool -> MyBool [metadata "8" comm] .

op 0 : -> Name [ctor metadata "2"] .

op s : -> Name [ctor metadata "4"] .

op __ : Name Name -> Name [ctor comm assoc id: 0 metadata "5"] .

op _<=_ : Name Name -> MyBool [metadata "9"] .
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Proving an Inductive Invariant for BAKERY (VI)

vars N M : Name . var B : MyBool .

eq True or’ B = True .

eq False or’ B = B .

eq True and’ B = B .

eq False and’ B = False .

eq N <= N M = True [variant] .

eq s N M <= M = False [variant] .

endfm

fmod MSET is protecting NAME .

sort MSet . subsort Name < MSet .

op null : -> MSet [ctor metadata "3"] .

op _,_ : MSet MSet -> MSet [ctor assoc comm id: null metadata "6"] .

vars N M : Name . var MS : MSet .

op _in_ : Name MSet -> MyBool [metadata "10"] .

eq M in (M, MS) = True .

eq M in null = False .

eq M in ((s N M), MS) = M in MS .

eq s N M in (M, MS) = s N M in MS .

endfm
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Proving an Inductive Invariant for BAKERY (VII)

fmod INTERVALS is protecting MSET .

op [_,_] : Name Name -> MSet [metadata "11"].

vars N M K : Name .

eq [N,N] = N .

eq [(s N M),N] = null .

eq [N,(s N M)] = [N,(N M)], (s N M) .

endfm

In the NuITP the negation of the (generalized) constraint is the
clause:

N, S:MSet = [s N,M] /\ N <= M = True -> false

To prove it as an inductive theorem we can use the following Cut
inference rule (not yet implemented, but easily usable):
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Proving an Inductive Invariant for BAKERY (VIII)

Γ → Γ′′ Γ′′, Γ′ → Λ

Γ, Γ′ → Λ

with Γ, Γ′ and Γ′′ conjunctions of equalities, conjunction
represented as , and Λ a conjunction of disjunctions of equalities.

The soundness of the Cut rule follows from the fact that the
following implication is a tautology in Propositional Logic:

(A ⇒ A′′ ∧ (A′′ ∧ A′) ⇒ B) ⇒ (A ∧ A′) ⇒ B).

In our application of Cut, Γ, Γ′ → Λ will be:
N, S:MSet = [s N,M] /\ N <= M = True -> false,
Γ → Γ′′ will be:
[s N,M] = N, S:MSet -> N in [s N,M] = N in (N, S:MSet),
and Γ′′, Γ′ → Λ will be:
N in [s N,M] = N in (N, S:MSet)/\ N <= M = True -> false.
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Program Verification: Lecture 29

Proving an Inductive Invariant for BAKERY (IX)

The NuITP proof is as follows. The goal Γ → Γ′′:

(([s N:Name,M:Name]) = (N:Name , S:MSet)) ->

((N:Name in [s N:Name,M:Name]) = (N:Name in (N:Name , S:MSet)))

is proved by the single command: apply icc! to 0 . The goal
Γ′′, Γ′ → Λ:

(((N:Name in [s N:Name,M:Name]) = (N:Name in (N:Name , S:MSet))) /\

((N:Name <= M:Name) = True)) -> false

is simplified by the command apply cvul! to 0 . to goal 0.1.1:

True = $4:Name in[s $4:Name, $5:Name $4:Name] -> false

we use a lemma with the command:

apply le! to 0.1.1 with ((N:Name in [s N:Name,(N:Name K:Name)]) = False) .

This proves the goal, leaving only the proof of the lemma,
discharged with the commands:
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Program Verification: Lecture 29

Proving an Inductive Invariant for BAKERY (IX)

apply cas! to 0.1.1.1.1 on $6:Name .

apply gsi! to 0.1.1.1.1.2.1 on $8:Name .

This finishes the proof of unsatisfiability for the constraint of the
pattern:
s M ; N ; WS [crit(N)] [crit(N)] | N tickets(WS) = [s N,M] /\ N <= M = True

and therefore the proof that our conjectured invariant is an
inductive invariant from the symbolic initial state K ; K ; IS. We
can now use the inductive invariant and disjoint unification to prove
Negatively that BAKERY satisfies the mutual exclusion invariant:
Maude> unify I ; J ; [crit(M1)] [crit(M2)] PS =? K ; K ; IS .

No unifier.

Maude> unify I ; J ; [crit(M1)] [crit(M2)] PS =? s M ; N ; WS .

No unifier.

Maude> unify I ; J ; [crit(M1)] [crit(M2)] PS =? s M ; N ; [crit(N)] WS .

No unifier.

20/20
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No unifier.
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Program Verification: Lecture 29

Proving an Inductive Invariant for BAKERY (IX)

apply cas! to 0.1.1.1.1 on $6:Name .

apply gsi! to 0.1.1.1.1.2.1 on $8:Name .

This finishes the proof of unsatisfiability for the constraint of the
pattern:
s M ; N ; WS [crit(N)] [crit(N)] | N tickets(WS) = [s N,M] /\ N <= M = True

and therefore the proof that our conjectured invariant is an
inductive invariant from the symbolic initial state K ; K ; IS. We
can now use the inductive invariant and disjoint unification to prove
Negatively that BAKERY satisfies the mutual exclusion invariant:
Maude> unify I ; J ; [crit(M1)] [crit(M2)] PS =? K ; K ; IS .

No unifier.

Maude> unify I ; J ; [crit(M1)] [crit(M2)] PS =? s M ; N ; WS .

No unifier.

Maude> unify I ; J ; [crit(M1)] [crit(M2)] PS =? s M ; N ; [crit(N)] WS .

No unifier.
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