
Program Verification: Lecture 28

Program Verification: Lecture 28

José Meseguer

University of Illinois at Urbana-Champaign

1/19

Program Verification: Lecture 28

The Broader Picture: Narrowing with Constraints

Maude’s fvu-narrow command allows us to symbolically model
check invariants of infinite-state systems.

But it has three
limitations: (1) sets of states must be describable as disjunctions of
unconstrained patterns; (2) the equations E ∪B must be FVP; and
(3) the rules R must be unconditional.

Restrictions (1)–(3) evaporate when we perform constrained
narrowing. Given a constrained pattern p | φ and a set R of
conditional rewrite rules which, W.L.O.G., have disjoint variables
from p | φ, the topmost constrained narrowing relation

p | φ θ
;R/E1∪B1

q | ψ

modulo FVP E1 ∪ B1 ⊆ E ∪ B holds iff there is a rule l → r if ϕ
in R and a E1 ∪ B1-unifier θ of l = p such that: (i) q = (rθ), and
(ii) ψ = (φ ∧ ϕ)θ.

2/19

Program Verification: Lecture 28

The Broader Picture: Narrowing with Constraints

Maude’s fvu-narrow command allows us to symbolically model
check invariants of infinite-state systems. But it has three
limitations: (1) sets of states must be describable as disjunctions of
unconstrained patterns;

(2) the equations E ∪B must be FVP; and
(3) the rules R must be unconditional.

Restrictions (1)–(3) evaporate when we perform constrained
narrowing. Given a constrained pattern p | φ and a set R of
conditional rewrite rules which, W.L.O.G., have disjoint variables
from p | φ, the topmost constrained narrowing relation

p | φ θ
;R/E1∪B1

q | ψ

modulo FVP E1 ∪ B1 ⊆ E ∪ B holds iff there is a rule l → r if ϕ
in R and a E1 ∪ B1-unifier θ of l = p such that: (i) q = (rθ), and
(ii) ψ = (φ ∧ ϕ)θ.

2/19

Program Verification: Lecture 28

The Broader Picture: Narrowing with Constraints

Maude’s fvu-narrow command allows us to symbolically model
check invariants of infinite-state systems. But it has three
limitations: (1) sets of states must be describable as disjunctions of
unconstrained patterns; (2) the equations E ∪B must be FVP; and

(3) the rules R must be unconditional.

Restrictions (1)–(3) evaporate when we perform constrained
narrowing. Given a constrained pattern p | φ and a set R of
conditional rewrite rules which, W.L.O.G., have disjoint variables
from p | φ, the topmost constrained narrowing relation

p | φ θ
;R/E1∪B1

q | ψ

modulo FVP E1 ∪ B1 ⊆ E ∪ B holds iff there is a rule l → r if ϕ
in R and a E1 ∪ B1-unifier θ of l = p such that: (i) q = (rθ), and
(ii) ψ = (φ ∧ ϕ)θ.

2/19

Program Verification: Lecture 28

The Broader Picture: Narrowing with Constraints

Maude’s fvu-narrow command allows us to symbolically model
check invariants of infinite-state systems. But it has three
limitations: (1) sets of states must be describable as disjunctions of
unconstrained patterns; (2) the equations E ∪B must be FVP; and
(3) the rules R must be unconditional.

Restrictions (1)–(3) evaporate when we perform constrained
narrowing. Given a constrained pattern p | φ and a set R of
conditional rewrite rules which, W.L.O.G., have disjoint variables
from p | φ, the topmost constrained narrowing relation

p | φ θ
;R/E1∪B1

q | ψ

modulo FVP E1 ∪ B1 ⊆ E ∪ B holds iff there is a rule l → r if ϕ
in R and a E1 ∪ B1-unifier θ of l = p such that: (i) q = (rθ), and
(ii) ψ = (φ ∧ ϕ)θ.

2/19

Program Verification: Lecture 28

The Broader Picture: Narrowing with Constraints

Maude’s fvu-narrow command allows us to symbolically model
check invariants of infinite-state systems. But it has three
limitations: (1) sets of states must be describable as disjunctions of
unconstrained patterns; (2) the equations E ∪B must be FVP; and
(3) the rules R must be unconditional.

Restrictions (1)–(3) evaporate when we perform constrained
narrowing.

Given a constrained pattern p | φ and a set R of
conditional rewrite rules which, W.L.O.G., have disjoint variables
from p | φ, the topmost constrained narrowing relation

p | φ θ
;R/E1∪B1

q | ψ

modulo FVP E1 ∪ B1 ⊆ E ∪ B holds iff there is a rule l → r if ϕ
in R and a E1 ∪ B1-unifier θ of l = p such that: (i) q = (rθ), and
(ii) ψ = (φ ∧ ϕ)θ.

2/19

Program Verification: Lecture 28

The Broader Picture: Narrowing with Constraints

Maude’s fvu-narrow command allows us to symbolically model
check invariants of infinite-state systems. But it has three
limitations: (1) sets of states must be describable as disjunctions of
unconstrained patterns; (2) the equations E ∪B must be FVP; and
(3) the rules R must be unconditional.

Restrictions (1)–(3) evaporate when we perform constrained
narrowing. Given a constrained pattern p | φ and a set R of
conditional rewrite rules which, W.L.O.G., have disjoint variables
from p | φ, the topmost constrained narrowing relation

p | φ θ
;R/E1∪B1

q | ψ

modulo FVP E1 ∪ B1 ⊆ E ∪ B holds iff there is a rule l → r if ϕ
in R and a E1 ∪ B1-unifier θ of l = p such that: (i) q = (rθ), and
(ii) ψ = (φ ∧ ϕ)θ.

2/19

Program Verification: Lecture 28

The Broader Picture: Narrowing with Constraints

Maude’s fvu-narrow command allows us to symbolically model
check invariants of infinite-state systems. But it has three
limitations: (1) sets of states must be describable as disjunctions of
unconstrained patterns; (2) the equations E ∪B must be FVP; and
(3) the rules R must be unconditional.

Restrictions (1)–(3) evaporate when we perform constrained
narrowing. Given a constrained pattern p | φ and a set R of
conditional rewrite rules which, W.L.O.G., have disjoint variables
from p | φ, the topmost constrained narrowing relation

p | φ θ
;R/E1∪B1

q | ψ

modulo FVP E1 ∪ B1 ⊆ E ∪ B holds iff there is a rule l → r if ϕ
in R and a E1 ∪ B1-unifier θ of l = p such that: (i) q = (rθ), and
(ii) ψ = (φ ∧ ϕ)θ.

2/19

Program Verification: Lecture 28

The Broader Picture: Narrowing with Constraints

Maude’s fvu-narrow command allows us to symbolically model
check invariants of infinite-state systems. But it has three
limitations: (1) sets of states must be describable as disjunctions of
unconstrained patterns; (2) the equations E ∪B must be FVP; and
(3) the rules R must be unconditional.

Restrictions (1)–(3) evaporate when we perform constrained
narrowing. Given a constrained pattern p | φ and a set R of
conditional rewrite rules which, W.L.O.G., have disjoint variables
from p | φ, the topmost constrained narrowing relation

p | φ θ
;R/E1∪B1

q | ψ

modulo FVP E1 ∪ B1 ⊆ E ∪ B holds iff

there is a rule l → r if ϕ
in R and a E1 ∪ B1-unifier θ of l = p such that: (i) q = (rθ), and
(ii) ψ = (φ ∧ ϕ)θ.

2/19

Program Verification: Lecture 28

The Broader Picture: Narrowing with Constraints

Maude’s fvu-narrow command allows us to symbolically model
check invariants of infinite-state systems. But it has three
limitations: (1) sets of states must be describable as disjunctions of
unconstrained patterns; (2) the equations E ∪B must be FVP; and
(3) the rules R must be unconditional.

Restrictions (1)–(3) evaporate when we perform constrained
narrowing. Given a constrained pattern p | φ and a set R of
conditional rewrite rules which, W.L.O.G., have disjoint variables
from p | φ, the topmost constrained narrowing relation

p | φ θ
;R/E1∪B1

q | ψ

modulo FVP E1 ∪ B1 ⊆ E ∪ B holds iff there is a rule l → r if ϕ
in R

and a E1 ∪ B1-unifier θ of l = p such that: (i) q = (rθ), and
(ii) ψ = (φ ∧ ϕ)θ.

2/19

Program Verification: Lecture 28

The Broader Picture: Narrowing with Constraints

Maude’s fvu-narrow command allows us to symbolically model
check invariants of infinite-state systems. But it has three
limitations: (1) sets of states must be describable as disjunctions of
unconstrained patterns; (2) the equations E ∪B must be FVP; and
(3) the rules R must be unconditional.

Restrictions (1)–(3) evaporate when we perform constrained
narrowing. Given a constrained pattern p | φ and a set R of
conditional rewrite rules which, W.L.O.G., have disjoint variables
from p | φ, the topmost constrained narrowing relation

p | φ θ
;R/E1∪B1

q | ψ

modulo FVP E1 ∪ B1 ⊆ E ∪ B holds iff there is a rule l → r if ϕ
in R and a E1 ∪ B1-unifier θ of l = p such that:

(i) q = (rθ), and
(ii) ψ = (φ ∧ ϕ)θ.

2/19

Program Verification: Lecture 28

The Broader Picture: Narrowing with Constraints

Maude’s fvu-narrow command allows us to symbolically model
check invariants of infinite-state systems. But it has three
limitations: (1) sets of states must be describable as disjunctions of
unconstrained patterns; (2) the equations E ∪B must be FVP; and
(3) the rules R must be unconditional.

Restrictions (1)–(3) evaporate when we perform constrained
narrowing. Given a constrained pattern p | φ and a set R of
conditional rewrite rules which, W.L.O.G., have disjoint variables
from p | φ, the topmost constrained narrowing relation

p | φ θ
;R/E1∪B1

q | ψ

modulo FVP E1 ∪ B1 ⊆ E ∪ B holds iff there is a rule l → r if ϕ
in R and a E1 ∪ B1-unifier θ of l = p such that: (i) q = (rθ), and

(ii) ψ = (φ ∧ ϕ)θ.

2/19

Program Verification: Lecture 28

The Broader Picture: Narrowing with Constraints

Maude’s fvu-narrow command allows us to symbolically model
check invariants of infinite-state systems. But it has three
limitations: (1) sets of states must be describable as disjunctions of
unconstrained patterns; (2) the equations E ∪B must be FVP; and
(3) the rules R must be unconditional.

Restrictions (1)–(3) evaporate when we perform constrained
narrowing. Given a constrained pattern p | φ and a set R of
conditional rewrite rules which, W.L.O.G., have disjoint variables
from p | φ, the topmost constrained narrowing relation

p | φ θ
;R/E1∪B1

q | ψ

modulo FVP E1 ∪ B1 ⊆ E ∪ B holds iff there is a rule l → r if ϕ
in R and a E1 ∪ B1-unifier θ of l = p such that: (i) q = (rθ), and
(ii) ψ = (φ ∧ ϕ)θ.

2/19

Program Verification: Lecture 28

The Broader Picture: Narrowing with Constraints (II)

With topmost constrained narrowing, restrictions (1)–(3)
evaporate as follows:

1 Sets of initial states and complements of invariants can both
often be expressed as disjunctions of constrained patterns.

2 In the topmost rewrite theory R = (Σ,E ∪ B,R) satisfying
executability requirements (1)–(4), the equations E ∪ B need
not be FVP, but we assume an FVP subtheory inclusion
(Σ1,E1 ∪ B1) ⊆ (Σ,E ∪ B) such that CΣ/E ,B |Σ1 = CΣ/E1,B1

.

3 The rules l → r if ψ in R may be conditional, but we
assume that l , r are Σ1-terms.

The key result is that the Lifting Lemma generalizes to the
constrained narrowing case. This supports symbolic model checking
with constraints verification of invariants, including folding.

3/19

Program Verification: Lecture 28

The Broader Picture: Narrowing with Constraints (II)

With topmost constrained narrowing, restrictions (1)–(3)
evaporate as follows:

1 Sets of initial states and complements of invariants can both
often be expressed as disjunctions of constrained patterns.

2 In the topmost rewrite theory R = (Σ,E ∪ B,R) satisfying
executability requirements (1)–(4), the equations E ∪ B need
not be FVP, but we assume an FVP subtheory inclusion
(Σ1,E1 ∪ B1) ⊆ (Σ,E ∪ B) such that CΣ/E ,B |Σ1 = CΣ/E1,B1

.

3 The rules l → r if ψ in R may be conditional, but we
assume that l , r are Σ1-terms.

The key result is that the Lifting Lemma generalizes to the
constrained narrowing case. This supports symbolic model checking
with constraints verification of invariants, including folding.

3/19

Program Verification: Lecture 28

The Broader Picture: Narrowing with Constraints (II)

With topmost constrained narrowing, restrictions (1)–(3)
evaporate as follows:

1 Sets of initial states and complements of invariants can both
often be expressed as disjunctions of constrained patterns.

2 In the topmost rewrite theory R = (Σ,E ∪ B,R) satisfying
executability requirements (1)–(4), the equations E ∪ B need
not be FVP, but we assume an FVP subtheory inclusion
(Σ1,E1 ∪ B1) ⊆ (Σ,E ∪ B) such that CΣ/E ,B |Σ1 = CΣ/E1,B1

.

3 The rules l → r if ψ in R may be conditional, but we
assume that l , r are Σ1-terms.

The key result is that the Lifting Lemma generalizes to the
constrained narrowing case. This supports symbolic model checking
with constraints verification of invariants, including folding.

3/19

Program Verification: Lecture 28

The Broader Picture: Narrowing with Constraints (II)

With topmost constrained narrowing, restrictions (1)–(3)
evaporate as follows:

1 Sets of initial states and complements of invariants can both
often be expressed as disjunctions of constrained patterns.

2 In the topmost rewrite theory R = (Σ,E ∪ B,R) satisfying
executability requirements (1)–(4), the equations E ∪ B need
not be FVP, but we assume an FVP subtheory inclusion
(Σ1,E1 ∪ B1) ⊆ (Σ,E ∪ B) such that CΣ/E ,B |Σ1 = CΣ/E1,B1

.

3 The rules l → r if ψ in R may be conditional, but we
assume that l , r are Σ1-terms.

The key result is that the Lifting Lemma generalizes to the
constrained narrowing case. This supports symbolic model checking
with constraints verification of invariants, including folding.

3/19

Program Verification: Lecture 28

The Broader Picture: Narrowing with Constraints (II)

With topmost constrained narrowing, restrictions (1)–(3)
evaporate as follows:

1 Sets of initial states and complements of invariants can both
often be expressed as disjunctions of constrained patterns.

2 In the topmost rewrite theory R = (Σ,E ∪ B,R) satisfying
executability requirements (1)–(4), the equations E ∪ B need
not be FVP, but we assume an FVP subtheory inclusion
(Σ1,E1 ∪ B1) ⊆ (Σ,E ∪ B) such that CΣ/E ,B |Σ1 = CΣ/E1,B1

.

3 The rules l → r if ψ in R may be conditional, but we
assume that l , r are Σ1-terms.

The key result is that the Lifting Lemma generalizes to the
constrained narrowing case.

This supports symbolic model checking
with constraints verification of invariants, including folding.

3/19

Program Verification: Lecture 28

The Broader Picture: Narrowing with Constraints (II)

With topmost constrained narrowing, restrictions (1)–(3)
evaporate as follows:

1 Sets of initial states and complements of invariants can both
often be expressed as disjunctions of constrained patterns.

2 In the topmost rewrite theory R = (Σ,E ∪ B,R) satisfying
executability requirements (1)–(4), the equations E ∪ B need
not be FVP, but we assume an FVP subtheory inclusion
(Σ1,E1 ∪ B1) ⊆ (Σ,E ∪ B) such that CΣ/E ,B |Σ1 = CΣ/E1,B1

.

3 The rules l → r if ψ in R may be conditional, but we
assume that l , r are Σ1-terms.

The key result is that the Lifting Lemma generalizes to the
constrained narrowing case. This supports symbolic model checking
with constraints verification of invariants,

including folding.

3/19

Program Verification: Lecture 28

The Broader Picture: Narrowing with Constraints (II)

With topmost constrained narrowing, restrictions (1)–(3)
evaporate as follows:

1 Sets of initial states and complements of invariants can both
often be expressed as disjunctions of constrained patterns.

2 In the topmost rewrite theory R = (Σ,E ∪ B,R) satisfying
executability requirements (1)–(4), the equations E ∪ B need
not be FVP, but we assume an FVP subtheory inclusion
(Σ1,E1 ∪ B1) ⊆ (Σ,E ∪ B) such that CΣ/E ,B |Σ1 = CΣ/E1,B1

.

3 The rules l → r if ψ in R may be conditional, but we
assume that l , r are Σ1-terms.

The key result is that the Lifting Lemma generalizes to the
constrained narrowing case. This supports symbolic model checking
with constraints verification of invariants, including folding.

3/19

Program Verification: Lecture 28

Symbolic Model Checking vs. Inductive Theorem
Proving

Folding is a powerful state space reduction technique to make the
symbolic search space finite.

But in the presence of constraints it
needs inductive theorem proving. We say that p | φ folds into the
(more general) q | ψ iff there is a substitution θ such that: (i)
qθ =B p, and (ii) CΣ/E ,B |= φ⇒ (ψθ). But (ii) means that
φ⇒ (ψθ) as an inductive theorem, which has to be proved.

Likewise, checking that not bad states q | ψ in the target are
shared with those in p | φ cannot be settled by failure of
unification: a E1 ∪ B1-unifier θ of p = q will yield an empty
intersection (p | φ ∧ ψ)θ iff CΣ/E ,B |= ¬(φθ) ∨ ¬(ψθ), which,
again, has to be proved as an inductive theorem.

Is this model checking? Is it theorem proving? It is both!

4/19

Program Verification: Lecture 28

Symbolic Model Checking vs. Inductive Theorem
Proving

Folding is a powerful state space reduction technique to make the
symbolic search space finite. But in the presence of constraints it
needs inductive theorem proving.

We say that p | φ folds into the
(more general) q | ψ iff there is a substitution θ such that: (i)
qθ =B p, and (ii) CΣ/E ,B |= φ⇒ (ψθ). But (ii) means that
φ⇒ (ψθ) as an inductive theorem, which has to be proved.

Likewise, checking that not bad states q | ψ in the target are
shared with those in p | φ cannot be settled by failure of
unification: a E1 ∪ B1-unifier θ of p = q will yield an empty
intersection (p | φ ∧ ψ)θ iff CΣ/E ,B |= ¬(φθ) ∨ ¬(ψθ), which,
again, has to be proved as an inductive theorem.

Is this model checking? Is it theorem proving? It is both!

4/19

Program Verification: Lecture 28

Symbolic Model Checking vs. Inductive Theorem
Proving

Folding is a powerful state space reduction technique to make the
symbolic search space finite. But in the presence of constraints it
needs inductive theorem proving. We say that p | φ folds into the
(more general) q | ψ iff

there is a substitution θ such that: (i)
qθ =B p, and (ii) CΣ/E ,B |= φ⇒ (ψθ). But (ii) means that
φ⇒ (ψθ) as an inductive theorem, which has to be proved.

Likewise, checking that not bad states q | ψ in the target are
shared with those in p | φ cannot be settled by failure of
unification: a E1 ∪ B1-unifier θ of p = q will yield an empty
intersection (p | φ ∧ ψ)θ iff CΣ/E ,B |= ¬(φθ) ∨ ¬(ψθ), which,
again, has to be proved as an inductive theorem.

Is this model checking? Is it theorem proving? It is both!

4/19

Program Verification: Lecture 28

Symbolic Model Checking vs. Inductive Theorem
Proving

Folding is a powerful state space reduction technique to make the
symbolic search space finite. But in the presence of constraints it
needs inductive theorem proving. We say that p | φ folds into the
(more general) q | ψ iff there is a substitution θ such that:

(i)
qθ =B p, and (ii) CΣ/E ,B |= φ⇒ (ψθ). But (ii) means that
φ⇒ (ψθ) as an inductive theorem, which has to be proved.

Likewise, checking that not bad states q | ψ in the target are
shared with those in p | φ cannot be settled by failure of
unification: a E1 ∪ B1-unifier θ of p = q will yield an empty
intersection (p | φ ∧ ψ)θ iff CΣ/E ,B |= ¬(φθ) ∨ ¬(ψθ), which,
again, has to be proved as an inductive theorem.

Is this model checking? Is it theorem proving? It is both!

4/19

Program Verification: Lecture 28

Symbolic Model Checking vs. Inductive Theorem
Proving

Folding is a powerful state space reduction technique to make the
symbolic search space finite. But in the presence of constraints it
needs inductive theorem proving. We say that p | φ folds into the
(more general) q | ψ iff there is a substitution θ such that: (i)
qθ =B p, and (ii)

CΣ/E ,B |= φ⇒ (ψθ). But (ii) means that
φ⇒ (ψθ) as an inductive theorem, which has to be proved.

Likewise, checking that not bad states q | ψ in the target are
shared with those in p | φ cannot be settled by failure of
unification: a E1 ∪ B1-unifier θ of p = q will yield an empty
intersection (p | φ ∧ ψ)θ iff CΣ/E ,B |= ¬(φθ) ∨ ¬(ψθ), which,
again, has to be proved as an inductive theorem.

Is this model checking? Is it theorem proving? It is both!

4/19

Program Verification: Lecture 28

Symbolic Model Checking vs. Inductive Theorem
Proving

Folding is a powerful state space reduction technique to make the
symbolic search space finite. But in the presence of constraints it
needs inductive theorem proving. We say that p | φ folds into the
(more general) q | ψ iff there is a substitution θ such that: (i)
qθ =B p, and (ii) CΣ/E ,B |= φ⇒ (ψθ).

But (ii) means that
φ⇒ (ψθ) as an inductive theorem, which has to be proved.

Likewise, checking that not bad states q | ψ in the target are
shared with those in p | φ cannot be settled by failure of
unification: a E1 ∪ B1-unifier θ of p = q will yield an empty
intersection (p | φ ∧ ψ)θ iff CΣ/E ,B |= ¬(φθ) ∨ ¬(ψθ), which,
again, has to be proved as an inductive theorem.

Is this model checking? Is it theorem proving? It is both!

4/19

Program Verification: Lecture 28

Symbolic Model Checking vs. Inductive Theorem
Proving

Folding is a powerful state space reduction technique to make the
symbolic search space finite. But in the presence of constraints it
needs inductive theorem proving. We say that p | φ folds into the
(more general) q | ψ iff there is a substitution θ such that: (i)
qθ =B p, and (ii) CΣ/E ,B |= φ⇒ (ψθ). But (ii) means that
φ⇒ (ψθ) as an inductive theorem,

which has to be proved.

Likewise, checking that not bad states q | ψ in the target are
shared with those in p | φ cannot be settled by failure of
unification: a E1 ∪ B1-unifier θ of p = q will yield an empty
intersection (p | φ ∧ ψ)θ iff CΣ/E ,B |= ¬(φθ) ∨ ¬(ψθ), which,
again, has to be proved as an inductive theorem.

Is this model checking? Is it theorem proving? It is both!

4/19

Program Verification: Lecture 28

Symbolic Model Checking vs. Inductive Theorem
Proving

Folding is a powerful state space reduction technique to make the
symbolic search space finite. But in the presence of constraints it
needs inductive theorem proving. We say that p | φ folds into the
(more general) q | ψ iff there is a substitution θ such that: (i)
qθ =B p, and (ii) CΣ/E ,B |= φ⇒ (ψθ). But (ii) means that
φ⇒ (ψθ) as an inductive theorem, which has to be proved.

Likewise, checking that not bad states q | ψ in the target are
shared with those in p | φ cannot be settled by failure of
unification: a E1 ∪ B1-unifier θ of p = q will yield an empty
intersection (p | φ ∧ ψ)θ iff CΣ/E ,B |= ¬(φθ) ∨ ¬(ψθ), which,
again, has to be proved as an inductive theorem.

Is this model checking? Is it theorem proving? It is both!

4/19

Program Verification: Lecture 28

Symbolic Model Checking vs. Inductive Theorem
Proving

Folding is a powerful state space reduction technique to make the
symbolic search space finite. But in the presence of constraints it
needs inductive theorem proving. We say that p | φ folds into the
(more general) q | ψ iff there is a substitution θ such that: (i)
qθ =B p, and (ii) CΣ/E ,B |= φ⇒ (ψθ). But (ii) means that
φ⇒ (ψθ) as an inductive theorem, which has to be proved.

Likewise, checking that not bad states q | ψ in the target are
shared with those in p | φ cannot be settled by failure of
unification:

a E1 ∪ B1-unifier θ of p = q will yield an empty
intersection (p | φ ∧ ψ)θ iff CΣ/E ,B |= ¬(φθ) ∨ ¬(ψθ), which,
again, has to be proved as an inductive theorem.

Is this model checking? Is it theorem proving? It is both!

4/19

Program Verification: Lecture 28

Symbolic Model Checking vs. Inductive Theorem
Proving

Folding is a powerful state space reduction technique to make the
symbolic search space finite. But in the presence of constraints it
needs inductive theorem proving. We say that p | φ folds into the
(more general) q | ψ iff there is a substitution θ such that: (i)
qθ =B p, and (ii) CΣ/E ,B |= φ⇒ (ψθ). But (ii) means that
φ⇒ (ψθ) as an inductive theorem, which has to be proved.

Likewise, checking that not bad states q | ψ in the target are
shared with those in p | φ cannot be settled by failure of
unification: a E1 ∪ B1-unifier θ of p = q will yield an empty
intersection (p | φ ∧ ψ)θ iff

CΣ/E ,B |= ¬(φθ) ∨ ¬(ψθ), which,
again, has to be proved as an inductive theorem.

Is this model checking? Is it theorem proving? It is both!

4/19

Program Verification: Lecture 28

Symbolic Model Checking vs. Inductive Theorem
Proving

Folding is a powerful state space reduction technique to make the
symbolic search space finite. But in the presence of constraints it
needs inductive theorem proving. We say that p | φ folds into the
(more general) q | ψ iff there is a substitution θ such that: (i)
qθ =B p, and (ii) CΣ/E ,B |= φ⇒ (ψθ). But (ii) means that
φ⇒ (ψθ) as an inductive theorem, which has to be proved.

Likewise, checking that not bad states q | ψ in the target are
shared with those in p | φ cannot be settled by failure of
unification: a E1 ∪ B1-unifier θ of p = q will yield an empty
intersection (p | φ ∧ ψ)θ iff CΣ/E ,B |= ¬(φθ) ∨ ¬(ψθ),

which,
again, has to be proved as an inductive theorem.

Is this model checking? Is it theorem proving? It is both!

4/19

Program Verification: Lecture 28

Symbolic Model Checking vs. Inductive Theorem
Proving

Folding is a powerful state space reduction technique to make the
symbolic search space finite. But in the presence of constraints it
needs inductive theorem proving. We say that p | φ folds into the
(more general) q | ψ iff there is a substitution θ such that: (i)
qθ =B p, and (ii) CΣ/E ,B |= φ⇒ (ψθ). But (ii) means that
φ⇒ (ψθ) as an inductive theorem, which has to be proved.

Likewise, checking that not bad states q | ψ in the target are
shared with those in p | φ cannot be settled by failure of
unification: a E1 ∪ B1-unifier θ of p = q will yield an empty
intersection (p | φ ∧ ψ)θ iff CΣ/E ,B |= ¬(φθ) ∨ ¬(ψθ), which,
again, has to be proved as an inductive theorem.

Is this model checking? Is it theorem proving? It is both!

4/19

Program Verification: Lecture 28

Symbolic Model Checking vs. Inductive Theorem
Proving

Folding is a powerful state space reduction technique to make the
symbolic search space finite. But in the presence of constraints it
needs inductive theorem proving. We say that p | φ folds into the
(more general) q | ψ iff there is a substitution θ such that: (i)
qθ =B p, and (ii) CΣ/E ,B |= φ⇒ (ψθ). But (ii) means that
φ⇒ (ψθ) as an inductive theorem, which has to be proved.

Likewise, checking that not bad states q | ψ in the target are
shared with those in p | φ cannot be settled by failure of
unification: a E1 ∪ B1-unifier θ of p = q will yield an empty
intersection (p | φ ∧ ψ)θ iff CΣ/E ,B |= ¬(φθ) ∨ ¬(ψθ), which,
again, has to be proved as an inductive theorem.

Is this model checking?

Is it theorem proving? It is both!

4/19

Program Verification: Lecture 28

Symbolic Model Checking vs. Inductive Theorem
Proving

Folding is a powerful state space reduction technique to make the
symbolic search space finite. But in the presence of constraints it
needs inductive theorem proving. We say that p | φ folds into the
(more general) q | ψ iff there is a substitution θ such that: (i)
qθ =B p, and (ii) CΣ/E ,B |= φ⇒ (ψθ). But (ii) means that
φ⇒ (ψθ) as an inductive theorem, which has to be proved.

Likewise, checking that not bad states q | ψ in the target are
shared with those in p | φ cannot be settled by failure of
unification: a E1 ∪ B1-unifier θ of p = q will yield an empty
intersection (p | φ ∧ ψ)θ iff CΣ/E ,B |= ¬(φθ) ∨ ¬(ψθ), which,
again, has to be proved as an inductive theorem.

Is this model checking? Is it theorem proving?

It is both!

4/19

Program Verification: Lecture 28

Symbolic Model Checking vs. Inductive Theorem
Proving

Folding is a powerful state space reduction technique to make the
symbolic search space finite. But in the presence of constraints it
needs inductive theorem proving. We say that p | φ folds into the
(more general) q | ψ iff there is a substitution θ such that: (i)
qθ =B p, and (ii) CΣ/E ,B |= φ⇒ (ψθ). But (ii) means that
φ⇒ (ψθ) as an inductive theorem, which has to be proved.

Likewise, checking that not bad states q | ψ in the target are
shared with those in p | φ cannot be settled by failure of
unification: a E1 ∪ B1-unifier θ of p = q will yield an empty
intersection (p | φ ∧ ψ)θ iff CΣ/E ,B |= ¬(φθ) ∨ ¬(ψθ), which,
again, has to be proved as an inductive theorem.

Is this model checking? Is it theorem proving? It is both!

4/19

Program Verification: Lecture 28

A Two-Way Street

The synergy between symbolic model checking and inductive
theorem proving is a two-way street:

Not only does model checking
become more powerful; theorem proving does so too. For example,
finding and proving inductive invariants can require significant
theorem proving effort. I will show in what follows how finding and
proving them with the combined power of symbolic model
checking and inductive theorem proving can make it easier.

An invariant Q ⊆ C
Σ/E⃗ ,B,St

is called inductive iff it is transition

closed. I.e., for each [u] ∈ Q and each transition [u] →CR [v] we
must have [v] ∈ Q. This has two useful consequences: (1) If for an
invariant guess Q0 describable as a disjunction of constrained
patterns we obtain a finite folding graph disjoint from its negation,
then we have found and proved that the disjunction of patterns in
such a graph is an inductive invariant. (2) If we can also show that
Q0 folds into itself, then Q0 is also an inductive invariant.

5/19

Program Verification: Lecture 28

A Two-Way Street

The synergy between symbolic model checking and inductive
theorem proving is a two-way street: Not only does model checking
become more powerful;

theorem proving does so too. For example,
finding and proving inductive invariants can require significant
theorem proving effort. I will show in what follows how finding and
proving them with the combined power of symbolic model
checking and inductive theorem proving can make it easier.

An invariant Q ⊆ C
Σ/E⃗ ,B,St

is called inductive iff it is transition

closed. I.e., for each [u] ∈ Q and each transition [u] →CR [v] we
must have [v] ∈ Q. This has two useful consequences: (1) If for an
invariant guess Q0 describable as a disjunction of constrained
patterns we obtain a finite folding graph disjoint from its negation,
then we have found and proved that the disjunction of patterns in
such a graph is an inductive invariant. (2) If we can also show that
Q0 folds into itself, then Q0 is also an inductive invariant.

5/19

Program Verification: Lecture 28

A Two-Way Street

The synergy between symbolic model checking and inductive
theorem proving is a two-way street: Not only does model checking
become more powerful; theorem proving does so too.

For example,
finding and proving inductive invariants can require significant
theorem proving effort. I will show in what follows how finding and
proving them with the combined power of symbolic model
checking and inductive theorem proving can make it easier.

An invariant Q ⊆ C
Σ/E⃗ ,B,St

is called inductive iff it is transition

closed. I.e., for each [u] ∈ Q and each transition [u] →CR [v] we
must have [v] ∈ Q. This has two useful consequences: (1) If for an
invariant guess Q0 describable as a disjunction of constrained
patterns we obtain a finite folding graph disjoint from its negation,
then we have found and proved that the disjunction of patterns in
such a graph is an inductive invariant. (2) If we can also show that
Q0 folds into itself, then Q0 is also an inductive invariant.

5/19

Program Verification: Lecture 28

A Two-Way Street

The synergy between symbolic model checking and inductive
theorem proving is a two-way street: Not only does model checking
become more powerful; theorem proving does so too. For example,
finding and proving inductive invariants can require significant
theorem proving effort.

I will show in what follows how finding and
proving them with the combined power of symbolic model
checking and inductive theorem proving can make it easier.

An invariant Q ⊆ C
Σ/E⃗ ,B,St

is called inductive iff it is transition

closed. I.e., for each [u] ∈ Q and each transition [u] →CR [v] we
must have [v] ∈ Q. This has two useful consequences: (1) If for an
invariant guess Q0 describable as a disjunction of constrained
patterns we obtain a finite folding graph disjoint from its negation,
then we have found and proved that the disjunction of patterns in
such a graph is an inductive invariant. (2) If we can also show that
Q0 folds into itself, then Q0 is also an inductive invariant.

5/19

Program Verification: Lecture 28

A Two-Way Street

The synergy between symbolic model checking and inductive
theorem proving is a two-way street: Not only does model checking
become more powerful; theorem proving does so too. For example,
finding and proving inductive invariants can require significant
theorem proving effort. I will show in what follows how finding and
proving them with the combined power of symbolic model
checking and inductive theorem proving can make it easier.

An invariant Q ⊆ C
Σ/E⃗ ,B,St

is called inductive iff it is transition

closed. I.e., for each [u] ∈ Q and each transition [u] →CR [v] we
must have [v] ∈ Q. This has two useful consequences: (1) If for an
invariant guess Q0 describable as a disjunction of constrained
patterns we obtain a finite folding graph disjoint from its negation,
then we have found and proved that the disjunction of patterns in
such a graph is an inductive invariant. (2) If we can also show that
Q0 folds into itself, then Q0 is also an inductive invariant.

5/19

Program Verification: Lecture 28

A Two-Way Street

The synergy between symbolic model checking and inductive
theorem proving is a two-way street: Not only does model checking
become more powerful; theorem proving does so too. For example,
finding and proving inductive invariants can require significant
theorem proving effort. I will show in what follows how finding and
proving them with the combined power of symbolic model
checking and inductive theorem proving can make it easier.

An invariant Q ⊆ C
Σ/E⃗ ,B,St

is called inductive iff it is transition

closed.

I.e., for each [u] ∈ Q and each transition [u] →CR [v] we
must have [v] ∈ Q. This has two useful consequences: (1) If for an
invariant guess Q0 describable as a disjunction of constrained
patterns we obtain a finite folding graph disjoint from its negation,
then we have found and proved that the disjunction of patterns in
such a graph is an inductive invariant. (2) If we can also show that
Q0 folds into itself, then Q0 is also an inductive invariant.

5/19

Program Verification: Lecture 28

A Two-Way Street

The synergy between symbolic model checking and inductive
theorem proving is a two-way street: Not only does model checking
become more powerful; theorem proving does so too. For example,
finding and proving inductive invariants can require significant
theorem proving effort. I will show in what follows how finding and
proving them with the combined power of symbolic model
checking and inductive theorem proving can make it easier.

An invariant Q ⊆ C
Σ/E⃗ ,B,St

is called inductive iff it is transition

closed. I.e., for each [u] ∈ Q and each transition [u] →CR [v] we
must have [v] ∈ Q.

This has two useful consequences: (1) If for an
invariant guess Q0 describable as a disjunction of constrained
patterns we obtain a finite folding graph disjoint from its negation,
then we have found and proved that the disjunction of patterns in
such a graph is an inductive invariant. (2) If we can also show that
Q0 folds into itself, then Q0 is also an inductive invariant.

5/19

Program Verification: Lecture 28

A Two-Way Street

The synergy between symbolic model checking and inductive
theorem proving is a two-way street: Not only does model checking
become more powerful; theorem proving does so too. For example,
finding and proving inductive invariants can require significant
theorem proving effort. I will show in what follows how finding and
proving them with the combined power of symbolic model
checking and inductive theorem proving can make it easier.

An invariant Q ⊆ C
Σ/E⃗ ,B,St

is called inductive iff it is transition

closed. I.e., for each [u] ∈ Q and each transition [u] →CR [v] we
must have [v] ∈ Q. This has two useful consequences:

(1) If for an
invariant guess Q0 describable as a disjunction of constrained
patterns we obtain a finite folding graph disjoint from its negation,
then we have found and proved that the disjunction of patterns in
such a graph is an inductive invariant. (2) If we can also show that
Q0 folds into itself, then Q0 is also an inductive invariant.

5/19

Program Verification: Lecture 28

A Two-Way Street

The synergy between symbolic model checking and inductive
theorem proving is a two-way street: Not only does model checking
become more powerful; theorem proving does so too. For example,
finding and proving inductive invariants can require significant
theorem proving effort. I will show in what follows how finding and
proving them with the combined power of symbolic model
checking and inductive theorem proving can make it easier.

An invariant Q ⊆ C
Σ/E⃗ ,B,St

is called inductive iff it is transition

closed. I.e., for each [u] ∈ Q and each transition [u] →CR [v] we
must have [v] ∈ Q. This has two useful consequences: (1) If for an
invariant guess Q0 describable as a disjunction of constrained
patterns we obtain a finite folding graph disjoint from its negation,
then we have found and proved that the disjunction of patterns in
such a graph is an inductive invariant.

(2) If we can also show that
Q0 folds into itself, then Q0 is also an inductive invariant.

5/19

Program Verification: Lecture 28

A Two-Way Street

The synergy between symbolic model checking and inductive
theorem proving is a two-way street: Not only does model checking
become more powerful; theorem proving does so too. For example,
finding and proving inductive invariants can require significant
theorem proving effort. I will show in what follows how finding and
proving them with the combined power of symbolic model
checking and inductive theorem proving can make it easier.

An invariant Q ⊆ C
Σ/E⃗ ,B,St

is called inductive iff it is transition

closed. I.e., for each [u] ∈ Q and each transition [u] →CR [v] we
must have [v] ∈ Q. This has two useful consequences: (1) If for an
invariant guess Q0 describable as a disjunction of constrained
patterns we obtain a finite folding graph disjoint from its negation,
then we have found and proved that the disjunction of patterns in
such a graph is an inductive invariant. (2) If we can also show that
Q0 folds into itself, then Q0 is also an inductive invariant.

5/19

Program Verification: Lecture 28

Proving Invariants and Inductive Invariants

We can summarize the following methods to prove inductive
invariants, and, after doing so, proving also other invariants.

(1). Initial States Contained. Suppose that we want to prove
that

∨
j∈J vj | ψj is an inductive invariant from initial states∨

i∈I ui | φi . We first need to show the set containment
J
∨

i∈I ui | φiKE⃗/B
⊆ J

∨
j∈J vj | ψjKE⃗/B

. A sufficient condition for

this contaiment is to show that for each i ∈ I there is a j ∈ J such
that (⊆i ,j) Jui | φiKE⃗/B

⊆ Jvj | ψjKE⃗/B
. To prove (⊆i ,j) it is in turn

enough to show that ui | φi ⊑B1 vj | ψj , which by definition means:

∃α s.t. ui =B1 vjα ∧ C
Σ/E⃗ ,B

|= φi ⇒ (ψjα)

If ψj ≡ ⊤, this is decidable by finding a B1-matching substitution
α. Otherwise, φi ⇒ (ψjα) is an inductive theorem that has to be
proved. Note. Could replace ⊑B1 by the more general ⊑E1∪B1 .

6/19

Program Verification: Lecture 28

Proving Invariants and Inductive Invariants

We can summarize the following methods to prove inductive
invariants, and, after doing so, proving also other invariants.

(1). Initial States Contained. Suppose that we want to prove
that

∨
j∈J vj | ψj is an inductive invariant from initial states∨

i∈I ui | φi .

We first need to show the set containment
J
∨

i∈I ui | φiKE⃗/B
⊆ J

∨
j∈J vj | ψjKE⃗/B

. A sufficient condition for

this contaiment is to show that for each i ∈ I there is a j ∈ J such
that (⊆i ,j) Jui | φiKE⃗/B

⊆ Jvj | ψjKE⃗/B
. To prove (⊆i ,j) it is in turn

enough to show that ui | φi ⊑B1 vj | ψj , which by definition means:

∃α s.t. ui =B1 vjα ∧ C
Σ/E⃗ ,B

|= φi ⇒ (ψjα)

If ψj ≡ ⊤, this is decidable by finding a B1-matching substitution
α. Otherwise, φi ⇒ (ψjα) is an inductive theorem that has to be
proved. Note. Could replace ⊑B1 by the more general ⊑E1∪B1 .

6/19

Program Verification: Lecture 28

Proving Invariants and Inductive Invariants

We can summarize the following methods to prove inductive
invariants, and, after doing so, proving also other invariants.

(1). Initial States Contained. Suppose that we want to prove
that

∨
j∈J vj | ψj is an inductive invariant from initial states∨

i∈I ui | φi . We first need to show the set containment
J
∨

i∈I ui | φiKE⃗/B
⊆ J

∨
j∈J vj | ψjKE⃗/B

.

A sufficient condition for

this contaiment is to show that for each i ∈ I there is a j ∈ J such
that (⊆i ,j) Jui | φiKE⃗/B

⊆ Jvj | ψjKE⃗/B
. To prove (⊆i ,j) it is in turn

enough to show that ui | φi ⊑B1 vj | ψj , which by definition means:

∃α s.t. ui =B1 vjα ∧ C
Σ/E⃗ ,B

|= φi ⇒ (ψjα)

If ψj ≡ ⊤, this is decidable by finding a B1-matching substitution
α. Otherwise, φi ⇒ (ψjα) is an inductive theorem that has to be
proved. Note. Could replace ⊑B1 by the more general ⊑E1∪B1 .

6/19

Program Verification: Lecture 28

Proving Invariants and Inductive Invariants

We can summarize the following methods to prove inductive
invariants, and, after doing so, proving also other invariants.

(1). Initial States Contained. Suppose that we want to prove
that

∨
j∈J vj | ψj is an inductive invariant from initial states∨

i∈I ui | φi . We first need to show the set containment
J
∨

i∈I ui | φiKE⃗/B
⊆ J

∨
j∈J vj | ψjKE⃗/B

. A sufficient condition for

this contaiment is to show that for each i ∈ I there is a j ∈ J such
that (⊆i ,j) Jui | φiKE⃗/B

⊆ Jvj | ψjKE⃗/B
.

To prove (⊆i ,j) it is in turn

enough to show that ui | φi ⊑B1 vj | ψj , which by definition means:

∃α s.t. ui =B1 vjα ∧ C
Σ/E⃗ ,B

|= φi ⇒ (ψjα)

If ψj ≡ ⊤, this is decidable by finding a B1-matching substitution
α. Otherwise, φi ⇒ (ψjα) is an inductive theorem that has to be
proved. Note. Could replace ⊑B1 by the more general ⊑E1∪B1 .

6/19

Program Verification: Lecture 28

Proving Invariants and Inductive Invariants

We can summarize the following methods to prove inductive
invariants, and, after doing so, proving also other invariants.

(1). Initial States Contained. Suppose that we want to prove
that

∨
j∈J vj | ψj is an inductive invariant from initial states∨

i∈I ui | φi . We first need to show the set containment
J
∨

i∈I ui | φiKE⃗/B
⊆ J

∨
j∈J vj | ψjKE⃗/B

. A sufficient condition for

this contaiment is to show that for each i ∈ I there is a j ∈ J such
that (⊆i ,j) Jui | φiKE⃗/B

⊆ Jvj | ψjKE⃗/B
. To prove (⊆i ,j) it is in turn

enough to show that ui | φi ⊑B1 vj | ψj ,

which by definition means:

∃α s.t. ui =B1 vjα ∧ C
Σ/E⃗ ,B

|= φi ⇒ (ψjα)

If ψj ≡ ⊤, this is decidable by finding a B1-matching substitution
α. Otherwise, φi ⇒ (ψjα) is an inductive theorem that has to be
proved. Note. Could replace ⊑B1 by the more general ⊑E1∪B1 .

6/19

Program Verification: Lecture 28

Proving Invariants and Inductive Invariants

We can summarize the following methods to prove inductive
invariants, and, after doing so, proving also other invariants.

(1). Initial States Contained. Suppose that we want to prove
that

∨
j∈J vj | ψj is an inductive invariant from initial states∨

i∈I ui | φi . We first need to show the set containment
J
∨

i∈I ui | φiKE⃗/B
⊆ J

∨
j∈J vj | ψjKE⃗/B

. A sufficient condition for

this contaiment is to show that for each i ∈ I there is a j ∈ J such
that (⊆i ,j) Jui | φiKE⃗/B

⊆ Jvj | ψjKE⃗/B
. To prove (⊆i ,j) it is in turn

enough to show that ui | φi ⊑B1 vj | ψj , which by definition means:

∃α s.t. ui =B1 vjα ∧ C
Σ/E⃗ ,B

|= φi ⇒ (ψjα)

If ψj ≡ ⊤, this is decidable by finding a B1-matching substitution
α. Otherwise, φi ⇒ (ψjα) is an inductive theorem that has to be
proved. Note. Could replace ⊑B1 by the more general ⊑E1∪B1 .

6/19

Program Verification: Lecture 28

Proving Invariants and Inductive Invariants

We can summarize the following methods to prove inductive
invariants, and, after doing so, proving also other invariants.

(1). Initial States Contained. Suppose that we want to prove
that

∨
j∈J vj | ψj is an inductive invariant from initial states∨

i∈I ui | φi . We first need to show the set containment
J
∨

i∈I ui | φiKE⃗/B
⊆ J

∨
j∈J vj | ψjKE⃗/B

. A sufficient condition for

this contaiment is to show that for each i ∈ I there is a j ∈ J such
that (⊆i ,j) Jui | φiKE⃗/B

⊆ Jvj | ψjKE⃗/B
. To prove (⊆i ,j) it is in turn

enough to show that ui | φi ⊑B1 vj | ψj , which by definition means:

∃α s.t. ui =B1 vjα ∧ C
Σ/E⃗ ,B

|= φi ⇒ (ψjα)

If ψj ≡ ⊤, this is decidable by finding a B1-matching substitution
α. Otherwise, φi ⇒ (ψjα) is an inductive theorem that has to be
proved. Note. Could replace ⊑B1 by the more general ⊑E1∪B1 .

6/19

Program Verification: Lecture 28

Proving Invariants and Inductive Invariants

We can summarize the following methods to prove inductive
invariants, and, after doing so, proving also other invariants.

(1). Initial States Contained. Suppose that we want to prove
that

∨
j∈J vj | ψj is an inductive invariant from initial states∨

i∈I ui | φi . We first need to show the set containment
J
∨

i∈I ui | φiKE⃗/B
⊆ J

∨
j∈J vj | ψjKE⃗/B

. A sufficient condition for

this contaiment is to show that for each i ∈ I there is a j ∈ J such
that (⊆i ,j) Jui | φiKE⃗/B

⊆ Jvj | ψjKE⃗/B
. To prove (⊆i ,j) it is in turn

enough to show that ui | φi ⊑B1 vj | ψj , which by definition means:

∃α s.t. ui =B1 vjα ∧ C
Σ/E⃗ ,B

|= φi ⇒ (ψjα)

If ψj ≡ ⊤, this is decidable by finding a B1-matching substitution
α. Otherwise, φi ⇒ (ψjα) is an inductive theorem that has to be
proved.

Note. Could replace ⊑B1 by the more general ⊑E1∪B1 .

6/19

Program Verification: Lecture 28

Proving Invariants and Inductive Invariants

We can summarize the following methods to prove inductive
invariants, and, after doing so, proving also other invariants.

(1). Initial States Contained. Suppose that we want to prove
that

∨
j∈J vj | ψj is an inductive invariant from initial states∨

i∈I ui | φi . We first need to show the set containment
J
∨

i∈I ui | φiKE⃗/B
⊆ J

∨
j∈J vj | ψjKE⃗/B

. A sufficient condition for

this contaiment is to show that for each i ∈ I there is a j ∈ J such
that (⊆i ,j) Jui | φiKE⃗/B

⊆ Jvj | ψjKE⃗/B
. To prove (⊆i ,j) it is in turn

enough to show that ui | φi ⊑B1 vj | ψj , which by definition means:

∃α s.t. ui =B1 vjα ∧ C
Σ/E⃗ ,B

|= φi ⇒ (ψjα)

If ψj ≡ ⊤, this is decidable by finding a B1-matching substitution
α. Otherwise, φi ⇒ (ψjα) is an inductive theorem that has to be
proved. Note. Could replace ⊑B1 by the more general ⊑E1∪B1 .

6/19

Program Verification: Lecture 28

Proving Invariants and Inductive Invariants (II)

(2). Proving the Inductive Invariant. To prove that
∨

j∈J vj | ψj

is an inductive invariant, we need to prove that the set of ground
states J

∨
j∈J vj | ψjKE⃗/B

is transition closed.

But by the Lifting

Lemma this is equivalent to showing that:

∀j ∈ J, ∀(l → r if ϕ) ∈ R, ∀γ ∈ Unif E1∪B1(vj , l) J(r | ψj∧π)γKE⃗/B ⊆ J
∨
j∈J

vj | ψjKE⃗/B .

That is, we need to show that the ground instances of each child
by a narrowing step vj | ψj ;R/E1∪B1

(r | ψj ∧ ϕ)γ are contained in
(are folded into) the conjectured invariant. For this it is again a
sufficient condition to prove that there exists a j ′ ∈ J s.t.
(r | ψj ∧ ϕ)γ ⊑B1 vj ′ | ψj ′ . Note. Could replace ⊑B1 by ⊑E1∪B1 .

Again, proving that for a B1-matching substitution α
C
Σ/E⃗ ,B

|= (ψj ∧ ϕ)γ ⇒ (ψj ′α) requires inductive theorem proving.

7/19

Program Verification: Lecture 28

Proving Invariants and Inductive Invariants (II)

(2). Proving the Inductive Invariant. To prove that
∨

j∈J vj | ψj

is an inductive invariant, we need to prove that the set of ground
states J

∨
j∈J vj | ψjKE⃗/B

is transition closed. But by the Lifting

Lemma this is equivalent to showing that:

∀j ∈ J, ∀(l → r if ϕ) ∈ R, ∀γ ∈ Unif E1∪B1(vj , l) J(r | ψj∧π)γKE⃗/B ⊆ J
∨
j∈J

vj | ψjKE⃗/B .

That is, we need to show that the ground instances of each child
by a narrowing step vj | ψj ;R/E1∪B1

(r | ψj ∧ ϕ)γ are contained in
(are folded into) the conjectured invariant. For this it is again a
sufficient condition to prove that there exists a j ′ ∈ J s.t.
(r | ψj ∧ ϕ)γ ⊑B1 vj ′ | ψj ′ . Note. Could replace ⊑B1 by ⊑E1∪B1 .

Again, proving that for a B1-matching substitution α
C
Σ/E⃗ ,B

|= (ψj ∧ ϕ)γ ⇒ (ψj ′α) requires inductive theorem proving.

7/19

Program Verification: Lecture 28

Proving Invariants and Inductive Invariants (II)

(2). Proving the Inductive Invariant. To prove that
∨

j∈J vj | ψj

is an inductive invariant, we need to prove that the set of ground
states J

∨
j∈J vj | ψjKE⃗/B

is transition closed. But by the Lifting

Lemma this is equivalent to showing that:

∀j ∈ J, ∀(l → r if ϕ) ∈ R, ∀γ ∈ Unif E1∪B1(vj , l) J(r | ψj∧π)γKE⃗/B ⊆ J
∨
j∈J

vj | ψjKE⃗/B .

That is, we need to show that the ground instances of each child
by a narrowing step vj | ψj ;R/E1∪B1

(r | ψj ∧ ϕ)γ are contained in
(are folded into) the conjectured invariant. For this it is again a
sufficient condition to prove that there exists a j ′ ∈ J s.t.
(r | ψj ∧ ϕ)γ ⊑B1 vj ′ | ψj ′ . Note. Could replace ⊑B1 by ⊑E1∪B1 .

Again, proving that for a B1-matching substitution α
C
Σ/E⃗ ,B

|= (ψj ∧ ϕ)γ ⇒ (ψj ′α) requires inductive theorem proving.

7/19

Program Verification: Lecture 28

Proving Invariants and Inductive Invariants (II)

(2). Proving the Inductive Invariant. To prove that
∨

j∈J vj | ψj

is an inductive invariant, we need to prove that the set of ground
states J

∨
j∈J vj | ψjKE⃗/B

is transition closed. But by the Lifting

Lemma this is equivalent to showing that:

∀j ∈ J, ∀(l → r if ϕ) ∈ R, ∀γ ∈ Unif E1∪B1(vj , l) J(r | ψj∧π)γKE⃗/B ⊆ J
∨
j∈J

vj | ψjKE⃗/B .

That is, we need to show that the ground instances of each child
by a narrowing step vj | ψj ;R/E1∪B1

(r | ψj ∧ ϕ)γ are contained in
(are folded into) the conjectured invariant.

For this it is again a
sufficient condition to prove that there exists a j ′ ∈ J s.t.
(r | ψj ∧ ϕ)γ ⊑B1 vj ′ | ψj ′ . Note. Could replace ⊑B1 by ⊑E1∪B1 .

Again, proving that for a B1-matching substitution α
C
Σ/E⃗ ,B

|= (ψj ∧ ϕ)γ ⇒ (ψj ′α) requires inductive theorem proving.

7/19

Program Verification: Lecture 28

Proving Invariants and Inductive Invariants (II)

(2). Proving the Inductive Invariant. To prove that
∨

j∈J vj | ψj

is an inductive invariant, we need to prove that the set of ground
states J

∨
j∈J vj | ψjKE⃗/B

is transition closed. But by the Lifting

Lemma this is equivalent to showing that:

∀j ∈ J, ∀(l → r if ϕ) ∈ R, ∀γ ∈ Unif E1∪B1(vj , l) J(r | ψj∧π)γKE⃗/B ⊆ J
∨
j∈J

vj | ψjKE⃗/B .

That is, we need to show that the ground instances of each child
by a narrowing step vj | ψj ;R/E1∪B1

(r | ψj ∧ ϕ)γ are contained in
(are folded into) the conjectured invariant. For this it is again a
sufficient condition to prove that there exists a j ′ ∈ J s.t.
(r | ψj ∧ ϕ)γ ⊑B1 vj ′ | ψj ′ .

Note. Could replace ⊑B1 by ⊑E1∪B1 .

Again, proving that for a B1-matching substitution α
C
Σ/E⃗ ,B

|= (ψj ∧ ϕ)γ ⇒ (ψj ′α) requires inductive theorem proving.

7/19

Program Verification: Lecture 28

Proving Invariants and Inductive Invariants (II)

(2). Proving the Inductive Invariant. To prove that
∨

j∈J vj | ψj

is an inductive invariant, we need to prove that the set of ground
states J

∨
j∈J vj | ψjKE⃗/B

is transition closed. But by the Lifting

Lemma this is equivalent to showing that:

∀j ∈ J, ∀(l → r if ϕ) ∈ R, ∀γ ∈ Unif E1∪B1(vj , l) J(r | ψj∧π)γKE⃗/B ⊆ J
∨
j∈J

vj | ψjKE⃗/B .

That is, we need to show that the ground instances of each child
by a narrowing step vj | ψj ;R/E1∪B1

(r | ψj ∧ ϕ)γ are contained in
(are folded into) the conjectured invariant. For this it is again a
sufficient condition to prove that there exists a j ′ ∈ J s.t.
(r | ψj ∧ ϕ)γ ⊑B1 vj ′ | ψj ′ . Note. Could replace ⊑B1 by ⊑E1∪B1 .

Again, proving that for a B1-matching substitution α
C
Σ/E⃗ ,B

|= (ψj ∧ ϕ)γ ⇒ (ψj ′α) requires inductive theorem proving.

7/19

Program Verification: Lecture 28

Proving Invariants and Inductive Invariants (II)

(2). Proving the Inductive Invariant. To prove that
∨

j∈J vj | ψj

is an inductive invariant, we need to prove that the set of ground
states J

∨
j∈J vj | ψjKE⃗/B

is transition closed. But by the Lifting

Lemma this is equivalent to showing that:

∀j ∈ J, ∀(l → r if ϕ) ∈ R, ∀γ ∈ Unif E1∪B1(vj , l) J(r | ψj∧π)γKE⃗/B ⊆ J
∨
j∈J

vj | ψjKE⃗/B .

That is, we need to show that the ground instances of each child
by a narrowing step vj | ψj ;R/E1∪B1

(r | ψj ∧ ϕ)γ are contained in
(are folded into) the conjectured invariant. For this it is again a
sufficient condition to prove that there exists a j ′ ∈ J s.t.
(r | ψj ∧ ϕ)γ ⊑B1 vj ′ | ψj ′ . Note. Could replace ⊑B1 by ⊑E1∪B1 .

Again, proving that for a B1-matching substitution α
C
Σ/E⃗ ,B

|= (ψj ∧ ϕ)γ ⇒ (ψj ′α) requires inductive theorem proving.

7/19

Program Verification: Lecture 28

Proving Invariants and Inductive Invariants (III)

(3). Proving Other Invariant. Once we have proved that∨
j∈J vj | ψj is an inductive invariant from

∨
i∈I ui | φi , we can

prove another invariant Q from
∨

i∈I ui | φi in one of two ways:

1 Positively: If Q = J
∨

k∈K wk | ϕkKE⃗/B
it is enough to show

that ∀j ∈ J ∃k ∈ K s.t.
J
∨

j∈J vj | ψjKE⃗/B
⊆ J

∨
k∈K wk | ϕkKE⃗/B

, which holds if we

can prove vi | ψj ⊑B1 wk | ϕk .
2 Negatively: If Qc = J

∨
k∈K wk | ϕkKE⃗/B

, then if

J
∨

j∈J vj | ψjKE⃗/B
∩ ⊆ J

∨
k∈K wk | ϕkKE⃗/B

= ∅ we have proved

Jvj | ψjKE⃗/B
⊆ Q, i.e., Q is an invariant from

∨
i∈I ui | φi .

Positively, it is enough to show that ∀j ∈ J ∃k ∈ K s.t.
vj | ψj ⊑B1 wk | ϕk . Negatively, it is enough to show that
∀j ∈ J ∀k ∈ K ∀θ ∈ DisjUnif B1

(vj = wk) (the disjoint B1-unifiers
of vj = wk), J(vj | ψj ∧ ϕk)θKE⃗/B

= ∅, i.e., C
Σ/E⃗ ,B

|= ¬(ψj ∧ ϕk)θ.

8/19

Program Verification: Lecture 28

Proving Invariants and Inductive Invariants (III)

(3). Proving Other Invariant. Once we have proved that∨
j∈J vj | ψj is an inductive invariant from

∨
i∈I ui | φi , we can

prove another invariant Q from
∨

i∈I ui | φi in one of two ways:

1 Positively: If Q = J
∨

k∈K wk | ϕkKE⃗/B
it is enough to show

that

∀j ∈ J ∃k ∈ K s.t.
J
∨

j∈J vj | ψjKE⃗/B
⊆ J

∨
k∈K wk | ϕkKE⃗/B

, which holds if we

can prove vi | ψj ⊑B1 wk | ϕk .
2 Negatively: If Qc = J

∨
k∈K wk | ϕkKE⃗/B

, then if

J
∨

j∈J vj | ψjKE⃗/B
∩ ⊆ J

∨
k∈K wk | ϕkKE⃗/B

= ∅ we have proved

Jvj | ψjKE⃗/B
⊆ Q, i.e., Q is an invariant from

∨
i∈I ui | φi .

Positively, it is enough to show that ∀j ∈ J ∃k ∈ K s.t.
vj | ψj ⊑B1 wk | ϕk . Negatively, it is enough to show that
∀j ∈ J ∀k ∈ K ∀θ ∈ DisjUnif B1

(vj = wk) (the disjoint B1-unifiers
of vj = wk), J(vj | ψj ∧ ϕk)θKE⃗/B

= ∅, i.e., C
Σ/E⃗ ,B

|= ¬(ψj ∧ ϕk)θ.

8/19

Program Verification: Lecture 28

Proving Invariants and Inductive Invariants (III)

(3). Proving Other Invariant. Once we have proved that∨
j∈J vj | ψj is an inductive invariant from

∨
i∈I ui | φi , we can

prove another invariant Q from
∨

i∈I ui | φi in one of two ways:

1 Positively: If Q = J
∨

k∈K wk | ϕkKE⃗/B
it is enough to show

that ∀j ∈ J ∃k ∈ K s.t.
J
∨

j∈J vj | ψjKE⃗/B
⊆ J

∨
k∈K wk | ϕkKE⃗/B

,

which holds if we

can prove vi | ψj ⊑B1 wk | ϕk .
2 Negatively: If Qc = J

∨
k∈K wk | ϕkKE⃗/B

, then if

J
∨

j∈J vj | ψjKE⃗/B
∩ ⊆ J

∨
k∈K wk | ϕkKE⃗/B

= ∅ we have proved

Jvj | ψjKE⃗/B
⊆ Q, i.e., Q is an invariant from

∨
i∈I ui | φi .

Positively, it is enough to show that ∀j ∈ J ∃k ∈ K s.t.
vj | ψj ⊑B1 wk | ϕk . Negatively, it is enough to show that
∀j ∈ J ∀k ∈ K ∀θ ∈ DisjUnif B1

(vj = wk) (the disjoint B1-unifiers
of vj = wk), J(vj | ψj ∧ ϕk)θKE⃗/B

= ∅, i.e., C
Σ/E⃗ ,B

|= ¬(ψj ∧ ϕk)θ.

8/19

Program Verification: Lecture 28

Proving Invariants and Inductive Invariants (III)

(3). Proving Other Invariant. Once we have proved that∨
j∈J vj | ψj is an inductive invariant from

∨
i∈I ui | φi , we can

prove another invariant Q from
∨

i∈I ui | φi in one of two ways:

1 Positively: If Q = J
∨

k∈K wk | ϕkKE⃗/B
it is enough to show

that ∀j ∈ J ∃k ∈ K s.t.
J
∨

j∈J vj | ψjKE⃗/B
⊆ J

∨
k∈K wk | ϕkKE⃗/B

, which holds if we

can prove

vi | ψj ⊑B1 wk | ϕk .
2 Negatively: If Qc = J

∨
k∈K wk | ϕkKE⃗/B

, then if

J
∨

j∈J vj | ψjKE⃗/B
∩ ⊆ J

∨
k∈K wk | ϕkKE⃗/B

= ∅ we have proved

Jvj | ψjKE⃗/B
⊆ Q, i.e., Q is an invariant from

∨
i∈I ui | φi .

Positively, it is enough to show that ∀j ∈ J ∃k ∈ K s.t.
vj | ψj ⊑B1 wk | ϕk . Negatively, it is enough to show that
∀j ∈ J ∀k ∈ K ∀θ ∈ DisjUnif B1

(vj = wk) (the disjoint B1-unifiers
of vj = wk), J(vj | ψj ∧ ϕk)θKE⃗/B

= ∅, i.e., C
Σ/E⃗ ,B

|= ¬(ψj ∧ ϕk)θ.

8/19

Program Verification: Lecture 28

Proving Invariants and Inductive Invariants (III)

(3). Proving Other Invariant. Once we have proved that∨
j∈J vj | ψj is an inductive invariant from

∨
i∈I ui | φi , we can

prove another invariant Q from
∨

i∈I ui | φi in one of two ways:

1 Positively: If Q = J
∨

k∈K wk | ϕkKE⃗/B
it is enough to show

that ∀j ∈ J ∃k ∈ K s.t.
J
∨

j∈J vj | ψjKE⃗/B
⊆ J

∨
k∈K wk | ϕkKE⃗/B

, which holds if we

can prove vi | ψj ⊑B1 wk | ϕk .

2 Negatively: If Qc = J
∨

k∈K wk | ϕkKE⃗/B
, then if

J
∨

j∈J vj | ψjKE⃗/B
∩ ⊆ J

∨
k∈K wk | ϕkKE⃗/B

= ∅ we have proved

Jvj | ψjKE⃗/B
⊆ Q, i.e., Q is an invariant from

∨
i∈I ui | φi .

Positively, it is enough to show that ∀j ∈ J ∃k ∈ K s.t.
vj | ψj ⊑B1 wk | ϕk . Negatively, it is enough to show that
∀j ∈ J ∀k ∈ K ∀θ ∈ DisjUnif B1

(vj = wk) (the disjoint B1-unifiers
of vj = wk), J(vj | ψj ∧ ϕk)θKE⃗/B

= ∅, i.e., C
Σ/E⃗ ,B

|= ¬(ψj ∧ ϕk)θ.

8/19

Program Verification: Lecture 28

Proving Invariants and Inductive Invariants (III)

(3). Proving Other Invariant. Once we have proved that∨
j∈J vj | ψj is an inductive invariant from

∨
i∈I ui | φi , we can

prove another invariant Q from
∨

i∈I ui | φi in one of two ways:

1 Positively: If Q = J
∨

k∈K wk | ϕkKE⃗/B
it is enough to show

that ∀j ∈ J ∃k ∈ K s.t.
J
∨

j∈J vj | ψjKE⃗/B
⊆ J

∨
k∈K wk | ϕkKE⃗/B

, which holds if we

can prove vi | ψj ⊑B1 wk | ϕk .
2 Negatively: If Qc = J

∨
k∈K wk | ϕkKE⃗/B

,

then if

J
∨

j∈J vj | ψjKE⃗/B
∩ ⊆ J

∨
k∈K wk | ϕkKE⃗/B

= ∅ we have proved

Jvj | ψjKE⃗/B
⊆ Q, i.e., Q is an invariant from

∨
i∈I ui | φi .

Positively, it is enough to show that ∀j ∈ J ∃k ∈ K s.t.
vj | ψj ⊑B1 wk | ϕk . Negatively, it is enough to show that
∀j ∈ J ∀k ∈ K ∀θ ∈ DisjUnif B1

(vj = wk) (the disjoint B1-unifiers
of vj = wk), J(vj | ψj ∧ ϕk)θKE⃗/B

= ∅, i.e., C
Σ/E⃗ ,B

|= ¬(ψj ∧ ϕk)θ.

8/19

Program Verification: Lecture 28

Proving Invariants and Inductive Invariants (III)

(3). Proving Other Invariant. Once we have proved that∨
j∈J vj | ψj is an inductive invariant from

∨
i∈I ui | φi , we can

prove another invariant Q from
∨

i∈I ui | φi in one of two ways:

1 Positively: If Q = J
∨

k∈K wk | ϕkKE⃗/B
it is enough to show

that ∀j ∈ J ∃k ∈ K s.t.
J
∨

j∈J vj | ψjKE⃗/B
⊆ J

∨
k∈K wk | ϕkKE⃗/B

, which holds if we

can prove vi | ψj ⊑B1 wk | ϕk .
2 Negatively: If Qc = J

∨
k∈K wk | ϕkKE⃗/B

, then if

J
∨

j∈J vj | ψjKE⃗/B
∩ ⊆ J

∨
k∈K wk | ϕkKE⃗/B

= ∅

we have proved

Jvj | ψjKE⃗/B
⊆ Q, i.e., Q is an invariant from

∨
i∈I ui | φi .

Positively, it is enough to show that ∀j ∈ J ∃k ∈ K s.t.
vj | ψj ⊑B1 wk | ϕk . Negatively, it is enough to show that
∀j ∈ J ∀k ∈ K ∀θ ∈ DisjUnif B1

(vj = wk) (the disjoint B1-unifiers
of vj = wk), J(vj | ψj ∧ ϕk)θKE⃗/B

= ∅, i.e., C
Σ/E⃗ ,B

|= ¬(ψj ∧ ϕk)θ.

8/19

Program Verification: Lecture 28

Proving Invariants and Inductive Invariants (III)

(3). Proving Other Invariant. Once we have proved that∨
j∈J vj | ψj is an inductive invariant from

∨
i∈I ui | φi , we can

prove another invariant Q from
∨

i∈I ui | φi in one of two ways:

1 Positively: If Q = J
∨

k∈K wk | ϕkKE⃗/B
it is enough to show

that ∀j ∈ J ∃k ∈ K s.t.
J
∨

j∈J vj | ψjKE⃗/B
⊆ J

∨
k∈K wk | ϕkKE⃗/B

, which holds if we

can prove vi | ψj ⊑B1 wk | ϕk .
2 Negatively: If Qc = J

∨
k∈K wk | ϕkKE⃗/B

, then if

J
∨

j∈J vj | ψjKE⃗/B
∩ ⊆ J

∨
k∈K wk | ϕkKE⃗/B

= ∅ we have proved

Jvj | ψjKE⃗/B
⊆ Q,

i.e., Q is an invariant from
∨

i∈I ui | φi .

Positively, it is enough to show that ∀j ∈ J ∃k ∈ K s.t.
vj | ψj ⊑B1 wk | ϕk . Negatively, it is enough to show that
∀j ∈ J ∀k ∈ K ∀θ ∈ DisjUnif B1

(vj = wk) (the disjoint B1-unifiers
of vj = wk), J(vj | ψj ∧ ϕk)θKE⃗/B

= ∅, i.e., C
Σ/E⃗ ,B

|= ¬(ψj ∧ ϕk)θ.

8/19

Program Verification: Lecture 28

Proving Invariants and Inductive Invariants (III)

(3). Proving Other Invariant. Once we have proved that∨
j∈J vj | ψj is an inductive invariant from

∨
i∈I ui | φi , we can

prove another invariant Q from
∨

i∈I ui | φi in one of two ways:

1 Positively: If Q = J
∨

k∈K wk | ϕkKE⃗/B
it is enough to show

that ∀j ∈ J ∃k ∈ K s.t.
J
∨

j∈J vj | ψjKE⃗/B
⊆ J

∨
k∈K wk | ϕkKE⃗/B

, which holds if we

can prove vi | ψj ⊑B1 wk | ϕk .
2 Negatively: If Qc = J

∨
k∈K wk | ϕkKE⃗/B

, then if

J
∨

j∈J vj | ψjKE⃗/B
∩ ⊆ J

∨
k∈K wk | ϕkKE⃗/B

= ∅ we have proved

Jvj | ψjKE⃗/B
⊆ Q, i.e., Q is an invariant from

∨
i∈I ui | φi .

Positively, it is enough to show that ∀j ∈ J ∃k ∈ K s.t.
vj | ψj ⊑B1 wk | ϕk . Negatively, it is enough to show that
∀j ∈ J ∀k ∈ K ∀θ ∈ DisjUnif B1

(vj = wk) (the disjoint B1-unifiers
of vj = wk), J(vj | ψj ∧ ϕk)θKE⃗/B

= ∅, i.e., C
Σ/E⃗ ,B

|= ¬(ψj ∧ ϕk)θ.

8/19

Program Verification: Lecture 28

Proving Invariants and Inductive Invariants (III)

(3). Proving Other Invariant. Once we have proved that∨
j∈J vj | ψj is an inductive invariant from

∨
i∈I ui | φi , we can

prove another invariant Q from
∨

i∈I ui | φi in one of two ways:

1 Positively: If Q = J
∨

k∈K wk | ϕkKE⃗/B
it is enough to show

that ∀j ∈ J ∃k ∈ K s.t.
J
∨

j∈J vj | ψjKE⃗/B
⊆ J

∨
k∈K wk | ϕkKE⃗/B

, which holds if we

can prove vi | ψj ⊑B1 wk | ϕk .
2 Negatively: If Qc = J

∨
k∈K wk | ϕkKE⃗/B

, then if

J
∨

j∈J vj | ψjKE⃗/B
∩ ⊆ J

∨
k∈K wk | ϕkKE⃗/B

= ∅ we have proved

Jvj | ψjKE⃗/B
⊆ Q, i.e., Q is an invariant from

∨
i∈I ui | φi .

Positively, it is enough to show that ∀j ∈ J ∃k ∈ K s.t.
vj | ψj ⊑B1 wk | ϕk .

Negatively, it is enough to show that
∀j ∈ J ∀k ∈ K ∀θ ∈ DisjUnif B1

(vj = wk) (the disjoint B1-unifiers
of vj = wk), J(vj | ψj ∧ ϕk)θKE⃗/B

= ∅, i.e., C
Σ/E⃗ ,B

|= ¬(ψj ∧ ϕk)θ.

8/19

Program Verification: Lecture 28

Proving Invariants and Inductive Invariants (III)

(3). Proving Other Invariant. Once we have proved that∨
j∈J vj | ψj is an inductive invariant from

∨
i∈I ui | φi , we can

prove another invariant Q from
∨

i∈I ui | φi in one of two ways:

1 Positively: If Q = J
∨

k∈K wk | ϕkKE⃗/B
it is enough to show

that ∀j ∈ J ∃k ∈ K s.t.
J
∨

j∈J vj | ψjKE⃗/B
⊆ J

∨
k∈K wk | ϕkKE⃗/B

, which holds if we

can prove vi | ψj ⊑B1 wk | ϕk .
2 Negatively: If Qc = J

∨
k∈K wk | ϕkKE⃗/B

, then if

J
∨

j∈J vj | ψjKE⃗/B
∩ ⊆ J

∨
k∈K wk | ϕkKE⃗/B

= ∅ we have proved

Jvj | ψjKE⃗/B
⊆ Q, i.e., Q is an invariant from

∨
i∈I ui | φi .

Positively, it is enough to show that ∀j ∈ J ∃k ∈ K s.t.
vj | ψj ⊑B1 wk | ϕk . Negatively, it is enough to show that
∀j ∈ J ∀k ∈ K ∀θ ∈ DisjUnif B1

(vj = wk) (the disjoint B1-unifiers
of vj = wk),

J(vj | ψj ∧ ϕk)θKE⃗/B
= ∅, i.e., C

Σ/E⃗ ,B
|= ¬(ψj ∧ ϕk)θ.

8/19

Program Verification: Lecture 28

Proving Invariants and Inductive Invariants (III)

(3). Proving Other Invariant. Once we have proved that∨
j∈J vj | ψj is an inductive invariant from

∨
i∈I ui | φi , we can

prove another invariant Q from
∨

i∈I ui | φi in one of two ways:

1 Positively: If Q = J
∨

k∈K wk | ϕkKE⃗/B
it is enough to show

that ∀j ∈ J ∃k ∈ K s.t.
J
∨

j∈J vj | ψjKE⃗/B
⊆ J

∨
k∈K wk | ϕkKE⃗/B

, which holds if we

can prove vi | ψj ⊑B1 wk | ϕk .
2 Negatively: If Qc = J

∨
k∈K wk | ϕkKE⃗/B

, then if

J
∨

j∈J vj | ψjKE⃗/B
∩ ⊆ J

∨
k∈K wk | ϕkKE⃗/B

= ∅ we have proved

Jvj | ψjKE⃗/B
⊆ Q, i.e., Q is an invariant from

∨
i∈I ui | φi .

Positively, it is enough to show that ∀j ∈ J ∃k ∈ K s.t.
vj | ψj ⊑B1 wk | ϕk . Negatively, it is enough to show that
∀j ∈ J ∀k ∈ K ∀θ ∈ DisjUnif B1

(vj = wk) (the disjoint B1-unifiers
of vj = wk), J(vj | ψj ∧ ϕk)θKE⃗/B

= ∅,

i.e., C
Σ/E⃗ ,B

|= ¬(ψj ∧ ϕk)θ.

8/19

Program Verification: Lecture 28

Proving Invariants and Inductive Invariants (III)

(3). Proving Other Invariant. Once we have proved that∨
j∈J vj | ψj is an inductive invariant from

∨
i∈I ui | φi , we can

prove another invariant Q from
∨

i∈I ui | φi in one of two ways:

1 Positively: If Q = J
∨

k∈K wk | ϕkKE⃗/B
it is enough to show

that ∀j ∈ J ∃k ∈ K s.t.
J
∨

j∈J vj | ψjKE⃗/B
⊆ J

∨
k∈K wk | ϕkKE⃗/B

, which holds if we

can prove vi | ψj ⊑B1 wk | ϕk .
2 Negatively: If Qc = J

∨
k∈K wk | ϕkKE⃗/B

, then if

J
∨

j∈J vj | ψjKE⃗/B
∩ ⊆ J

∨
k∈K wk | ϕkKE⃗/B

= ∅ we have proved

Jvj | ψjKE⃗/B
⊆ Q, i.e., Q is an invariant from

∨
i∈I ui | φi .

Positively, it is enough to show that ∀j ∈ J ∃k ∈ K s.t.
vj | ψj ⊑B1 wk | ϕk . Negatively, it is enough to show that
∀j ∈ J ∀k ∈ K ∀θ ∈ DisjUnif B1

(vj = wk) (the disjoint B1-unifiers
of vj = wk), J(vj | ψj ∧ ϕk)θKE⃗/B

= ∅, i.e., C
Σ/E⃗ ,B

|= ¬(ψj ∧ ϕk)θ.
8/19

Program Verification: Lecture 28

The DM-Check Tool

Maude’s Deductive Model Checker (DM-Check) is a tool under
development by a team of researchers at the Technical University
of Valencia, Spain, (S.Escobar, R. López and J. Sapiña), Postech
University, South Korea (K. Bae), and UIUC (J. Meseguer).

The
tool (not yet relased) uses the NuITP and has been made available
for CS 476 students thanks to the efforts of the DM-Check Team.

For an overview, user instructions and the implementation see:

https://safe-tools.dsic.upv.es/dmc/

The current functionality supports verification of inductive and
other invariants according the above methods (1)–(3). Methods
(1) and (3)-Positive are supported by the command, check in M

:
∨

i∈I ui | φi subsumed-by
∨

j∈J vj | ψj . And Method (2) by the
command, check-inv in M :

∨
j∈J vj | ψj .

Let us prove inductive and other invariants with DM-Check.

9/19

Program Verification: Lecture 28

The DM-Check Tool

Maude’s Deductive Model Checker (DM-Check) is a tool under
development by a team of researchers at the Technical University
of Valencia, Spain, (S.Escobar, R. López and J. Sapiña), Postech
University, South Korea (K. Bae), and UIUC (J. Meseguer). The
tool (not yet relased) uses the NuITP and has been made available
for CS 476 students thanks to the efforts of the DM-Check Team.

For an overview, user instructions and the implementation see:

https://safe-tools.dsic.upv.es/dmc/

The current functionality supports verification of inductive and
other invariants according the above methods (1)–(3). Methods
(1) and (3)-Positive are supported by the command, check in M

:
∨

i∈I ui | φi subsumed-by
∨

j∈J vj | ψj . And Method (2) by the
command, check-inv in M :

∨
j∈J vj | ψj .

Let us prove inductive and other invariants with DM-Check.

9/19

Program Verification: Lecture 28

The DM-Check Tool

Maude’s Deductive Model Checker (DM-Check) is a tool under
development by a team of researchers at the Technical University
of Valencia, Spain, (S.Escobar, R. López and J. Sapiña), Postech
University, South Korea (K. Bae), and UIUC (J. Meseguer). The
tool (not yet relased) uses the NuITP and has been made available
for CS 476 students thanks to the efforts of the DM-Check Team.

For an overview, user instructions and the implementation see:

https://safe-tools.dsic.upv.es/dmc/

The current functionality supports verification of inductive and
other invariants according the above methods (1)–(3). Methods
(1) and (3)-Positive are supported by the command, check in M

:
∨

i∈I ui | φi subsumed-by
∨

j∈J vj | ψj . And Method (2) by the
command, check-inv in M :

∨
j∈J vj | ψj .

Let us prove inductive and other invariants with DM-Check.

9/19

Program Verification: Lecture 28

The DM-Check Tool

Maude’s Deductive Model Checker (DM-Check) is a tool under
development by a team of researchers at the Technical University
of Valencia, Spain, (S.Escobar, R. López and J. Sapiña), Postech
University, South Korea (K. Bae), and UIUC (J. Meseguer). The
tool (not yet relased) uses the NuITP and has been made available
for CS 476 students thanks to the efforts of the DM-Check Team.

For an overview, user instructions and the implementation see:

https://safe-tools.dsic.upv.es/dmc/

The current functionality supports verification of inductive and
other invariants according the above methods (1)–(3). Methods
(1) and (3)-Positive are supported by the command, check in M

:
∨

i∈I ui | φi subsumed-by
∨

j∈J vj | ψj . And Method (2) by the
command, check-inv in M :

∨
j∈J vj | ψj .

Let us prove inductive and other invariants with DM-Check.

9/19

Program Verification: Lecture 28

The DM-Check Tool

Maude’s Deductive Model Checker (DM-Check) is a tool under
development by a team of researchers at the Technical University
of Valencia, Spain, (S.Escobar, R. López and J. Sapiña), Postech
University, South Korea (K. Bae), and UIUC (J. Meseguer). The
tool (not yet relased) uses the NuITP and has been made available
for CS 476 students thanks to the efforts of the DM-Check Team.

For an overview, user instructions and the implementation see:

https://safe-tools.dsic.upv.es/dmc/

The current functionality supports verification of inductive and
other invariants according the above methods (1)–(3).

Methods
(1) and (3)-Positive are supported by the command, check in M

:
∨

i∈I ui | φi subsumed-by
∨

j∈J vj | ψj . And Method (2) by the
command, check-inv in M :

∨
j∈J vj | ψj .

Let us prove inductive and other invariants with DM-Check.

9/19

Program Verification: Lecture 28

The DM-Check Tool

Maude’s Deductive Model Checker (DM-Check) is a tool under
development by a team of researchers at the Technical University
of Valencia, Spain, (S.Escobar, R. López and J. Sapiña), Postech
University, South Korea (K. Bae), and UIUC (J. Meseguer). The
tool (not yet relased) uses the NuITP and has been made available
for CS 476 students thanks to the efforts of the DM-Check Team.

For an overview, user instructions and the implementation see:

https://safe-tools.dsic.upv.es/dmc/

The current functionality supports verification of inductive and
other invariants according the above methods (1)–(3). Methods
(1) and (3)-Positive are supported by the command, check in M

:
∨

i∈I ui | φi subsumed-by
∨

j∈J vj | ψj .

And Method (2) by the
command, check-inv in M :

∨
j∈J vj | ψj .

Let us prove inductive and other invariants with DM-Check.

9/19

Program Verification: Lecture 28

The DM-Check Tool

Maude’s Deductive Model Checker (DM-Check) is a tool under
development by a team of researchers at the Technical University
of Valencia, Spain, (S.Escobar, R. López and J. Sapiña), Postech
University, South Korea (K. Bae), and UIUC (J. Meseguer). The
tool (not yet relased) uses the NuITP and has been made available
for CS 476 students thanks to the efforts of the DM-Check Team.

For an overview, user instructions and the implementation see:

https://safe-tools.dsic.upv.es/dmc/

The current functionality supports verification of inductive and
other invariants according the above methods (1)–(3). Methods
(1) and (3)-Positive are supported by the command, check in M

:
∨

i∈I ui | φi subsumed-by
∨

j∈J vj | ψj . And Method (2) by the
command, check-inv in M :

∨
j∈J vj | ψj .

Let us prove inductive and other invariants with DM-Check.

9/19

Program Verification: Lecture 28

The DM-Check Tool

Maude’s Deductive Model Checker (DM-Check) is a tool under
development by a team of researchers at the Technical University
of Valencia, Spain, (S.Escobar, R. López and J. Sapiña), Postech
University, South Korea (K. Bae), and UIUC (J. Meseguer). The
tool (not yet relased) uses the NuITP and has been made available
for CS 476 students thanks to the efforts of the DM-Check Team.

For an overview, user instructions and the implementation see:

https://safe-tools.dsic.upv.es/dmc/

The current functionality supports verification of inductive and
other invariants according the above methods (1)–(3). Methods
(1) and (3)-Positive are supported by the command, check in M

:
∨

i∈I ui | φi subsumed-by
∨

j∈J vj | ψj . And Method (2) by the
command, check-inv in M :

∨
j∈J vj | ψj .

Let us prove inductive and other invariants with DM-Check.
9/19

Program Verification: Lecture 28

An Inductive Invariant Case Study: R&W

A simple example like R&W can illustrate all the ideas.

mod R&W is

sort Natural .

op 0 : -> Natural [ctor] .

op s : Natural -> Natural [ctor] .

sort Config .

op <_,_> : Natural Natural -> Config [ctor] .

vars R W : Natural .

rl [enter-w] : < 0, 0 > => < 0, s(0) > [narrowing] .

rl [leave-w] : < R, s(W) > => < R, W > [narrowing] .

rl [enter-r] : < R, 0 > => < s(R), 0 > [narrowing] .

rl [leave-r] : < s(R), W > => < R, W > [narrowing] .

endm

We first enter it into Maude. Then we load DM-Check:
Maude> load dm-check-ui.maude

We are now ready to give commands to DM-Check. A natural
guess for an inductive invariant for R&W is:
< N:Natural , 0 > | true \/ < 0 , s(0) > | true

10/19

Program Verification: Lecture 28

An Inductive Invariant Case Study: R&W

A simple example like R&W can illustrate all the ideas.
mod R&W is

sort Natural .

op 0 : -> Natural [ctor] .

op s : Natural -> Natural [ctor] .

sort Config .

op <_,_> : Natural Natural -> Config [ctor] .

vars R W : Natural .

rl [enter-w] : < 0, 0 > => < 0, s(0) > [narrowing] .

rl [leave-w] : < R, s(W) > => < R, W > [narrowing] .

rl [enter-r] : < R, 0 > => < s(R), 0 > [narrowing] .

rl [leave-r] : < s(R), W > => < R, W > [narrowing] .

endm

We first enter it into Maude. Then we load DM-Check:
Maude> load dm-check-ui.maude

We are now ready to give commands to DM-Check. A natural
guess for an inductive invariant for R&W is:
< N:Natural , 0 > | true \/ < 0 , s(0) > | true

10/19

Program Verification: Lecture 28

An Inductive Invariant Case Study: R&W

A simple example like R&W can illustrate all the ideas.
mod R&W is

sort Natural .

op 0 : -> Natural [ctor] .

op s : Natural -> Natural [ctor] .

sort Config .

op <_,_> : Natural Natural -> Config [ctor] .

vars R W : Natural .

rl [enter-w] : < 0, 0 > => < 0, s(0) > [narrowing] .

rl [leave-w] : < R, s(W) > => < R, W > [narrowing] .

rl [enter-r] : < R, 0 > => < s(R), 0 > [narrowing] .

rl [leave-r] : < s(R), W > => < R, W > [narrowing] .

endm

We first enter it into Maude.

Then we load DM-Check:
Maude> load dm-check-ui.maude

We are now ready to give commands to DM-Check. A natural
guess for an inductive invariant for R&W is:
< N:Natural , 0 > | true \/ < 0 , s(0) > | true

10/19

Program Verification: Lecture 28

An Inductive Invariant Case Study: R&W

A simple example like R&W can illustrate all the ideas.
mod R&W is

sort Natural .

op 0 : -> Natural [ctor] .

op s : Natural -> Natural [ctor] .

sort Config .

op <_,_> : Natural Natural -> Config [ctor] .

vars R W : Natural .

rl [enter-w] : < 0, 0 > => < 0, s(0) > [narrowing] .

rl [leave-w] : < R, s(W) > => < R, W > [narrowing] .

rl [enter-r] : < R, 0 > => < s(R), 0 > [narrowing] .

rl [leave-r] : < s(R), W > => < R, W > [narrowing] .

endm

We first enter it into Maude. Then we load DM-Check:
Maude> load dm-check-ui.maude

We are now ready to give commands to DM-Check. A natural
guess for an inductive invariant for R&W is:
< N:Natural , 0 > | true \/ < 0 , s(0) > | true

10/19

Program Verification: Lecture 28

An Inductive Invariant Case Study: R&W

A simple example like R&W can illustrate all the ideas.
mod R&W is

sort Natural .

op 0 : -> Natural [ctor] .

op s : Natural -> Natural [ctor] .

sort Config .

op <_,_> : Natural Natural -> Config [ctor] .

vars R W : Natural .

rl [enter-w] : < 0, 0 > => < 0, s(0) > [narrowing] .

rl [leave-w] : < R, s(W) > => < R, W > [narrowing] .

rl [enter-r] : < R, 0 > => < s(R), 0 > [narrowing] .

rl [leave-r] : < s(R), W > => < R, W > [narrowing] .

endm

We first enter it into Maude. Then we load DM-Check:
Maude> load dm-check-ui.maude

We are now ready to give commands to DM-Check.

A natural
guess for an inductive invariant for R&W is:
< N:Natural , 0 > | true \/ < 0 , s(0) > | true

10/19

Program Verification: Lecture 28

An Inductive Invariant Case Study: R&W

A simple example like R&W can illustrate all the ideas.
mod R&W is

sort Natural .

op 0 : -> Natural [ctor] .

op s : Natural -> Natural [ctor] .

sort Config .

op <_,_> : Natural Natural -> Config [ctor] .

vars R W : Natural .

rl [enter-w] : < 0, 0 > => < 0, s(0) > [narrowing] .

rl [leave-w] : < R, s(W) > => < R, W > [narrowing] .

rl [enter-r] : < R, 0 > => < s(R), 0 > [narrowing] .

rl [leave-r] : < s(R), W > => < R, W > [narrowing] .

endm

We first enter it into Maude. Then we load DM-Check:
Maude> load dm-check-ui.maude

We are now ready to give commands to DM-Check. A natural
guess for an inductive invariant for R&W is:
< N:Natural , 0 > | true \/ < 0 , s(0) > | true10/19

Program Verification: Lecture 28

An Inductive Invariant Case Study: R&W (II)

Can show containment of initial state < 0,0 > with the command:

DM-Check> check in R&W : (((< 0,0 >) | (true))) subsumed-by

(((< N:Natural , 0 >) | (true)) \/ ((< 0 , s(0) >) | (true))) .

Subsumption satisfied.

Can prove that it is an inductive invariant with the command:

DM-Check> check-inv in R&W : (((< N:Natural , 0 >) | (true)) \/

((< 0 , s(0) >) | (true))) .

Invariant satisfied.

Now we can show Positively that R&W satisfies the
deadlock-freedom invariant from < 0,0 > with the command:

DM-Check> check in R&W : (((< N:Natural , 0 >) | (true)) \/

((< 0 , s(0) >) | (true))) subsumed-by (((< 0, 0 >) | (true)) \/

((< R:Natural, s(W:Natural) >) | (true)) \/ ((< R:Natural, 0 >) | (true))

\/ ((< s(R:Natural), W:Natural >) | (true))) .

Subsumption satisfied.

11/19

Program Verification: Lecture 28

An Inductive Invariant Case Study: R&W (II)

Can show containment of initial state < 0,0 > with the command:

DM-Check> check in R&W : (((< 0,0 >) | (true))) subsumed-by

(((< N:Natural , 0 >) | (true)) \/ ((< 0 , s(0) >) | (true))) .

Subsumption satisfied.

Can prove that it is an inductive invariant with the command:

DM-Check> check-inv in R&W : (((< N:Natural , 0 >) | (true)) \/

((< 0 , s(0) >) | (true))) .

Invariant satisfied.

Now we can show Positively that R&W satisfies the
deadlock-freedom invariant from < 0,0 > with the command:

DM-Check> check in R&W : (((< N:Natural , 0 >) | (true)) \/

((< 0 , s(0) >) | (true))) subsumed-by (((< 0, 0 >) | (true)) \/

((< R:Natural, s(W:Natural) >) | (true)) \/ ((< R:Natural, 0 >) | (true))

\/ ((< s(R:Natural), W:Natural >) | (true))) .

Subsumption satisfied.

11/19

Program Verification: Lecture 28

An Inductive Invariant Case Study: R&W (III)

DM-Check does not yet support the Negative method to prove
other invariants.

But, once we know that
< N:Natural , 0 > | true \/ < 0 , s(0) > | true is
inductive we can carry out such proofs in Maude itself.

For example, the mutex invariant from < 0, 0 > is proved by the
commands (unification is by construction disjoint because the two
sides share no variables):

Maude> unify < N:Natural,0 > =? < s(M:Natural),s(K:Natural) > .

No unifier.

Maude> unify < 0,s(0) > =? < s(M:Natural),s(K:Natural) > .

No unifier.

12/19

Program Verification: Lecture 28

An Inductive Invariant Case Study: R&W (III)

DM-Check does not yet support the Negative method to prove
other invariants. But, once we know that
< N:Natural , 0 > | true \/ < 0 , s(0) > | true is
inductive we can carry out such proofs in Maude itself.

For example, the mutex invariant from < 0, 0 > is proved by the
commands (unification is by construction disjoint because the two
sides share no variables):

Maude> unify < N:Natural,0 > =? < s(M:Natural),s(K:Natural) > .

No unifier.

Maude> unify < 0,s(0) > =? < s(M:Natural),s(K:Natural) > .

No unifier.

12/19

Program Verification: Lecture 28

An Inductive Invariant Case Study: R&W (III)

DM-Check does not yet support the Negative method to prove
other invariants. But, once we know that
< N:Natural , 0 > | true \/ < 0 , s(0) > | true is
inductive we can carry out such proofs in Maude itself.

For example, the mutex invariant from < 0, 0 > is proved by the
commands (unification is by construction disjoint because the two
sides share no variables):

Maude> unify < N:Natural,0 > =? < s(M:Natural),s(K:Natural) > .

No unifier.

Maude> unify < 0,s(0) > =? < s(M:Natural),s(K:Natural) > .

No unifier.

12/19

Program Verification: Lecture 28

An Inductive Invariant Case Study: R&W (III)

DM-Check does not yet support the Negative method to prove
other invariants. But, once we know that
< N:Natural , 0 > | true \/ < 0 , s(0) > | true is
inductive we can carry out such proofs in Maude itself.

For example, the mutex invariant from < 0, 0 > is proved by the
commands (unification is by construction disjoint because the two
sides share no variables):

Maude> unify < N:Natural,0 > =? < s(M:Natural),s(K:Natural) > .

No unifier.

Maude> unify < 0,s(0) > =? < s(M:Natural),s(K:Natural) > .

No unifier.

12/19

Program Verification: Lecture 28

An Inductive Invariant Case Study: R&W (IV)

Likewise, we can prove the the one-writer invariant from < 0, 0 >
by the commands:

Maude> unify < N:Natural,0 > =? < M:Natural,s(s(K:Natural)) > .

No unifier.

Maude> unify < 0,s(0) > =? < M:Natural,s(s(K:Natural)) > .

No unifier.

13/19

Program Verification: Lecture 28

An Inductive Invariant Case Study: R&W (IV)

Likewise, we can prove the the one-writer invariant from < 0, 0 >
by the commands:

Maude> unify < N:Natural,0 > =? < M:Natural,s(s(K:Natural)) > .

No unifier.

Maude> unify < 0,s(0) > =? < M:Natural,s(s(K:Natural)) > .

No unifier.

13/19

Program Verification: Lecture 28

Second Inductive Invariant Case Study: R&W-FAIR

R&W is unfair. Non-starvation for readers and writers is achieved by
the following R&W-FAIR protocol, which is parametric on the
maximum number n of readers that are allowed:

mod R&W-FAIR is

sorts NzNat Nat Conf . subsorts NzNat < Nat .

op 0 : -> Nat [ctor] .

op 1 : -> NzNat [ctor] .

op _+_ : Nat Nat -> Nat [assoc comm id: 0] .

op _+_ : NzNat Nat -> NzNat [ctor assoc comm id: 0] .

op [_]<_,_>[_|_] : Nat Nat Nat Nat Nat -> Conf .

op init : NzNat -> Conf .

vars N M K I J L : Nat . var N’ M’ : NzNat .

eq init(N’) = [N’]< 0,0 >[0 | N’] .

rl [w-in] : [N]< 0,0 >[0 | N] => [N]< 0,1 >[0 | N] [narrowing] .

rl [w-out] : [N]< 0,1 >[0 | N] => [N]< 0,0 >[N | 0] [narrowing] .

rl [r-in] : [K + N + M + 1]< N,0 >[M + 1 | K] =>

[K + N + M + 1]< N + 1,0 >[M | K] [narrowing] .

rl [r-out] : [K + N + M + 1]< N + 1,0 >[M | K] =>

[K + N + M + 1]< N,0 >[M | K + 1] [narrowing] .

endm

14/19

Program Verification: Lecture 28

Second Inductive Invariant Case Study: R&W-FAIR

R&W is unfair. Non-starvation for readers and writers is achieved by
the following R&W-FAIR protocol, which is parametric on the
maximum number n of readers that are allowed:
mod R&W-FAIR is

sorts NzNat Nat Conf . subsorts NzNat < Nat .

op 0 : -> Nat [ctor] .

op 1 : -> NzNat [ctor] .

op _+_ : Nat Nat -> Nat [assoc comm id: 0] .

op _+_ : NzNat Nat -> NzNat [ctor assoc comm id: 0] .

op [_]<_,_>[_|_] : Nat Nat Nat Nat Nat -> Conf .

op init : NzNat -> Conf .

vars N M K I J L : Nat . var N’ M’ : NzNat .

eq init(N’) = [N’]< 0,0 >[0 | N’] .

rl [w-in] : [N]< 0,0 >[0 | N] => [N]< 0,1 >[0 | N] [narrowing] .

rl [w-out] : [N]< 0,1 >[0 | N] => [N]< 0,0 >[N | 0] [narrowing] .

rl [r-in] : [K + N + M + 1]< N,0 >[M + 1 | K] =>

[K + N + M + 1]< N + 1,0 >[M | K] [narrowing] .

rl [r-out] : [K + N + M + 1]< N + 1,0 >[M | K] =>

[K + N + M + 1]< N,0 >[M | K + 1] [narrowing] .

endm
14/19

Program Verification: Lecture 28

Second Inductive Invariant Case Study: R&W-FAIR

R&W is unfair. Non-starvation for readers and writers is achieved by
the following R&W-FAIR protocol, which is parametric on the
maximum number n of readers that are allowed:
mod R&W-FAIR is

sorts NzNat Nat Conf . subsorts NzNat < Nat .

op 0 : -> Nat [ctor] .

op 1 : -> NzNat [ctor] .

op _+_ : Nat Nat -> Nat [assoc comm id: 0] .

op _+_ : NzNat Nat -> NzNat [ctor assoc comm id: 0] .

op [_]<_,_>[_|_] : Nat Nat Nat Nat Nat -> Conf .

op init : NzNat -> Conf .

vars N M K I J L : Nat . var N’ M’ : NzNat .

eq init(N’) = [N’]< 0,0 >[0 | N’] .

rl [w-in] : [N]< 0,0 >[0 | N] => [N]< 0,1 >[0 | N] [narrowing] .

rl [w-out] : [N]< 0,1 >[0 | N] => [N]< 0,0 >[N | 0] [narrowing] .

rl [r-in] : [K + N + M + 1]< N,0 >[M + 1 | K] =>

[K + N + M + 1]< N + 1,0 >[M | K] [narrowing] .

rl [r-out] : [K + N + M + 1]< N + 1,0 >[M | K] =>

[K + N + M + 1]< N,0 >[M | K + 1] [narrowing] .

endm
14/19

Program Verification: Lecture 28

Second Inductive Invariant Case Study: R&W-FAIR (II)

A natural guess for an inductive invariant is:

[N’]< 0,0 >[0 | N’] | true \/ [N’]< 0,1 >[0 | N’] | true \/

[N’ + K + M]< M,0 >[N’ | K] | true \/ [N’ + K + M]< M,0 >[K | N’] | true

\/ [N’ + K + M]< N’,0 >[M | K] | true

We can check that it contains the parametric initial state thus:

DM-Check> check in R&W-FAIR : ((([N’:NzNat]< 0,0 >[0 | N’:NzNat]) | (true)))

subsumed-by ((([N’:NzNat]< 0,0 >[0 | N’:NzNat]) | (true)) \/

(([N’:NzNat]< 0,1 >[0 | N’:NzNat]) | (true)) \/

(([N’:NzNat + K:Nat + M:Nat]< M:Nat,0 >[N’:NzNat | K:Nat]) | (true)) \/

(([N’:NzNat + K:Nat + M:Nat]< N’:NzNat,0 >[M:Nat | K:Nat]) | (true)) \/

(([N’:NzNat + K:Nat + M:Nat]< M:Nat,0 >[K:Nat | N’:NzNat]) | (true))) .

Subsumption satisfied.

We can also check that our guess invariant is inductive by giving
the command:

15/19

Program Verification: Lecture 28

Second Inductive Invariant Case Study: R&W-FAIR (II)

A natural guess for an inductive invariant is:

[N’]< 0,0 >[0 | N’] | true \/ [N’]< 0,1 >[0 | N’] | true \/

[N’ + K + M]< M,0 >[N’ | K] | true \/ [N’ + K + M]< M,0 >[K | N’] | true

\/ [N’ + K + M]< N’,0 >[M | K] | true

We can check that it contains the parametric initial state thus:

DM-Check> check in R&W-FAIR : ((([N’:NzNat]< 0,0 >[0 | N’:NzNat]) | (true)))

subsumed-by ((([N’:NzNat]< 0,0 >[0 | N’:NzNat]) | (true)) \/

(([N’:NzNat]< 0,1 >[0 | N’:NzNat]) | (true)) \/

(([N’:NzNat + K:Nat + M:Nat]< M:Nat,0 >[N’:NzNat | K:Nat]) | (true)) \/

(([N’:NzNat + K:Nat + M:Nat]< N’:NzNat,0 >[M:Nat | K:Nat]) | (true)) \/

(([N’:NzNat + K:Nat + M:Nat]< M:Nat,0 >[K:Nat | N’:NzNat]) | (true))) .

Subsumption satisfied.

We can also check that our guess invariant is inductive by giving
the command:

15/19

Program Verification: Lecture 28

Second Inductive Invariant Case Study: R&W-FAIR (II)

A natural guess for an inductive invariant is:

[N’]< 0,0 >[0 | N’] | true \/ [N’]< 0,1 >[0 | N’] | true \/

[N’ + K + M]< M,0 >[N’ | K] | true \/ [N’ + K + M]< M,0 >[K | N’] | true

\/ [N’ + K + M]< N’,0 >[M | K] | true

We can check that it contains the parametric initial state thus:

DM-Check> check in R&W-FAIR : ((([N’:NzNat]< 0,0 >[0 | N’:NzNat]) | (true)))

subsumed-by ((([N’:NzNat]< 0,0 >[0 | N’:NzNat]) | (true)) \/

(([N’:NzNat]< 0,1 >[0 | N’:NzNat]) | (true)) \/

(([N’:NzNat + K:Nat + M:Nat]< M:Nat,0 >[N’:NzNat | K:Nat]) | (true)) \/

(([N’:NzNat + K:Nat + M:Nat]< N’:NzNat,0 >[M:Nat | K:Nat]) | (true)) \/

(([N’:NzNat + K:Nat + M:Nat]< M:Nat,0 >[K:Nat | N’:NzNat]) | (true))) .

Subsumption satisfied.

We can also check that our guess invariant is inductive by giving
the command:

15/19

Program Verification: Lecture 28

Second Inductive Invariant Case Study: R&W-FAIR (III)

DM-Check> check-inv in R&W-FAIR : ([N’:NzNat]< 0,0 >[0 | N’:NzNat]) | true \/

([N’:NzNat]< 0,1 >[0 | N’:NzNat]) | true \/

([N’:NzNat + K:Nat + M:Nat]< M:Nat,0 >[N’:NzNat | K:Nat]) | true \/

([N’:NzNat + K:Nat + M:Nat]< N’:NzNat,0 >[M:Nat | K:Nat]) | true \/

([N’:NzNat + K:Nat + M:Nat]< M:Nat,0 >[K:Nat | N’:NzNat]) | true .

Invariant satisfied.

We can verify mutex Negatively thus:
Maude> unify [N’]< 0,0 >[0 | N’] =?

[N + 1 + I + 1 + J + L]< N + 1,I + 1 >[L | J] .

No unifier.

Maude> unify [N’]< 0,1 >[0 | N’] =?

[N + 1 + I + 1 + J + L]< N + 1,I + 1 >[L | J] .

No unifier.

Maude> unify [N’ + K + M]< M,0 >[N’ | K] =?

[N + 1 + I + 1 + J + L]< N + 1,I + 1 >[L | J] .

No unifier.

Maude> unify [N’ + K + M]< N’,0 >[M | K] =?

[N + 1 + I + 1 + J + L]< N + 1,I + 1 >[L | J] .

No unifier.

Maude> unify [N’ + K + M]< M,0 >[K | N’] =?

[N + 1 + I + 1 + J + L]< N + 1,I + 1 >[L | J] . No unifier.

16/19

Program Verification: Lecture 28

Second Inductive Invariant Case Study: R&W-FAIR (III)

DM-Check> check-inv in R&W-FAIR : ([N’:NzNat]< 0,0 >[0 | N’:NzNat]) | true \/

([N’:NzNat]< 0,1 >[0 | N’:NzNat]) | true \/

([N’:NzNat + K:Nat + M:Nat]< M:Nat,0 >[N’:NzNat | K:Nat]) | true \/

([N’:NzNat + K:Nat + M:Nat]< N’:NzNat,0 >[M:Nat | K:Nat]) | true \/

([N’:NzNat + K:Nat + M:Nat]< M:Nat,0 >[K:Nat | N’:NzNat]) | true .

Invariant satisfied.

We can verify mutex Negatively thus:

Maude> unify [N’]< 0,0 >[0 | N’] =?

[N + 1 + I + 1 + J + L]< N + 1,I + 1 >[L | J] .

No unifier.

Maude> unify [N’]< 0,1 >[0 | N’] =?

[N + 1 + I + 1 + J + L]< N + 1,I + 1 >[L | J] .

No unifier.

Maude> unify [N’ + K + M]< M,0 >[N’ | K] =?

[N + 1 + I + 1 + J + L]< N + 1,I + 1 >[L | J] .

No unifier.

Maude> unify [N’ + K + M]< N’,0 >[M | K] =?

[N + 1 + I + 1 + J + L]< N + 1,I + 1 >[L | J] .

No unifier.

Maude> unify [N’ + K + M]< M,0 >[K | N’] =?

[N + 1 + I + 1 + J + L]< N + 1,I + 1 >[L | J] . No unifier.

16/19

Program Verification: Lecture 28

Second Inductive Invariant Case Study: R&W-FAIR (III)

DM-Check> check-inv in R&W-FAIR : ([N’:NzNat]< 0,0 >[0 | N’:NzNat]) | true \/

([N’:NzNat]< 0,1 >[0 | N’:NzNat]) | true \/

([N’:NzNat + K:Nat + M:Nat]< M:Nat,0 >[N’:NzNat | K:Nat]) | true \/

([N’:NzNat + K:Nat + M:Nat]< N’:NzNat,0 >[M:Nat | K:Nat]) | true \/

([N’:NzNat + K:Nat + M:Nat]< M:Nat,0 >[K:Nat | N’:NzNat]) | true .

Invariant satisfied.

We can verify mutex Negatively thus:
Maude> unify [N’]< 0,0 >[0 | N’] =?

[N + 1 + I + 1 + J + L]< N + 1,I + 1 >[L | J] .

No unifier.

Maude> unify [N’]< 0,1 >[0 | N’] =?

[N + 1 + I + 1 + J + L]< N + 1,I + 1 >[L | J] .

No unifier.

Maude> unify [N’ + K + M]< M,0 >[N’ | K] =?

[N + 1 + I + 1 + J + L]< N + 1,I + 1 >[L | J] .

No unifier.

Maude> unify [N’ + K + M]< N’,0 >[M | K] =?

[N + 1 + I + 1 + J + L]< N + 1,I + 1 >[L | J] .

No unifier.

Maude> unify [N’ + K + M]< M,0 >[K | N’] =?

[N + 1 + I + 1 + J + L]< N + 1,I + 1 >[L | J] . No unifier.16/19

Program Verification: Lecture 28

Second Inductive Invariant Case Study: R&W-FAIR (III)

DM-Check> check-inv in R&W-FAIR : ([N’:NzNat]< 0,0 >[0 | N’:NzNat]) | true \/

([N’:NzNat]< 0,1 >[0 | N’:NzNat]) | true \/

([N’:NzNat + K:Nat + M:Nat]< M:Nat,0 >[N’:NzNat | K:Nat]) | true \/

([N’:NzNat + K:Nat + M:Nat]< N’:NzNat,0 >[M:Nat | K:Nat]) | true \/

([N’:NzNat + K:Nat + M:Nat]< M:Nat,0 >[K:Nat | N’:NzNat]) | true .

Invariant satisfied.

We can verify mutex Negatively thus:
Maude> unify [N’]< 0,0 >[0 | N’] =?

[N + 1 + I + 1 + J + L]< N + 1,I + 1 >[L | J] .

No unifier.

Maude> unify [N’]< 0,1 >[0 | N’] =?

[N + 1 + I + 1 + J + L]< N + 1,I + 1 >[L | J] .

No unifier.

Maude> unify [N’ + K + M]< M,0 >[N’ | K] =?

[N + 1 + I + 1 + J + L]< N + 1,I + 1 >[L | J] .

No unifier.

Maude> unify [N’ + K + M]< N’,0 >[M | K] =?

[N + 1 + I + 1 + J + L]< N + 1,I + 1 >[L | J] .

No unifier.

Maude> unify [N’ + K + M]< M,0 >[K | N’] =?

[N + 1 + I + 1 + J + L]< N + 1,I + 1 >[L | J] . No unifier.16/19

Program Verification: Lecture 28

Second Inductive Invariant Case Study: R&W-FAIR (III)

DM-Check> check-inv in R&W-FAIR : ([N’:NzNat]< 0,0 >[0 | N’:NzNat]) | true \/

([N’:NzNat]< 0,1 >[0 | N’:NzNat]) | true \/

([N’:NzNat + K:Nat + M:Nat]< M:Nat,0 >[N’:NzNat | K:Nat]) | true \/

([N’:NzNat + K:Nat + M:Nat]< N’:NzNat,0 >[M:Nat | K:Nat]) | true \/

([N’:NzNat + K:Nat + M:Nat]< M:Nat,0 >[K:Nat | N’:NzNat]) | true .

Invariant satisfied.

We can verify mutex Negatively thus:
Maude> unify [N’]< 0,0 >[0 | N’] =?

[N + 1 + I + 1 + J + L]< N + 1,I + 1 >[L | J] .

No unifier.

Maude> unify [N’]< 0,1 >[0 | N’] =?

[N + 1 + I + 1 + J + L]< N + 1,I + 1 >[L | J] .

No unifier.

Maude> unify [N’ + K + M]< M,0 >[N’ | K] =?

[N + 1 + I + 1 + J + L]< N + 1,I + 1 >[L | J] .

No unifier.

Maude> unify [N’ + K + M]< N’,0 >[M | K] =?

[N + 1 + I + 1 + J + L]< N + 1,I + 1 >[L | J] .

No unifier.

Maude> unify [N’ + K + M]< M,0 >[K | N’] =?

[N + 1 + I + 1 + J + L]< N + 1,I + 1 >[L | J] . No unifier.16/19

Program Verification: Lecture 28

Second Inductive Invariant Case Study: R&W-FAIR (III)

DM-Check> check-inv in R&W-FAIR : ([N’:NzNat]< 0,0 >[0 | N’:NzNat]) | true \/

([N’:NzNat]< 0,1 >[0 | N’:NzNat]) | true \/

([N’:NzNat + K:Nat + M:Nat]< M:Nat,0 >[N’:NzNat | K:Nat]) | true \/

([N’:NzNat + K:Nat + M:Nat]< N’:NzNat,0 >[M:Nat | K:Nat]) | true \/

([N’:NzNat + K:Nat + M:Nat]< M:Nat,0 >[K:Nat | N’:NzNat]) | true .

Invariant satisfied.

We can verify mutex Negatively thus:
Maude> unify [N’]< 0,0 >[0 | N’] =?

[N + 1 + I + 1 + J + L]< N + 1,I + 1 >[L | J] .

No unifier.

Maude> unify [N’]< 0,1 >[0 | N’] =?

[N + 1 + I + 1 + J + L]< N + 1,I + 1 >[L | J] .

No unifier.

Maude> unify [N’ + K + M]< M,0 >[N’ | K] =?

[N + 1 + I + 1 + J + L]< N + 1,I + 1 >[L | J] .

No unifier.

Maude> unify [N’ + K + M]< N’,0 >[M | K] =?

[N + 1 + I + 1 + J + L]< N + 1,I + 1 >[L | J] .

No unifier.

Maude> unify [N’ + K + M]< M,0 >[K | N’] =?

[N + 1 + I + 1 + J + L]< N + 1,I + 1 >[L | J] . No unifier.16/19

Program Verification: Lecture 28

Second Inductive Invariant Case Study: R&W-FAIR (IV)

And we can verify one-writer Negatively thus:
Maude> unify [N’]< 0,0 >[0 | N’] =?

[N + 1 + I + 1 + J + L]< N,I + 1 + 1 >[L | J] .

No unifier.

Maude> unify [N’]< 0,1 >[0 | N’] =?

[N + 1 + I + 1 + J + L]< N,I + 1 + 1 >[L | J] .

No unifier.

Maude> unify [N’ + K + M]< M,0 >[N’ | K] =?

[N + 1 + I + 1 + J + L]< N,I + 1 + 1 >[L | J] .

No unifier.

Maude> unify [N’ + K + M]< N’,0 >[M | K] =?

[N + 1 + I + 1 + J + L]< N,I + 1 + 1 >[L | J] .

No unifier.

Maude> unify [N’ + K + M]< M,0 >[K | N’] =?

[N + 1 + I + 1 + J + L]< N,I + 1 + 1 >[L | J] .

No unifier.
17/19

Program Verification: Lecture 28

Second Inductive Invariant Case Study: R&W-FAIR (IV)

And we can verify one-writer Negatively thus:
Maude> unify [N’]< 0,0 >[0 | N’] =?

[N + 1 + I + 1 + J + L]< N,I + 1 + 1 >[L | J] .

No unifier.

Maude> unify [N’]< 0,1 >[0 | N’] =?

[N + 1 + I + 1 + J + L]< N,I + 1 + 1 >[L | J] .

No unifier.

Maude> unify [N’ + K + M]< M,0 >[N’ | K] =?

[N + 1 + I + 1 + J + L]< N,I + 1 + 1 >[L | J] .

No unifier.

Maude> unify [N’ + K + M]< N’,0 >[M | K] =?

[N + 1 + I + 1 + J + L]< N,I + 1 + 1 >[L | J] .

No unifier.

Maude> unify [N’ + K + M]< M,0 >[K | N’] =?

[N + 1 + I + 1 + J + L]< N,I + 1 + 1 >[L | J] .

No unifier.
17/19

Program Verification: Lecture 28

Second Inductive Invariant Case Study: R&W-FAIR (V)

We can try to verify Positively deadlock-freedom thus:
DM-Check> check in R&W-FAIR : (([N’:NzNat]< 0,0 >[0 | N’:NzNat]) | true) \/

(([N’:NzNat]< 0,1 >[0 | N’:NzNat]) | true) \/

(([N’:NzNat + K:Nat + M:Nat]< M:Nat,0 >[N’:NzNat | K:Nat]) | true) \/

(([N’:NzNat + K:Nat + M:Nat]< N’:NzNat,0 >[M:Nat | K:Nat]) | true) \/

(([N’:NzNat + K:Nat + M:Nat]< M:Nat,0 >[K:Nat | N’:NzNat]) | true) subsumed-by

((([N:Nat]< 0,0 >[0 | N:Nat]) | true) \/ (([N:Nat]< 0,1 >[0 | N:Nat]) | true)

\/ (([K:Nat + N:Nat + M:Nat + 1]< N:Nat,0 >[M:Nat + 1 | K:Nat]) | true) \/

(([K:Nat + N:Nat + M:Nat + 1]< (N:Nat + 1), 0 >[M:Nat | K:Nat]) | true)) .

Constrained terms on the left that could not be subsumed:

Term 7: [N’:NzNat + K:Nat + M:Nat] < M:Nat, 0 >[N’:NzNat | K:Nat]

Constraint 7: true

Term 8: [N’:NzNat + K:Nat + M:Nat] < N’:NzNat, 0 >[M:Nat | K:Nat]

Constraint 8: true

Term 9: [N’:NzNat + K:Nat + M:Nat] < M:Nat, 0 >[K:Nat | N’:NzNat]

Constraint 9: true

This just means that further reasoning is needed.

18/19

Program Verification: Lecture 28

Second Inductive Invariant Case Study: R&W-FAIR (V)

We can try to verify Positively deadlock-freedom thus:
DM-Check> check in R&W-FAIR : (([N’:NzNat]< 0,0 >[0 | N’:NzNat]) | true) \/

(([N’:NzNat]< 0,1 >[0 | N’:NzNat]) | true) \/

(([N’:NzNat + K:Nat + M:Nat]< M:Nat,0 >[N’:NzNat | K:Nat]) | true) \/

(([N’:NzNat + K:Nat + M:Nat]< N’:NzNat,0 >[M:Nat | K:Nat]) | true) \/

(([N’:NzNat + K:Nat + M:Nat]< M:Nat,0 >[K:Nat | N’:NzNat]) | true) subsumed-by

((([N:Nat]< 0,0 >[0 | N:Nat]) | true) \/ (([N:Nat]< 0,1 >[0 | N:Nat]) | true)

\/ (([K:Nat + N:Nat + M:Nat + 1]< N:Nat,0 >[M:Nat + 1 | K:Nat]) | true) \/

(([K:Nat + N:Nat + M:Nat + 1]< (N:Nat + 1), 0 >[M:Nat | K:Nat]) | true)) .

Constrained terms on the left that could not be subsumed:

Term 7: [N’:NzNat + K:Nat + M:Nat] < M:Nat, 0 >[N’:NzNat | K:Nat]

Constraint 7: true

Term 8: [N’:NzNat + K:Nat + M:Nat] < N’:NzNat, 0 >[M:Nat | K:Nat]

Constraint 8: true

Term 9: [N’:NzNat + K:Nat + M:Nat] < M:Nat, 0 >[K:Nat | N’:NzNat]

Constraint 9: true

This just means that further reasoning is needed.
18/19

Program Verification: Lecture 28

Sufficient but not Necessary Conditions

The methods (1)–(3) and their DM-Check commands are based
on sufficient conditions that need not hold in general because:

1 We need not have subsumptions ui | φi ⊑B1 vj | ψj .

2 Even if we do, the inductive validity of formulas like
φi ⇒ (ψjα) and (ψj ∧ ϕ)γ ⇒ (ψj ′α) may require non-trivial
inductive proofs.

3 Likewise, in the Negative method of proving invariants,
unifications may yield constrained terms (vj | ψj ∧ ϕk)θ whose
constraint (ψj ∧ ϕk)θ is inductively unsatisfiable; but showing
this may require non-trivial inductive proofs.

For all these reasons deductive methods are needed to handle the
cases where DM-Check cannot achieve an automatic proof. Some
of these methods will be discussed in Lecture 29.

19/19

Program Verification: Lecture 28

Sufficient but not Necessary Conditions

The methods (1)–(3) and their DM-Check commands are based
on sufficient conditions that need not hold in general because:

1 We need not have subsumptions ui | φi ⊑B1 vj | ψj .

2 Even if we do, the inductive validity of formulas like
φi ⇒ (ψjα) and (ψj ∧ ϕ)γ ⇒ (ψj ′α) may require non-trivial
inductive proofs.

3 Likewise, in the Negative method of proving invariants,
unifications may yield constrained terms (vj | ψj ∧ ϕk)θ whose
constraint (ψj ∧ ϕk)θ is inductively unsatisfiable; but showing
this may require non-trivial inductive proofs.

For all these reasons deductive methods are needed to handle the
cases where DM-Check cannot achieve an automatic proof. Some
of these methods will be discussed in Lecture 29.

19/19

Program Verification: Lecture 28

Sufficient but not Necessary Conditions

The methods (1)–(3) and their DM-Check commands are based
on sufficient conditions that need not hold in general because:

1 We need not have subsumptions ui | φi ⊑B1 vj | ψj .

2 Even if we do, the inductive validity of formulas like
φi ⇒ (ψjα) and (ψj ∧ ϕ)γ ⇒ (ψj ′α) may require non-trivial
inductive proofs.

3 Likewise, in the Negative method of proving invariants,
unifications may yield constrained terms (vj | ψj ∧ ϕk)θ whose
constraint (ψj ∧ ϕk)θ is inductively unsatisfiable; but showing
this may require non-trivial inductive proofs.

For all these reasons deductive methods are needed to handle the
cases where DM-Check cannot achieve an automatic proof. Some
of these methods will be discussed in Lecture 29.

19/19

Program Verification: Lecture 28

Sufficient but not Necessary Conditions

The methods (1)–(3) and their DM-Check commands are based
on sufficient conditions that need not hold in general because:

1 We need not have subsumptions ui | φi ⊑B1 vj | ψj .

2 Even if we do, the inductive validity of formulas like
φi ⇒ (ψjα) and (ψj ∧ ϕ)γ ⇒ (ψj ′α) may require non-trivial
inductive proofs.

3 Likewise, in the Negative method of proving invariants,
unifications may yield constrained terms (vj | ψj ∧ ϕk)θ whose
constraint (ψj ∧ ϕk)θ is inductively unsatisfiable; but showing
this may require non-trivial inductive proofs.

For all these reasons deductive methods are needed to handle the
cases where DM-Check cannot achieve an automatic proof. Some
of these methods will be discussed in Lecture 29.

19/19

Program Verification: Lecture 28

Sufficient but not Necessary Conditions

The methods (1)–(3) and their DM-Check commands are based
on sufficient conditions that need not hold in general because:

1 We need not have subsumptions ui | φi ⊑B1 vj | ψj .

2 Even if we do, the inductive validity of formulas like
φi ⇒ (ψjα) and (ψj ∧ ϕ)γ ⇒ (ψj ′α) may require non-trivial
inductive proofs.

3 Likewise, in the Negative method of proving invariants,
unifications may yield constrained terms (vj | ψj ∧ ϕk)θ whose
constraint (ψj ∧ ϕk)θ is inductively unsatisfiable; but showing
this may require non-trivial inductive proofs.

For all these reasons deductive methods are needed to handle the
cases where DM-Check cannot achieve an automatic proof.

Some
of these methods will be discussed in Lecture 29.

19/19

Program Verification: Lecture 28

Sufficient but not Necessary Conditions

The methods (1)–(3) and their DM-Check commands are based
on sufficient conditions that need not hold in general because:

1 We need not have subsumptions ui | φi ⊑B1 vj | ψj .

2 Even if we do, the inductive validity of formulas like
φi ⇒ (ψjα) and (ψj ∧ ϕ)γ ⇒ (ψj ′α) may require non-trivial
inductive proofs.

3 Likewise, in the Negative method of proving invariants,
unifications may yield constrained terms (vj | ψj ∧ ϕk)θ whose
constraint (ψj ∧ ϕk)θ is inductively unsatisfiable; but showing
this may require non-trivial inductive proofs.

For all these reasons deductive methods are needed to handle the
cases where DM-Check cannot achieve an automatic proof. Some
of these methods will be discussed in Lecture 29.

19/19

