
Program Verification: Lecture 27

José Meseguer
University of Illinois at Urbana-Champaign

Meseguer Lecture 27 1 / 18

Narrowing-Based Symbolic LTL Model Checking

Narrowing-Based Symbolic LTL Model Checking

We can verify invariants of a topmost rewrite theory R = (Σ, E ∪ B, R)
when E ∪ B is FVP by narrowing search with ⇝R/(E∪B) from a symbolic
initial state u1 ∨ . . . ∨ un.

Can this be generalized to narrowing-based
symbolic LTL model checking for such an R?

The main problem is that, in general, it is meaningless to say which state
predicates p ∈ Π are satisfied in a symbolic state u, since some ground
instance uρ may satisfy some predicates in Π, and another ground
instance uτ may satisfy a different set of predicates in Π.

However, if the states R-reachable from u1 ∨ . . . ∨ un are deadlock-free,
and the equations D defining the satisfaction relation u |= p between
terms of top sort State and state predicates Π for the true and false cases
are such that E ∪ D ∪ B are FVP and protect BOOL, LTL symbolic model
checking of R from a symbolic initial state u1 ∨ . . . ∨ un becomes
possible in a symbolic Kripke structure NΠ

R (u1 ∨ . . . ∨ un), whose
symbolic transitions are performed by a Π-aware narrowing relation ⇝Π.

Meseguer Lecture 27 2 / 18

Narrowing-Based Symbolic LTL Model Checking

Narrowing-Based Symbolic LTL Model Checking

We can verify invariants of a topmost rewrite theory R = (Σ, E ∪ B, R)
when E ∪ B is FVP by narrowing search with ⇝R/(E∪B) from a symbolic
initial state u1 ∨ . . . ∨ un. Can this be generalized to narrowing-based
symbolic LTL model checking for such an R?

The main problem is that, in general, it is meaningless to say which state
predicates p ∈ Π are satisfied in a symbolic state u, since some ground
instance uρ may satisfy some predicates in Π, and another ground
instance uτ may satisfy a different set of predicates in Π.

However, if the states R-reachable from u1 ∨ . . . ∨ un are deadlock-free,
and the equations D defining the satisfaction relation u |= p between
terms of top sort State and state predicates Π for the true and false cases
are such that E ∪ D ∪ B are FVP and protect BOOL, LTL symbolic model
checking of R from a symbolic initial state u1 ∨ . . . ∨ un becomes
possible in a symbolic Kripke structure NΠ

R (u1 ∨ . . . ∨ un), whose
symbolic transitions are performed by a Π-aware narrowing relation ⇝Π.

Meseguer Lecture 27 2 / 18

Narrowing-Based Symbolic LTL Model Checking

Narrowing-Based Symbolic LTL Model Checking

We can verify invariants of a topmost rewrite theory R = (Σ, E ∪ B, R)
when E ∪ B is FVP by narrowing search with ⇝R/(E∪B) from a symbolic
initial state u1 ∨ . . . ∨ un. Can this be generalized to narrowing-based
symbolic LTL model checking for such an R?

The main problem is that, in general, it is meaningless to say which state
predicates p ∈ Π are satisfied in a symbolic state u, since some ground
instance uρ may satisfy some predicates in Π, and another ground
instance uτ may satisfy a different set of predicates in Π.

However, if the states R-reachable from u1 ∨ . . . ∨ un are deadlock-free,
and the equations D defining the satisfaction relation u |= p between
terms of top sort State and state predicates Π for the true and false cases
are such that E ∪ D ∪ B are FVP and protect BOOL, LTL symbolic model
checking of R from a symbolic initial state u1 ∨ . . . ∨ un becomes
possible in a symbolic Kripke structure NΠ

R (u1 ∨ . . . ∨ un), whose
symbolic transitions are performed by a Π-aware narrowing relation ⇝Π.

Meseguer Lecture 27 2 / 18

Narrowing-Based Symbolic LTL Model Checking

Narrowing-Based Symbolic LTL Model Checking

We can verify invariants of a topmost rewrite theory R = (Σ, E ∪ B, R)
when E ∪ B is FVP by narrowing search with ⇝R/(E∪B) from a symbolic
initial state u1 ∨ . . . ∨ un. Can this be generalized to narrowing-based
symbolic LTL model checking for such an R?

The main problem is that, in general, it is meaningless to say which state
predicates p ∈ Π are satisfied in a symbolic state u, since some ground
instance uρ may satisfy some predicates in Π, and another ground
instance uτ may satisfy a different set of predicates in Π.

However, if the states R-reachable from u1 ∨ . . . ∨ un are deadlock-free,
and the equations D defining the satisfaction relation u |= p between
terms of top sort State and state predicates Π for the true and false cases
are such that E ∪ D ∪ B are FVP and protect BOOL, LTL symbolic model
checking of R from a symbolic initial state u1 ∨ . . . ∨ un becomes
possible in a symbolic Kripke structure NΠ

R (u1 ∨ . . . ∨ un), whose
symbolic transitions are performed by a Π-aware narrowing relation ⇝Π.

Meseguer Lecture 27 2 / 18

Narrowing-Based Symbolic LTL Model Checking

The Narrowing Relation ⇝Π

Given a topmost rewrite theory R = (Σ, E ∪ B, R) with rules (l → r) ∈ R
s.t. l, r ∈ TΣ(X) \ X, topmost of sort State, and a set Π = {p1, . . . , pk}
of state predicates whose satisfaction in R is defined by equations D
such that E ∪ D ∪ B is FVP modulo axioms B, the Π-aware narrowing
relation between terms u, w ∈ TΣ,State(X) is defined as follows:

u
αγ
⇝Π w

holds iff (by definition)

• ∃v s.t. u α
⇝R/(E∪B) v

• ∃(b1, . . . , bk) ∈ {true, false}k

• ∃γ ∈ Unif E∪D∪B(v |= p1 = b1 ∧ . . . ∧ v |= pk = bk)

such that w = vγ.

Meseguer Lecture 27 3 / 18

Narrowing-Based Symbolic LTL Model Checking

The Narrowing Relation ⇝Π

Given a topmost rewrite theory R = (Σ, E ∪ B, R) with rules (l → r) ∈ R
s.t. l, r ∈ TΣ(X) \ X, topmost of sort State, and a set Π = {p1, . . . , pk}
of state predicates whose satisfaction in R is defined by equations D
such that E ∪ D ∪ B is FVP modulo axioms B, the Π-aware narrowing
relation between terms u, w ∈ TΣ,State(X) is defined as follows:

u
αγ
⇝Π w

holds iff (by definition)

• ∃v s.t. u α
⇝R/(E∪B) v

• ∃(b1, . . . , bk) ∈ {true, false}k

• ∃γ ∈ Unif E∪D∪B(v |= p1 = b1 ∧ . . . ∧ v |= pk = bk)

such that w = vγ.

Meseguer Lecture 27 3 / 18

Narrowing-Based Symbolic LTL Model Checking

The Narrowing Relation ⇝Π

Given a topmost rewrite theory R = (Σ, E ∪ B, R) with rules (l → r) ∈ R
s.t. l, r ∈ TΣ(X) \ X, topmost of sort State, and a set Π = {p1, . . . , pk}
of state predicates whose satisfaction in R is defined by equations D
such that E ∪ D ∪ B is FVP modulo axioms B, the Π-aware narrowing
relation between terms u, w ∈ TΣ,State(X) is defined as follows:

u
αγ
⇝Π w

holds iff (by definition)

• ∃v s.t. u α
⇝R/(E∪B) v

• ∃(b1, . . . , bk) ∈ {true, false}k

• ∃γ ∈ Unif E∪D∪B(v |= p1 = b1 ∧ . . . ∧ v |= pk = bk)

such that w = vγ.

Meseguer Lecture 27 3 / 18

Narrowing-Based Symbolic LTL Model Checking

The Narrowing Relation ⇝Π

Given a topmost rewrite theory R = (Σ, E ∪ B, R) with rules (l → r) ∈ R
s.t. l, r ∈ TΣ(X) \ X, topmost of sort State, and a set Π = {p1, . . . , pk}
of state predicates whose satisfaction in R is defined by equations D
such that E ∪ D ∪ B is FVP modulo axioms B, the Π-aware narrowing
relation between terms u, w ∈ TΣ,State(X) is defined as follows:

u
αγ
⇝Π w

holds iff (by definition)

• ∃v s.t. u α
⇝R/(E∪B) v

• ∃(b1, . . . , bk) ∈ {true, false}k

• ∃γ ∈ Unif E∪D∪B(v |= p1 = b1 ∧ . . . ∧ v |= pk = bk)

such that w = vγ.

Meseguer Lecture 27 3 / 18

Narrowing-Based Symbolic LTL Model Checking

The Narrowing Relation ⇝Π

Given a topmost rewrite theory R = (Σ, E ∪ B, R) with rules (l → r) ∈ R
s.t. l, r ∈ TΣ(X) \ X, topmost of sort State, and a set Π = {p1, . . . , pk}
of state predicates whose satisfaction in R is defined by equations D
such that E ∪ D ∪ B is FVP modulo axioms B, the Π-aware narrowing
relation between terms u, w ∈ TΣ,State(X) is defined as follows:

u
αγ
⇝Π w

holds iff (by definition)

• ∃v s.t. u α
⇝R/(E∪B) v

• ∃(b1, . . . , bk) ∈ {true, false}k

• ∃γ ∈ Unif E∪D∪B(v |= p1 = b1 ∧ . . . ∧ v |= pk = bk)

such that w = vγ.

Meseguer Lecture 27 3 / 18

Narrowing-Based Symbolic LTL Model Checking

The Narrowing Relation ⇝Π

Given a topmost rewrite theory R = (Σ, E ∪ B, R) with rules (l → r) ∈ R
s.t. l, r ∈ TΣ(X) \ X, topmost of sort State, and a set Π = {p1, . . . , pk}
of state predicates whose satisfaction in R is defined by equations D
such that E ∪ D ∪ B is FVP modulo axioms B, the Π-aware narrowing
relation between terms u, w ∈ TΣ,State(X) is defined as follows:

u
αγ
⇝Π w

holds iff (by definition)

• ∃v s.t. u α
⇝R/(E∪B) v

• ∃(b1, . . . , bk) ∈ {true, false}k

• ∃γ ∈ Unif E∪D∪B(v |= p1 = b1 ∧ . . . ∧ v |= pk = bk)

such that w = vγ.

Meseguer Lecture 27 3 / 18

Narrowing-Based Symbolic LTL Model Checking

The Kripke Structure NΠ
R (

∨
i∈I ui)

For
∨

i∈I ui, I = {1, . . . , n}, define its Π-instances {u′
1, . . . , u′

m} =

{uiγ | i ∈ I, ∃(b1, . . . , bk) ∈ {true, false}k, ∃γ ∈ Unif E∪D∪B(u |= p1 = b1 ∧ . . .∧u |= pk = bk)}.

The Kripke structure NΠ
R (

∨
i∈I ui) has states

NΠ
R(

∨
i∈I ui) =

{w ∈ TΣ,State(X) | ∃j, 1 ≤ j ≤ m, u′
j ⇝

∗
Π w}/≈E∪B, where v ≈E∪B w iff

exists a variable renaming α s.t. v!⃗E/Bα =B w!⃗E/B, transition relation

⇝Π, and satisfaction relation [w] |=NΠ
R (

∨
i∈I ui)

pi defined for each

[w] ∈ NΠ
R(

∨
i∈I ui) and pi ∈ Π by the unique b′i ∈ {true, false}k such

that (w |= pi)! ⃗E∪D,B = b′i, 1 ≤ i ≤ k.

If NΠ
R (

∨
i∈I ui) is deadlock-free, any LTL formula φ holds for a symbolic

initial state
∨

i∈I ui in TΠ
R if (resp. iff) it does in NΠ

R (
∨

i∈I ui) from

{u′
1, . . . , u′

m} (resp. assuming NΠ
R(

∨
i∈I ui) is finite) (see Appendix 1):

Theorem

For φ ∈ LTL(Π) (resp. assuming NΠ
R(

∨
i∈I ui) is a finite set)

NΠ
R (

∨
i∈I

ui), {u′
1, . . . , u′

m} |=LTL φ. ⇒ (resp. ⇔) TΠ
R, J

∨
i∈I

uiKE∪B |=LTL φ.

Meseguer Lecture 27 4 / 18

Narrowing-Based Symbolic LTL Model Checking

The Kripke Structure NΠ
R (

∨
i∈I ui)

For
∨

i∈I ui, I = {1, . . . , n}, define its Π-instances {u′
1, . . . , u′

m} =

{uiγ | i ∈ I, ∃(b1, . . . , bk) ∈ {true, false}k, ∃γ ∈ Unif E∪D∪B(u |= p1 = b1 ∧ . . .∧u |= pk = bk)}.

The Kripke structure NΠ
R (

∨
i∈I ui) has states NΠ

R(
∨

i∈I ui) =

{w ∈ TΣ,State(X) | ∃j, 1 ≤ j ≤ m, u′
j ⇝

∗
Π w}/≈E∪B, where v ≈E∪B w iff

exists a variable renaming α s.t. v!⃗E/Bα =B w!⃗E/B, transition relation

⇝Π, and satisfaction relation [w] |=NΠ
R (

∨
i∈I ui)

pi defined for each

[w] ∈ NΠ
R(

∨
i∈I ui) and pi ∈ Π by the unique b′i ∈ {true, false}k such

that (w |= pi)! ⃗E∪D,B = b′i, 1 ≤ i ≤ k.

If NΠ
R (

∨
i∈I ui) is deadlock-free, any LTL formula φ holds for a symbolic

initial state
∨

i∈I ui in TΠ
R if (resp. iff) it does in NΠ

R (
∨

i∈I ui) from

{u′
1, . . . , u′

m} (resp. assuming NΠ
R(

∨
i∈I ui) is finite) (see Appendix 1):

Theorem

For φ ∈ LTL(Π) (resp. assuming NΠ
R(

∨
i∈I ui) is a finite set)

NΠ
R (

∨
i∈I

ui), {u′
1, . . . , u′

m} |=LTL φ. ⇒ (resp. ⇔) TΠ
R, J

∨
i∈I

uiKE∪B |=LTL φ.

Meseguer Lecture 27 4 / 18

Narrowing-Based Symbolic LTL Model Checking

The Kripke Structure NΠ
R (

∨
i∈I ui)

For
∨

i∈I ui, I = {1, . . . , n}, define its Π-instances {u′
1, . . . , u′

m} =

{uiγ | i ∈ I, ∃(b1, . . . , bk) ∈ {true, false}k, ∃γ ∈ Unif E∪D∪B(u |= p1 = b1 ∧ . . .∧u |= pk = bk)}.

The Kripke structure NΠ
R (

∨
i∈I ui) has states NΠ

R(
∨

i∈I ui) =
{w ∈ TΣ,State(X) | ∃j, 1 ≤ j ≤ m, u′

j ⇝
∗
Π w}/≈E∪B,

where v ≈E∪B w iff

exists a variable renaming α s.t. v!⃗E/Bα =B w!⃗E/B, transition relation

⇝Π, and satisfaction relation [w] |=NΠ
R (

∨
i∈I ui)

pi defined for each

[w] ∈ NΠ
R(

∨
i∈I ui) and pi ∈ Π by the unique b′i ∈ {true, false}k such

that (w |= pi)! ⃗E∪D,B = b′i, 1 ≤ i ≤ k.

If NΠ
R (

∨
i∈I ui) is deadlock-free, any LTL formula φ holds for a symbolic

initial state
∨

i∈I ui in TΠ
R if (resp. iff) it does in NΠ

R (
∨

i∈I ui) from

{u′
1, . . . , u′

m} (resp. assuming NΠ
R(

∨
i∈I ui) is finite) (see Appendix 1):

Theorem

For φ ∈ LTL(Π) (resp. assuming NΠ
R(

∨
i∈I ui) is a finite set)

NΠ
R (

∨
i∈I

ui), {u′
1, . . . , u′

m} |=LTL φ. ⇒ (resp. ⇔) TΠ
R, J

∨
i∈I

uiKE∪B |=LTL φ.

Meseguer Lecture 27 4 / 18

Narrowing-Based Symbolic LTL Model Checking

The Kripke Structure NΠ
R (

∨
i∈I ui)

For
∨

i∈I ui, I = {1, . . . , n}, define its Π-instances {u′
1, . . . , u′

m} =

{uiγ | i ∈ I, ∃(b1, . . . , bk) ∈ {true, false}k, ∃γ ∈ Unif E∪D∪B(u |= p1 = b1 ∧ . . .∧u |= pk = bk)}.

The Kripke structure NΠ
R (

∨
i∈I ui) has states NΠ

R(
∨

i∈I ui) =
{w ∈ TΣ,State(X) | ∃j, 1 ≤ j ≤ m, u′

j ⇝
∗
Π w}/≈E∪B, where v ≈E∪B w iff

exists a variable renaming α s.t. v!⃗E/Bα =B w!⃗E/B,

transition relation

⇝Π, and satisfaction relation [w] |=NΠ
R (

∨
i∈I ui)

pi defined for each

[w] ∈ NΠ
R(

∨
i∈I ui) and pi ∈ Π by the unique b′i ∈ {true, false}k such

that (w |= pi)! ⃗E∪D,B = b′i, 1 ≤ i ≤ k.

If NΠ
R (

∨
i∈I ui) is deadlock-free, any LTL formula φ holds for a symbolic

initial state
∨

i∈I ui in TΠ
R if (resp. iff) it does in NΠ

R (
∨

i∈I ui) from

{u′
1, . . . , u′

m} (resp. assuming NΠ
R(

∨
i∈I ui) is finite) (see Appendix 1):

Theorem

For φ ∈ LTL(Π) (resp. assuming NΠ
R(

∨
i∈I ui) is a finite set)

NΠ
R (

∨
i∈I

ui), {u′
1, . . . , u′

m} |=LTL φ. ⇒ (resp. ⇔) TΠ
R, J

∨
i∈I

uiKE∪B |=LTL φ.

Meseguer Lecture 27 4 / 18

Narrowing-Based Symbolic LTL Model Checking

The Kripke Structure NΠ
R (

∨
i∈I ui)

For
∨

i∈I ui, I = {1, . . . , n}, define its Π-instances {u′
1, . . . , u′

m} =

{uiγ | i ∈ I, ∃(b1, . . . , bk) ∈ {true, false}k, ∃γ ∈ Unif E∪D∪B(u |= p1 = b1 ∧ . . .∧u |= pk = bk)}.

The Kripke structure NΠ
R (

∨
i∈I ui) has states NΠ

R(
∨

i∈I ui) =
{w ∈ TΣ,State(X) | ∃j, 1 ≤ j ≤ m, u′

j ⇝
∗
Π w}/≈E∪B, where v ≈E∪B w iff

exists a variable renaming α s.t. v!⃗E/Bα =B w!⃗E/B, transition relation

⇝Π,

and satisfaction relation [w] |=NΠ
R (

∨
i∈I ui)

pi defined for each

[w] ∈ NΠ
R(

∨
i∈I ui) and pi ∈ Π by the unique b′i ∈ {true, false}k such

that (w |= pi)! ⃗E∪D,B = b′i, 1 ≤ i ≤ k.

If NΠ
R (

∨
i∈I ui) is deadlock-free, any LTL formula φ holds for a symbolic

initial state
∨

i∈I ui in TΠ
R if (resp. iff) it does in NΠ

R (
∨

i∈I ui) from

{u′
1, . . . , u′

m} (resp. assuming NΠ
R(

∨
i∈I ui) is finite) (see Appendix 1):

Theorem

For φ ∈ LTL(Π) (resp. assuming NΠ
R(

∨
i∈I ui) is a finite set)

NΠ
R (

∨
i∈I

ui), {u′
1, . . . , u′

m} |=LTL φ. ⇒ (resp. ⇔) TΠ
R, J

∨
i∈I

uiKE∪B |=LTL φ.

Meseguer Lecture 27 4 / 18

Narrowing-Based Symbolic LTL Model Checking

The Kripke Structure NΠ
R (

∨
i∈I ui)

For
∨

i∈I ui, I = {1, . . . , n}, define its Π-instances {u′
1, . . . , u′

m} =

{uiγ | i ∈ I, ∃(b1, . . . , bk) ∈ {true, false}k, ∃γ ∈ Unif E∪D∪B(u |= p1 = b1 ∧ . . .∧u |= pk = bk)}.

The Kripke structure NΠ
R (

∨
i∈I ui) has states NΠ

R(
∨

i∈I ui) =
{w ∈ TΣ,State(X) | ∃j, 1 ≤ j ≤ m, u′

j ⇝
∗
Π w}/≈E∪B, where v ≈E∪B w iff

exists a variable renaming α s.t. v!⃗E/Bα =B w!⃗E/B, transition relation

⇝Π, and satisfaction relation [w] |=NΠ
R (

∨
i∈I ui)

pi defined for each

[w] ∈ NΠ
R(

∨
i∈I ui) and pi ∈ Π by the unique b′i ∈ {true, false}k such

that (w |= pi)! ⃗E∪D,B = b′i, 1 ≤ i ≤ k.

If NΠ
R (

∨
i∈I ui) is deadlock-free, any LTL formula φ holds for a symbolic

initial state
∨

i∈I ui in TΠ
R if (resp. iff) it does in NΠ

R (
∨

i∈I ui) from

{u′
1, . . . , u′

m} (resp. assuming NΠ
R(

∨
i∈I ui) is finite) (see Appendix 1):

Theorem

For φ ∈ LTL(Π) (resp. assuming NΠ
R(

∨
i∈I ui) is a finite set)

NΠ
R (

∨
i∈I

ui), {u′
1, . . . , u′

m} |=LTL φ. ⇒ (resp. ⇔) TΠ
R, J

∨
i∈I

uiKE∪B |=LTL φ.

Meseguer Lecture 27 4 / 18

Narrowing-Based Symbolic LTL Model Checking

The Kripke Structure NΠ
R (

∨
i∈I ui)

For
∨

i∈I ui, I = {1, . . . , n}, define its Π-instances {u′
1, . . . , u′

m} =

{uiγ | i ∈ I, ∃(b1, . . . , bk) ∈ {true, false}k, ∃γ ∈ Unif E∪D∪B(u |= p1 = b1 ∧ . . .∧u |= pk = bk)}.

The Kripke structure NΠ
R (

∨
i∈I ui) has states NΠ

R(
∨

i∈I ui) =
{w ∈ TΣ,State(X) | ∃j, 1 ≤ j ≤ m, u′

j ⇝
∗
Π w}/≈E∪B, where v ≈E∪B w iff

exists a variable renaming α s.t. v!⃗E/Bα =B w!⃗E/B, transition relation

⇝Π, and satisfaction relation [w] |=NΠ
R (

∨
i∈I ui)

pi defined for each

[w] ∈ NΠ
R(

∨
i∈I ui) and pi ∈ Π by the unique b′i ∈ {true, false}k such

that (w |= pi)! ⃗E∪D,B = b′i, 1 ≤ i ≤ k.

If NΠ
R (

∨
i∈I ui) is deadlock-free, any LTL formula φ holds for a symbolic

initial state
∨

i∈I ui in TΠ
R if (resp. iff) it does in NΠ

R (
∨

i∈I ui) from

{u′
1, . . . , u′

m} (resp. assuming NΠ
R(

∨
i∈I ui) is finite) (see Appendix 1):

Theorem

For φ ∈ LTL(Π) (resp. assuming NΠ
R(

∨
i∈I ui) is a finite set)

NΠ
R (

∨
i∈I

ui), {u′
1, . . . , u′

m} |=LTL φ. ⇒ (resp. ⇔) TΠ
R, J

∨
i∈I

uiKE∪B |=LTL φ.

Meseguer Lecture 27 4 / 18

Narrowing-Based Symbolic LTL Model Checking

The Kripke Structure NΠ
R (

∨
i∈I ui)

For
∨

i∈I ui, I = {1, . . . , n}, define its Π-instances {u′
1, . . . , u′

m} =

{uiγ | i ∈ I, ∃(b1, . . . , bk) ∈ {true, false}k, ∃γ ∈ Unif E∪D∪B(u |= p1 = b1 ∧ . . .∧u |= pk = bk)}.

The Kripke structure NΠ
R (

∨
i∈I ui) has states NΠ

R(
∨

i∈I ui) =
{w ∈ TΣ,State(X) | ∃j, 1 ≤ j ≤ m, u′

j ⇝
∗
Π w}/≈E∪B, where v ≈E∪B w iff

exists a variable renaming α s.t. v!⃗E/Bα =B w!⃗E/B, transition relation

⇝Π, and satisfaction relation [w] |=NΠ
R (

∨
i∈I ui)

pi defined for each

[w] ∈ NΠ
R(

∨
i∈I ui) and pi ∈ Π by the unique b′i ∈ {true, false}k such

that (w |= pi)! ⃗E∪D,B = b′i, 1 ≤ i ≤ k.

If NΠ
R (

∨
i∈I ui) is deadlock-free, any LTL formula φ holds for a symbolic

initial state
∨

i∈I ui in TΠ
R if (resp. iff) it does in NΠ

R (
∨

i∈I ui) from

{u′
1, . . . , u′

m} (resp. assuming NΠ
R(

∨
i∈I ui) is finite) (see Appendix 1):

Theorem

For φ ∈ LTL(Π) (resp. assuming NΠ
R(

∨
i∈I ui) is a finite set)

NΠ
R (

∨
i∈I

ui), {u′
1, . . . , u′

m} |=LTL φ. ⇒ (resp. ⇔) TΠ
R, J

∨
i∈I

uiKE∪B |=LTL φ.

Meseguer Lecture 27 4 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

State Space Reduction in NΠ
R (

∨
i∈I ui)

By the above Theorem, if the state space NΠ
R(

∨
i∈I ui) is finite, the

Kripke structure NΠ
R (

∨
i∈I ui) supports explicit-state LTL model checking

using the decision procedure described in Lecture 23 to verify
TΠ
R, J

∨
i∈I uiKE∪B |=LTL φ.

When NΠ
R(

∨
i∈I ui) is infinite, we can try one of the following three

possibilities to reduce the state space of NΠ
R (

∨
i∈I ui) to a finite state

space:

1 Perform LTL model checking by folding variant narrowing, provided
the folding ⇝Π-narrowing forest from {u′

1, . . . , u′
m} is finite.

2 Define an equational abstraction R/G s.t.: (i) E ∪ D ∪ D′ ∪ G ∪ B
is FVP and protects BOOL, and (ii) the folding ⇝Π-narrowing forest
is finite for NΠ

R/G(
∨

i∈I ui).

3 Perform bounded LTL symbolic model checking.

Meseguer Lecture 27 5 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

State Space Reduction in NΠ
R (

∨
i∈I ui)

By the above Theorem, if the state space NΠ
R(

∨
i∈I ui) is finite, the

Kripke structure NΠ
R (

∨
i∈I ui) supports explicit-state LTL model checking

using the decision procedure described in Lecture 23 to verify
TΠ
R, J

∨
i∈I uiKE∪B |=LTL φ.

When NΠ
R(

∨
i∈I ui) is infinite, we can try one of the following three

possibilities to reduce the state space of NΠ
R (

∨
i∈I ui) to a finite state

space:

1 Perform LTL model checking by folding variant narrowing, provided
the folding ⇝Π-narrowing forest from {u′

1, . . . , u′
m} is finite.

2 Define an equational abstraction R/G s.t.: (i) E ∪ D ∪ D′ ∪ G ∪ B
is FVP and protects BOOL, and (ii) the folding ⇝Π-narrowing forest
is finite for NΠ

R/G(
∨

i∈I ui).

3 Perform bounded LTL symbolic model checking.

Meseguer Lecture 27 5 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

State Space Reduction in NΠ
R (

∨
i∈I ui)

By the above Theorem, if the state space NΠ
R(

∨
i∈I ui) is finite, the

Kripke structure NΠ
R (

∨
i∈I ui) supports explicit-state LTL model checking

using the decision procedure described in Lecture 23 to verify
TΠ
R, J

∨
i∈I uiKE∪B |=LTL φ.

When NΠ
R(

∨
i∈I ui) is infinite, we can try one of the following three

possibilities to reduce the state space of NΠ
R (

∨
i∈I ui) to a finite state

space:

1 Perform LTL model checking by folding variant narrowing, provided
the folding ⇝Π-narrowing forest from {u′

1, . . . , u′
m} is finite.

2 Define an equational abstraction R/G s.t.: (i) E ∪ D ∪ D′ ∪ G ∪ B
is FVP and protects BOOL, and (ii) the folding ⇝Π-narrowing forest
is finite for NΠ

R/G(
∨

i∈I ui).

3 Perform bounded LTL symbolic model checking.

Meseguer Lecture 27 5 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

State Space Reduction in NΠ
R (

∨
i∈I ui)

By the above Theorem, if the state space NΠ
R(

∨
i∈I ui) is finite, the

Kripke structure NΠ
R (

∨
i∈I ui) supports explicit-state LTL model checking

using the decision procedure described in Lecture 23 to verify
TΠ
R, J

∨
i∈I uiKE∪B |=LTL φ.

When NΠ
R(

∨
i∈I ui) is infinite, we can try one of the following three

possibilities to reduce the state space of NΠ
R (

∨
i∈I ui) to a finite state

space:

1 Perform LTL model checking by folding variant narrowing, provided
the folding ⇝Π-narrowing forest from {u′

1, . . . , u′
m} is finite.

2 Define an equational abstraction R/G s.t.: (i) E ∪ D ∪ D′ ∪ G ∪ B
is FVP and protects BOOL, and (ii) the folding ⇝Π-narrowing forest
is finite for NΠ

R/G(
∨

i∈I ui).

3 Perform bounded LTL symbolic model checking.

Meseguer Lecture 27 5 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

State Space Reduction in NΠ
R (

∨
i∈I ui)

By the above Theorem, if the state space NΠ
R(

∨
i∈I ui) is finite, the

Kripke structure NΠ
R (

∨
i∈I ui) supports explicit-state LTL model checking

using the decision procedure described in Lecture 23 to verify
TΠ
R, J

∨
i∈I uiKE∪B |=LTL φ.

When NΠ
R(

∨
i∈I ui) is infinite, we can try one of the following three

possibilities to reduce the state space of NΠ
R (

∨
i∈I ui) to a finite state

space:

1 Perform LTL model checking by folding variant narrowing, provided
the folding ⇝Π-narrowing forest from {u′

1, . . . , u′
m} is finite.

2 Define an equational abstraction R/G s.t.: (i) E ∪ D ∪ D′ ∪ G ∪ B
is FVP and protects BOOL, and (ii) the folding ⇝Π-narrowing forest
is finite for NΠ

R/G(
∨

i∈I ui).

3 Perform bounded LTL symbolic model checking.

Meseguer Lecture 27 5 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

The Folding ⇝Π-narrowing forest from {u′
1, . . . , u′

m}
Replacing ⇝R/(E∪B) by ⇝Π, just as we have a folding narrowing forest

FNFR(
∨

i∈I ui) for the ⇝R/(E∪B)-narrowing tree, we also have a folding

narrowing forest (a Kripke structure!) FNFΠ
R(

∨
j∈J u′

j) for NΠ
R (

∨
i∈I ui)

from {u′
j}j∈J, J = {1, . . . m}, the Π-instances of

∨
i∈I ui.

The construction of FNFΠ
R(

∨
j∈J u′

j) is similar to that of FNFR(
∨

i∈I ui)

in Lecture 25, replacing the folding relation v ⊑E∪B w by the folding
relation v ⊑Π

E∪D∪B w defined by the equivalence:

v ⊑Π
E∪D∪B w ⇔def v ⊑E∪B w∧∀p ∈ Π, (v |= p)! ⃗E∪D,B = (w |= p)! ⃗E∪D,B.

and adding extra transitions for each folding. The Completeness Theorem
for FNFR(

∨
i∈I ui) in Lecture 25 generalizes to (Ths 8,12 in Appendix 2):

Theorem

For φ ∈ LTL(Π) (resp. φ a safety formula) we have:

FNFΠ
R(

∨
j∈J

u′
j), {u′

j}j∈J |= φ ⇒ (resp. ⇔) NΠ
R (

∨
i∈I

ui), {u′
j}j∈J |= φ.

Meseguer Lecture 27 6 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

The Folding ⇝Π-narrowing forest from {u′
1, . . . , u′

m}
Replacing ⇝R/(E∪B) by ⇝Π, just as we have a folding narrowing forest

FNFR(
∨

i∈I ui) for the ⇝R/(E∪B)-narrowing tree, we also have a folding

narrowing forest (a Kripke structure!) FNFΠ
R(

∨
j∈J u′

j) for NΠ
R (

∨
i∈I ui)

from {u′
j}j∈J, J = {1, . . . m}, the Π-instances of

∨
i∈I ui.

The construction of FNFΠ
R(

∨
j∈J u′

j) is similar to that of FNFR(
∨

i∈I ui)

in Lecture 25, replacing the folding relation v ⊑E∪B w by the folding
relation v ⊑Π

E∪D∪B w defined by the equivalence:

v ⊑Π
E∪D∪B w ⇔def v ⊑E∪B w∧∀p ∈ Π, (v |= p)! ⃗E∪D,B = (w |= p)! ⃗E∪D,B.

and adding extra transitions for each folding. The Completeness Theorem
for FNFR(

∨
i∈I ui) in Lecture 25 generalizes to (Ths 8,12 in Appendix 2):

Theorem

For φ ∈ LTL(Π) (resp. φ a safety formula) we have:

FNFΠ
R(

∨
j∈J

u′
j), {u′

j}j∈J |= φ ⇒ (resp. ⇔) NΠ
R (

∨
i∈I

ui), {u′
j}j∈J |= φ.

Meseguer Lecture 27 6 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

The Folding ⇝Π-narrowing forest from {u′
1, . . . , u′

m}
Replacing ⇝R/(E∪B) by ⇝Π, just as we have a folding narrowing forest

FNFR(
∨

i∈I ui) for the ⇝R/(E∪B)-narrowing tree, we also have a folding

narrowing forest (a Kripke structure!) FNFΠ
R(

∨
j∈J u′

j) for NΠ
R (

∨
i∈I ui)

from {u′
j}j∈J, J = {1, . . . m}, the Π-instances of

∨
i∈I ui.

The construction of FNFΠ
R(

∨
j∈J u′

j) is similar to that of FNFR(
∨

i∈I ui)

in Lecture 25, replacing the folding relation v ⊑E∪B w by the folding
relation v ⊑Π

E∪D∪B w defined by the equivalence:

v ⊑Π
E∪D∪B w ⇔def v ⊑E∪B w∧∀p ∈ Π, (v |= p)! ⃗E∪D,B = (w |= p)! ⃗E∪D,B.

and adding extra transitions for each folding. The Completeness Theorem
for FNFR(

∨
i∈I ui) in Lecture 25 generalizes to (Ths 8,12 in Appendix 2):

Theorem

For φ ∈ LTL(Π) (resp. φ a safety formula) we have:

FNFΠ
R(

∨
j∈J

u′
j), {u′

j}j∈J |= φ ⇒ (resp. ⇔) NΠ
R (

∨
i∈I

ui), {u′
j}j∈J |= φ.

Meseguer Lecture 27 6 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

The Folding ⇝Π-narrowing forest from {u′
1, . . . , u′

m}
Replacing ⇝R/(E∪B) by ⇝Π, just as we have a folding narrowing forest

FNFR(
∨

i∈I ui) for the ⇝R/(E∪B)-narrowing tree, we also have a folding

narrowing forest (a Kripke structure!) FNFΠ
R(

∨
j∈J u′

j) for NΠ
R (

∨
i∈I ui)

from {u′
j}j∈J, J = {1, . . . m}, the Π-instances of

∨
i∈I ui.

The construction of FNFΠ
R(

∨
j∈J u′

j) is similar to that of FNFR(
∨

i∈I ui)

in Lecture 25, replacing the folding relation v ⊑E∪B w by the folding
relation v ⊑Π

E∪D∪B w defined by the equivalence:

v ⊑Π
E∪D∪B w ⇔def v ⊑E∪B w∧∀p ∈ Π, (v |= p)! ⃗E∪D,B = (w |= p)! ⃗E∪D,B.

and adding extra transitions for each folding.

The Completeness Theorem
for FNFR(

∨
i∈I ui) in Lecture 25 generalizes to (Ths 8,12 in Appendix 2):

Theorem

For φ ∈ LTL(Π) (resp. φ a safety formula) we have:

FNFΠ
R(

∨
j∈J

u′
j), {u′

j}j∈J |= φ ⇒ (resp. ⇔) NΠ
R (

∨
i∈I

ui), {u′
j}j∈J |= φ.

Meseguer Lecture 27 6 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

The Folding ⇝Π-narrowing forest from {u′
1, . . . , u′

m}
Replacing ⇝R/(E∪B) by ⇝Π, just as we have a folding narrowing forest

FNFR(
∨

i∈I ui) for the ⇝R/(E∪B)-narrowing tree, we also have a folding

narrowing forest (a Kripke structure!) FNFΠ
R(

∨
j∈J u′

j) for NΠ
R (

∨
i∈I ui)

from {u′
j}j∈J, J = {1, . . . m}, the Π-instances of

∨
i∈I ui.

The construction of FNFΠ
R(

∨
j∈J u′

j) is similar to that of FNFR(
∨

i∈I ui)

in Lecture 25, replacing the folding relation v ⊑E∪B w by the folding
relation v ⊑Π

E∪D∪B w defined by the equivalence:

v ⊑Π
E∪D∪B w ⇔def v ⊑E∪B w∧∀p ∈ Π, (v |= p)! ⃗E∪D,B = (w |= p)! ⃗E∪D,B.

and adding extra transitions for each folding. The Completeness Theorem
for FNFR(

∨
i∈I ui) in Lecture 25 generalizes to (Ths 8,12 in Appendix 2):

Theorem

For φ ∈ LTL(Π) (resp. φ a safety formula) we have:

FNFΠ
R(

∨
j∈J

u′
j), {u′

j}j∈J |= φ ⇒ (resp. ⇔) NΠ
R (

∨
i∈I

ui), {u′
j}j∈J |= φ.

Meseguer Lecture 27 6 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

The Folding ⇝Π-narrowing forest from {u′
1, . . . , u′

m}
Replacing ⇝R/(E∪B) by ⇝Π, just as we have a folding narrowing forest

FNFR(
∨

i∈I ui) for the ⇝R/(E∪B)-narrowing tree, we also have a folding

narrowing forest (a Kripke structure!) FNFΠ
R(

∨
j∈J u′

j) for NΠ
R (

∨
i∈I ui)

from {u′
j}j∈J, J = {1, . . . m}, the Π-instances of

∨
i∈I ui.

The construction of FNFΠ
R(

∨
j∈J u′

j) is similar to that of FNFR(
∨

i∈I ui)

in Lecture 25, replacing the folding relation v ⊑E∪B w by the folding
relation v ⊑Π

E∪D∪B w defined by the equivalence:

v ⊑Π
E∪D∪B w ⇔def v ⊑E∪B w∧∀p ∈ Π, (v |= p)! ⃗E∪D,B = (w |= p)! ⃗E∪D,B.

and adding extra transitions for each folding. The Completeness Theorem
for FNFR(

∨
i∈I ui) in Lecture 25 generalizes to (Ths 8,12 in Appendix 2):

Theorem

For φ ∈ LTL(Π) (resp. φ a safety formula) we have:

FNFΠ
R(

∨
j∈J

u′
j), {u′

j}j∈J |= φ ⇒ (resp. ⇔) NΠ
R (

∨
i∈I

ui), {u′
j}j∈J |= φ.

Meseguer Lecture 27 6 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

State Space Reduction through Equational Abstractions
Under the assumptions about R in pg. 2, and those about R/G in (2)
of pg. 5, we are back in the game: R/G itself satisfies the assumptions
in pg. 2. Therefore, for φ ∈ LTL(Π) we have (by Theorem in pg. 6):

(†) FNFΠ
R/G(

∨
l∈L

u′′l), {u′′l }l∈L |= φ ⇒ NΠ
R/G(

∨
i∈I

ui), {u′j}j∈J |= φ.

where the {u′′
l }l∈L are the Π-instances of

∨
i∈I ui in R/G. Furthermore,

it follows from Theorem in pg. 4 and Theorem 3 in Appendix to
Lecture 26 (proof in Appendix 1), that we also have the implications:

(‡) NΠ
R/G(

∨
i∈I

ui), {u′
j}j∈J |= φ ⇒ TΠ

R/G, J
∨
i∈I

uiKE∪G∪B |=LTL φ ⇒ TΠ
R, J

∨
i∈I

uiKE∪B |=LTL φ

Therefore, from (†) and (‡) if NΠ
R (

∨
i∈I ui) is deadlock-free we get:

Theorem

Under the above assumptions about R and R/G the following
implication holds:

FNFΠ
R/G(

∨
l∈L

u′′
l), {u′′

l }l∈L |= φ ⇒ TΠ
R, J

∨
i∈I

uiKE∪B |=LTL φ.

Meseguer Lecture 27 7 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

State Space Reduction through Equational Abstractions
Under the assumptions about R in pg. 2, and those about R/G in (2)
of pg. 5, we are back in the game: R/G itself satisfies the assumptions
in pg. 2. Therefore, for φ ∈ LTL(Π) we have (by Theorem in pg. 6):

(†) FNFΠ
R/G(

∨
l∈L

u′′l), {u′′l }l∈L |= φ ⇒ NΠ
R/G(

∨
i∈I

ui), {u′j}j∈J |= φ.

where the {u′′
l }l∈L are the Π-instances of

∨
i∈I ui in R/G. Furthermore,

it follows from Theorem in pg. 4 and Theorem 3 in Appendix to
Lecture 26 (proof in Appendix 1), that we also have the implications:

(‡) NΠ
R/G(

∨
i∈I

ui), {u′
j}j∈J |= φ ⇒ TΠ

R/G, J
∨
i∈I

uiKE∪G∪B |=LTL φ ⇒ TΠ
R, J

∨
i∈I

uiKE∪B |=LTL φ

Therefore, from (†) and (‡) if NΠ
R (

∨
i∈I ui) is deadlock-free we get:

Theorem

Under the above assumptions about R and R/G the following
implication holds:

FNFΠ
R/G(

∨
l∈L

u′′
l), {u′′

l }l∈L |= φ ⇒ TΠ
R, J

∨
i∈I

uiKE∪B |=LTL φ.

Meseguer Lecture 27 7 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

State Space Reduction through Equational Abstractions
Under the assumptions about R in pg. 2, and those about R/G in (2)
of pg. 5, we are back in the game: R/G itself satisfies the assumptions
in pg. 2. Therefore, for φ ∈ LTL(Π) we have (by Theorem in pg. 6):

(†) FNFΠ
R/G(

∨
l∈L

u′′l), {u′′l }l∈L |= φ ⇒ NΠ
R/G(

∨
i∈I

ui), {u′j}j∈J |= φ.

where the {u′′
l }l∈L are the Π-instances of

∨
i∈I ui in R/G.

Furthermore,
it follows from Theorem in pg. 4 and Theorem 3 in Appendix to
Lecture 26 (proof in Appendix 1), that we also have the implications:

(‡) NΠ
R/G(

∨
i∈I

ui), {u′
j}j∈J |= φ ⇒ TΠ

R/G, J
∨
i∈I

uiKE∪G∪B |=LTL φ ⇒ TΠ
R, J

∨
i∈I

uiKE∪B |=LTL φ

Therefore, from (†) and (‡) if NΠ
R (

∨
i∈I ui) is deadlock-free we get:

Theorem

Under the above assumptions about R and R/G the following
implication holds:

FNFΠ
R/G(

∨
l∈L

u′′
l), {u′′

l }l∈L |= φ ⇒ TΠ
R, J

∨
i∈I

uiKE∪B |=LTL φ.

Meseguer Lecture 27 7 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

State Space Reduction through Equational Abstractions
Under the assumptions about R in pg. 2, and those about R/G in (2)
of pg. 5, we are back in the game: R/G itself satisfies the assumptions
in pg. 2. Therefore, for φ ∈ LTL(Π) we have (by Theorem in pg. 6):

(†) FNFΠ
R/G(

∨
l∈L

u′′l), {u′′l }l∈L |= φ ⇒ NΠ
R/G(

∨
i∈I

ui), {u′j}j∈J |= φ.

where the {u′′
l }l∈L are the Π-instances of

∨
i∈I ui in R/G. Furthermore,

it follows from Theorem in pg. 4 and Theorem 3 in Appendix to
Lecture 26 (proof in Appendix 1), that we also have the implications:

(‡) NΠ
R/G(

∨
i∈I

ui), {u′
j}j∈J |= φ ⇒ TΠ

R/G, J
∨
i∈I

uiKE∪G∪B |=LTL φ ⇒ TΠ
R, J

∨
i∈I

uiKE∪B |=LTL φ

Therefore, from (†) and (‡) if NΠ
R (

∨
i∈I ui) is deadlock-free we get:

Theorem

Under the above assumptions about R and R/G the following
implication holds:

FNFΠ
R/G(

∨
l∈L

u′′
l), {u′′

l }l∈L |= φ ⇒ TΠ
R, J

∨
i∈I

uiKE∪B |=LTL φ.

Meseguer Lecture 27 7 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

State Space Reduction through Equational Abstractions
Under the assumptions about R in pg. 2, and those about R/G in (2)
of pg. 5, we are back in the game: R/G itself satisfies the assumptions
in pg. 2. Therefore, for φ ∈ LTL(Π) we have (by Theorem in pg. 6):

(†) FNFΠ
R/G(

∨
l∈L

u′′l), {u′′l }l∈L |= φ ⇒ NΠ
R/G(

∨
i∈I

ui), {u′j}j∈J |= φ.

where the {u′′
l }l∈L are the Π-instances of

∨
i∈I ui in R/G. Furthermore,

it follows from Theorem in pg. 4 and Theorem 3 in Appendix to
Lecture 26 (proof in Appendix 1), that we also have the implications:

(‡) NΠ
R/G(

∨
i∈I

ui), {u′
j}j∈J |= φ ⇒ TΠ

R/G, J
∨
i∈I

uiKE∪G∪B |=LTL φ ⇒ TΠ
R, J

∨
i∈I

uiKE∪B |=LTL φ

Therefore, from (†) and (‡) if NΠ
R (

∨
i∈I ui) is deadlock-free we get:

Theorem

Under the above assumptions about R and R/G the following
implication holds:

FNFΠ
R/G(

∨
l∈L

u′′
l), {u′′

l }l∈L |= φ ⇒ TΠ
R, J

∨
i∈I

uiKE∪B |=LTL φ.

Meseguer Lecture 27 7 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

State Space Reduction through Equational Abstractions
Under the assumptions about R in pg. 2, and those about R/G in (2)
of pg. 5, we are back in the game: R/G itself satisfies the assumptions
in pg. 2. Therefore, for φ ∈ LTL(Π) we have (by Theorem in pg. 6):

(†) FNFΠ
R/G(

∨
l∈L

u′′l), {u′′l }l∈L |= φ ⇒ NΠ
R/G(

∨
i∈I

ui), {u′j}j∈J |= φ.

where the {u′′
l }l∈L are the Π-instances of

∨
i∈I ui in R/G. Furthermore,

it follows from Theorem in pg. 4 and Theorem 3 in Appendix to
Lecture 26 (proof in Appendix 1), that we also have the implications:

(‡) NΠ
R/G(

∨
i∈I

ui), {u′
j}j∈J |= φ ⇒ TΠ

R/G, J
∨
i∈I

uiKE∪G∪B |=LTL φ ⇒ TΠ
R, J

∨
i∈I

uiKE∪B |=LTL φ

Therefore, from (†) and (‡) if NΠ
R (

∨
i∈I ui) is deadlock-free we get:

Theorem

Under the above assumptions about R and R/G the following
implication holds:

FNFΠ
R/G(

∨
l∈L

u′′
l), {u′′

l }l∈L |= φ ⇒ TΠ
R, J

∨
i∈I

uiKE∪B |=LTL φ.

Meseguer Lecture 27 7 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

State Space Reduction through Equational Abstractions
Under the assumptions about R in pg. 2, and those about R/G in (2)
of pg. 5, we are back in the game: R/G itself satisfies the assumptions
in pg. 2. Therefore, for φ ∈ LTL(Π) we have (by Theorem in pg. 6):

(†) FNFΠ
R/G(

∨
l∈L

u′′l), {u′′l }l∈L |= φ ⇒ NΠ
R/G(

∨
i∈I

ui), {u′j}j∈J |= φ.

where the {u′′
l }l∈L are the Π-instances of

∨
i∈I ui in R/G. Furthermore,

it follows from Theorem in pg. 4 and Theorem 3 in Appendix to
Lecture 26 (proof in Appendix 1), that we also have the implications:

(‡) NΠ
R/G(

∨
i∈I

ui), {u′
j}j∈J |= φ ⇒ TΠ

R/G, J
∨
i∈I

uiKE∪G∪B |=LTL φ ⇒ TΠ
R, J

∨
i∈I

uiKE∪B |=LTL φ

Therefore, from (†) and (‡) if NΠ
R (

∨
i∈I ui) is deadlock-free we get:

Theorem

Under the above assumptions about R and R/G the following
implication holds:

FNFΠ
R/G(

∨
l∈L

u′′
l), {u′′

l }l∈L |= φ ⇒ TΠ
R, J

∨
i∈I

uiKE∪B |=LTL φ.

Meseguer Lecture 27 7 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Bounded Narrowing-Based LTL Model Checking
• Construct a depth ≤ k under-approximation of the folding narrowing

forest (and Kripke structure) FNFΠ
R(

∨
j∈J u′

j)

(a more expensive, but

more accurate, version under-approximates NΠ
R (

∨
i∈I ui)).

Algorithm: Given a bound n, incrementally build a depth ≤ k
under-approximation of FNFΠ

R(
∨

j∈J u′
j), increasing k ≤ n iteratively.

1 Apply a standard explicit-state LTL model checking algorithm to
verify φ in the depth ≤ k under-approximation of FNFΠ

R(
∨

j∈J u′
j).

If a counterexample is found, stop and return the counterexample.

2 Suppose that there is no counterexample at depth ≤ k.
1 If k = n, stop and report that the model does not violate φ up to the

current bound n.
2 Otherwise, generate the depth ≤ k + 1 under-approximation of

FNFΠ
R(

∨
j∈J u′j)

1 If no new nodes are added to the ≤ k under-approximation,
FNFΠ

R(
∨

j∈J u′
j) has been actually generated! Then return true;

2 Otherwise, go to Step 1 with the depth ≤ k + 1 under-approximation
of FNFΠ

R(
∨

j∈J u′
j).

Meseguer Lecture 27 8 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Bounded Narrowing-Based LTL Model Checking
• Construct a depth ≤ k under-approximation of the folding narrowing

forest (and Kripke structure) FNFΠ
R(

∨
j∈J u′

j) (a more expensive, but

more accurate, version under-approximates NΠ
R (

∨
i∈I ui)).

Algorithm: Given a bound n, incrementally build a depth ≤ k
under-approximation of FNFΠ

R(
∨

j∈J u′
j), increasing k ≤ n iteratively.

1 Apply a standard explicit-state LTL model checking algorithm to
verify φ in the depth ≤ k under-approximation of FNFΠ

R(
∨

j∈J u′
j).

If a counterexample is found, stop and return the counterexample.

2 Suppose that there is no counterexample at depth ≤ k.
1 If k = n, stop and report that the model does not violate φ up to the

current bound n.
2 Otherwise, generate the depth ≤ k + 1 under-approximation of

FNFΠ
R(

∨
j∈J u′j)

1 If no new nodes are added to the ≤ k under-approximation,
FNFΠ

R(
∨

j∈J u′
j) has been actually generated! Then return true;

2 Otherwise, go to Step 1 with the depth ≤ k + 1 under-approximation
of FNFΠ

R(
∨

j∈J u′
j).

Meseguer Lecture 27 8 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Bounded Narrowing-Based LTL Model Checking
• Construct a depth ≤ k under-approximation of the folding narrowing

forest (and Kripke structure) FNFΠ
R(

∨
j∈J u′

j) (a more expensive, but

more accurate, version under-approximates NΠ
R (

∨
i∈I ui)).

Algorithm: Given a bound n, incrementally build a depth ≤ k
under-approximation of FNFΠ

R(
∨

j∈J u′
j), increasing k ≤ n iteratively.

1 Apply a standard explicit-state LTL model checking algorithm to
verify φ in the depth ≤ k under-approximation of FNFΠ

R(
∨

j∈J u′
j).

If a counterexample is found, stop and return the counterexample.

2 Suppose that there is no counterexample at depth ≤ k.
1 If k = n, stop and report that the model does not violate φ up to the

current bound n.
2 Otherwise, generate the depth ≤ k + 1 under-approximation of

FNFΠ
R(

∨
j∈J u′j)

1 If no new nodes are added to the ≤ k under-approximation,
FNFΠ

R(
∨

j∈J u′
j) has been actually generated! Then return true;

2 Otherwise, go to Step 1 with the depth ≤ k + 1 under-approximation
of FNFΠ

R(
∨

j∈J u′
j).

Meseguer Lecture 27 8 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Bounded Narrowing-Based LTL Model Checking
• Construct a depth ≤ k under-approximation of the folding narrowing

forest (and Kripke structure) FNFΠ
R(

∨
j∈J u′

j) (a more expensive, but

more accurate, version under-approximates NΠ
R (

∨
i∈I ui)).

Algorithm: Given a bound n, incrementally build a depth ≤ k
under-approximation of FNFΠ

R(
∨

j∈J u′
j), increasing k ≤ n iteratively.

1 Apply a standard explicit-state LTL model checking algorithm to
verify φ in the depth ≤ k under-approximation of FNFΠ

R(
∨

j∈J u′
j).

If a counterexample is found, stop and return the counterexample.

2 Suppose that there is no counterexample at depth ≤ k.
1 If k = n, stop and report that the model does not violate φ up to the

current bound n.
2 Otherwise, generate the depth ≤ k + 1 under-approximation of

FNFΠ
R(

∨
j∈J u′j)

1 If no new nodes are added to the ≤ k under-approximation,
FNFΠ

R(
∨

j∈J u′
j) has been actually generated! Then return true;

2 Otherwise, go to Step 1 with the depth ≤ k + 1 under-approximation
of FNFΠ

R(
∨

j∈J u′
j).

Meseguer Lecture 27 8 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Bounded Narrowing-Based LTL Model Checking
• Construct a depth ≤ k under-approximation of the folding narrowing

forest (and Kripke structure) FNFΠ
R(

∨
j∈J u′

j) (a more expensive, but

more accurate, version under-approximates NΠ
R (

∨
i∈I ui)).

Algorithm: Given a bound n, incrementally build a depth ≤ k
under-approximation of FNFΠ

R(
∨

j∈J u′
j), increasing k ≤ n iteratively.

1 Apply a standard explicit-state LTL model checking algorithm to
verify φ in the depth ≤ k under-approximation of FNFΠ

R(
∨

j∈J u′
j).

If a counterexample is found, stop and return the counterexample.

2 Suppose that there is no counterexample at depth ≤ k.

1 If k = n, stop and report that the model does not violate φ up to the
current bound n.

2 Otherwise, generate the depth ≤ k + 1 under-approximation of
FNFΠ

R(
∨

j∈J u′j)

1 If no new nodes are added to the ≤ k under-approximation,
FNFΠ

R(
∨

j∈J u′
j) has been actually generated! Then return true;

2 Otherwise, go to Step 1 with the depth ≤ k + 1 under-approximation
of FNFΠ

R(
∨

j∈J u′
j).

Meseguer Lecture 27 8 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Bounded Narrowing-Based LTL Model Checking
• Construct a depth ≤ k under-approximation of the folding narrowing

forest (and Kripke structure) FNFΠ
R(

∨
j∈J u′

j) (a more expensive, but

more accurate, version under-approximates NΠ
R (

∨
i∈I ui)).

Algorithm: Given a bound n, incrementally build a depth ≤ k
under-approximation of FNFΠ

R(
∨

j∈J u′
j), increasing k ≤ n iteratively.

1 Apply a standard explicit-state LTL model checking algorithm to
verify φ in the depth ≤ k under-approximation of FNFΠ

R(
∨

j∈J u′
j).

If a counterexample is found, stop and return the counterexample.

2 Suppose that there is no counterexample at depth ≤ k.
1 If k = n, stop and report that the model does not violate φ up to the

current bound n.

2 Otherwise, generate the depth ≤ k + 1 under-approximation of
FNFΠ

R(
∨

j∈J u′j)

1 If no new nodes are added to the ≤ k under-approximation,
FNFΠ

R(
∨

j∈J u′
j) has been actually generated! Then return true;

2 Otherwise, go to Step 1 with the depth ≤ k + 1 under-approximation
of FNFΠ

R(
∨

j∈J u′
j).

Meseguer Lecture 27 8 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Bounded Narrowing-Based LTL Model Checking
• Construct a depth ≤ k under-approximation of the folding narrowing

forest (and Kripke structure) FNFΠ
R(

∨
j∈J u′

j) (a more expensive, but

more accurate, version under-approximates NΠ
R (

∨
i∈I ui)).

Algorithm: Given a bound n, incrementally build a depth ≤ k
under-approximation of FNFΠ

R(
∨

j∈J u′
j), increasing k ≤ n iteratively.

1 Apply a standard explicit-state LTL model checking algorithm to
verify φ in the depth ≤ k under-approximation of FNFΠ

R(
∨

j∈J u′
j).

If a counterexample is found, stop and return the counterexample.

2 Suppose that there is no counterexample at depth ≤ k.
1 If k = n, stop and report that the model does not violate φ up to the

current bound n.
2 Otherwise, generate the depth ≤ k + 1 under-approximation of

FNFΠ
R(

∨
j∈J u′j)

1 If no new nodes are added to the ≤ k under-approximation,
FNFΠ

R(
∨

j∈J u′
j) has been actually generated! Then return true;

2 Otherwise, go to Step 1 with the depth ≤ k + 1 under-approximation
of FNFΠ

R(
∨

j∈J u′
j).

Meseguer Lecture 27 8 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Bounded Narrowing-Based LTL Model Checking
• Construct a depth ≤ k under-approximation of the folding narrowing

forest (and Kripke structure) FNFΠ
R(

∨
j∈J u′

j) (a more expensive, but

more accurate, version under-approximates NΠ
R (

∨
i∈I ui)).

Algorithm: Given a bound n, incrementally build a depth ≤ k
under-approximation of FNFΠ

R(
∨

j∈J u′
j), increasing k ≤ n iteratively.

1 Apply a standard explicit-state LTL model checking algorithm to
verify φ in the depth ≤ k under-approximation of FNFΠ

R(
∨

j∈J u′
j).

If a counterexample is found, stop and return the counterexample.

2 Suppose that there is no counterexample at depth ≤ k.
1 If k = n, stop and report that the model does not violate φ up to the

current bound n.
2 Otherwise, generate the depth ≤ k + 1 under-approximation of

FNFΠ
R(

∨
j∈J u′j)

1 If no new nodes are added to the ≤ k under-approximation,
FNFΠ

R(
∨

j∈J u′
j) has been actually generated! Then return true;

2 Otherwise, go to Step 1 with the depth ≤ k + 1 under-approximation
of FNFΠ

R(
∨

j∈J u′
j).

Meseguer Lecture 27 8 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Bounded Narrowing-Based LTL Model Checking
• Construct a depth ≤ k under-approximation of the folding narrowing

forest (and Kripke structure) FNFΠ
R(

∨
j∈J u′

j) (a more expensive, but

more accurate, version under-approximates NΠ
R (

∨
i∈I ui)).

Algorithm: Given a bound n, incrementally build a depth ≤ k
under-approximation of FNFΠ

R(
∨

j∈J u′
j), increasing k ≤ n iteratively.

1 Apply a standard explicit-state LTL model checking algorithm to
verify φ in the depth ≤ k under-approximation of FNFΠ

R(
∨

j∈J u′
j).

If a counterexample is found, stop and return the counterexample.

2 Suppose that there is no counterexample at depth ≤ k.
1 If k = n, stop and report that the model does not violate φ up to the

current bound n.
2 Otherwise, generate the depth ≤ k + 1 under-approximation of

FNFΠ
R(

∨
j∈J u′j)

1 If no new nodes are added to the ≤ k under-approximation,
FNFΠ

R(
∨

j∈J u′
j) has been actually generated! Then return true;

2 Otherwise, go to Step 1 with the depth ≤ k + 1 under-approximation
of FNFΠ

R(
∨

j∈J u′
j).

Meseguer Lecture 27 8 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Maude’s Logical LTL Model Checker Tool
Maude’s Logical LTL Model Checker supports symbolic LTL model
checking just explained.

This is a new implementation, not that in the
CS 476 web page. A README overview can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-lmc.md

It uses a a special version of Maude that extends Maude 3.3.1.
Executables for both Linux and MacOS and a folder
symbolic-examples can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-ltlr-lmc

As explained in the README overview, the user:

1 Enters into this special version of Maude a user module M.
2 Then gives the command load symbolic-checker. The user then
enters enclosed in parentheses the user module M-CHECK defining:

• the equational definition of state predicates just as for Maude’s LTL
model checker, but giving to all equations the [variant] attribute.

• a subsort inclusion User-State < State
• imports M and SYMBOLIC-CHECKER as submodules.

3 Then one can give symbolic model checking commands to the tool.

Let us illustrate everything with two examples.

Meseguer Lecture 27 9 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Maude’s Logical LTL Model Checker Tool
Maude’s Logical LTL Model Checker supports symbolic LTL model
checking just explained. This is a new implementation, not that in the
CS 476 web page.

A README overview can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-lmc.md

It uses a a special version of Maude that extends Maude 3.3.1.
Executables for both Linux and MacOS and a folder
symbolic-examples can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-ltlr-lmc

As explained in the README overview, the user:

1 Enters into this special version of Maude a user module M.
2 Then gives the command load symbolic-checker. The user then
enters enclosed in parentheses the user module M-CHECK defining:

• the equational definition of state predicates just as for Maude’s LTL
model checker, but giving to all equations the [variant] attribute.

• a subsort inclusion User-State < State
• imports M and SYMBOLIC-CHECKER as submodules.

3 Then one can give symbolic model checking commands to the tool.

Let us illustrate everything with two examples.

Meseguer Lecture 27 9 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Maude’s Logical LTL Model Checker Tool
Maude’s Logical LTL Model Checker supports symbolic LTL model
checking just explained. This is a new implementation, not that in the
CS 476 web page. A README overview can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-lmc.md

It uses a a special version of Maude that extends Maude 3.3.1.
Executables for both Linux and MacOS and a folder
symbolic-examples can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-ltlr-lmc

As explained in the README overview, the user:

1 Enters into this special version of Maude a user module M.
2 Then gives the command load symbolic-checker. The user then
enters enclosed in parentheses the user module M-CHECK defining:

• the equational definition of state predicates just as for Maude’s LTL
model checker, but giving to all equations the [variant] attribute.

• a subsort inclusion User-State < State
• imports M and SYMBOLIC-CHECKER as submodules.

3 Then one can give symbolic model checking commands to the tool.

Let us illustrate everything with two examples.

Meseguer Lecture 27 9 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Maude’s Logical LTL Model Checker Tool
Maude’s Logical LTL Model Checker supports symbolic LTL model
checking just explained. This is a new implementation, not that in the
CS 476 web page. A README overview can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-lmc.md

It uses a a special version of Maude that extends Maude 3.3.1.
Executables for both Linux and MacOS and a folder
symbolic-examples can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-ltlr-lmc

As explained in the README overview, the user:

1 Enters into this special version of Maude a user module M.
2 Then gives the command load symbolic-checker. The user then
enters enclosed in parentheses the user module M-CHECK defining:

• the equational definition of state predicates just as for Maude’s LTL
model checker, but giving to all equations the [variant] attribute.

• a subsort inclusion User-State < State
• imports M and SYMBOLIC-CHECKER as submodules.

3 Then one can give symbolic model checking commands to the tool.

Let us illustrate everything with two examples.

Meseguer Lecture 27 9 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Maude’s Logical LTL Model Checker Tool
Maude’s Logical LTL Model Checker supports symbolic LTL model
checking just explained. This is a new implementation, not that in the
CS 476 web page. A README overview can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-lmc.md

It uses a a special version of Maude that extends Maude 3.3.1.
Executables for both Linux and MacOS and a folder
symbolic-examples can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-ltlr-lmc

As explained in the README overview, the user:

1 Enters into this special version of Maude a user module M.
2 Then gives the command load symbolic-checker. The user then
enters enclosed in parentheses the user module M-CHECK defining:

• the equational definition of state predicates just as for Maude’s LTL
model checker, but giving to all equations the [variant] attribute.

• a subsort inclusion User-State < State
• imports M and SYMBOLIC-CHECKER as submodules.

3 Then one can give symbolic model checking commands to the tool.

Let us illustrate everything with two examples.

Meseguer Lecture 27 9 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Maude’s Logical LTL Model Checker Tool
Maude’s Logical LTL Model Checker supports symbolic LTL model
checking just explained. This is a new implementation, not that in the
CS 476 web page. A README overview can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-lmc.md

It uses a a special version of Maude that extends Maude 3.3.1.
Executables for both Linux and MacOS and a folder
symbolic-examples can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-ltlr-lmc

As explained in the README overview, the user:

1 Enters into this special version of Maude a user module M.
2 Then gives the command load symbolic-checker. The user then
enters enclosed in parentheses the user module M-CHECK defining:

• the equational definition of state predicates just as for Maude’s LTL
model checker, but giving to all equations the [variant] attribute.

• a subsort inclusion User-State < State
• imports M and SYMBOLIC-CHECKER as submodules.

3 Then one can give symbolic model checking commands to the tool.

Let us illustrate everything with two examples.

Meseguer Lecture 27 9 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Maude’s Logical LTL Model Checker Tool
Maude’s Logical LTL Model Checker supports symbolic LTL model
checking just explained. This is a new implementation, not that in the
CS 476 web page. A README overview can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-lmc.md

It uses a a special version of Maude that extends Maude 3.3.1.
Executables for both Linux and MacOS and a folder
symbolic-examples can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-ltlr-lmc

As explained in the README overview, the user:

1 Enters into this special version of Maude a user module M.
2 Then gives the command load symbolic-checker. The user then
enters enclosed in parentheses the user module M-CHECK defining:

• the equational definition of state predicates just as for Maude’s LTL
model checker, but giving to all equations the [variant] attribute.

• a subsort inclusion User-State < State
• imports M and SYMBOLIC-CHECKER as submodules.

3 Then one can give symbolic model checking commands to the tool.

Let us illustrate everything with two examples.

Meseguer Lecture 27 9 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Maude’s Logical LTL Model Checker Tool
Maude’s Logical LTL Model Checker supports symbolic LTL model
checking just explained. This is a new implementation, not that in the
CS 476 web page. A README overview can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-lmc.md

It uses a a special version of Maude that extends Maude 3.3.1.
Executables for both Linux and MacOS and a folder
symbolic-examples can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-ltlr-lmc

As explained in the README overview, the user:

1 Enters into this special version of Maude a user module M.

2 Then gives the command load symbolic-checker. The user then
enters enclosed in parentheses the user module M-CHECK defining:

• the equational definition of state predicates just as for Maude’s LTL
model checker, but giving to all equations the [variant] attribute.

• a subsort inclusion User-State < State
• imports M and SYMBOLIC-CHECKER as submodules.

3 Then one can give symbolic model checking commands to the tool.

Let us illustrate everything with two examples.

Meseguer Lecture 27 9 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Maude’s Logical LTL Model Checker Tool
Maude’s Logical LTL Model Checker supports symbolic LTL model
checking just explained. This is a new implementation, not that in the
CS 476 web page. A README overview can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-lmc.md

It uses a a special version of Maude that extends Maude 3.3.1.
Executables for both Linux and MacOS and a folder
symbolic-examples can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-ltlr-lmc

As explained in the README overview, the user:

1 Enters into this special version of Maude a user module M.
2 Then gives the command load symbolic-checker.

The user then
enters enclosed in parentheses the user module M-CHECK defining:

• the equational definition of state predicates just as for Maude’s LTL
model checker, but giving to all equations the [variant] attribute.

• a subsort inclusion User-State < State
• imports M and SYMBOLIC-CHECKER as submodules.

3 Then one can give symbolic model checking commands to the tool.

Let us illustrate everything with two examples.

Meseguer Lecture 27 9 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Maude’s Logical LTL Model Checker Tool
Maude’s Logical LTL Model Checker supports symbolic LTL model
checking just explained. This is a new implementation, not that in the
CS 476 web page. A README overview can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-lmc.md

It uses a a special version of Maude that extends Maude 3.3.1.
Executables for both Linux and MacOS and a folder
symbolic-examples can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-ltlr-lmc

As explained in the README overview, the user:

1 Enters into this special version of Maude a user module M.
2 Then gives the command load symbolic-checker. The user then
enters enclosed in parentheses the user module M-CHECK defining:

• the equational definition of state predicates just as for Maude’s LTL
model checker, but giving to all equations the [variant] attribute.

• a subsort inclusion User-State < State
• imports M and SYMBOLIC-CHECKER as submodules.

3 Then one can give symbolic model checking commands to the tool.

Let us illustrate everything with two examples.

Meseguer Lecture 27 9 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Maude’s Logical LTL Model Checker Tool
Maude’s Logical LTL Model Checker supports symbolic LTL model
checking just explained. This is a new implementation, not that in the
CS 476 web page. A README overview can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-lmc.md

It uses a a special version of Maude that extends Maude 3.3.1.
Executables for both Linux and MacOS and a folder
symbolic-examples can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-ltlr-lmc

As explained in the README overview, the user:

1 Enters into this special version of Maude a user module M.
2 Then gives the command load symbolic-checker. The user then
enters enclosed in parentheses the user module M-CHECK defining:

• the equational definition of state predicates just as for Maude’s LTL
model checker, but giving to all equations the [variant] attribute.

• a subsort inclusion User-State < State
• imports M and SYMBOLIC-CHECKER as submodules.

3 Then one can give symbolic model checking commands to the tool.

Let us illustrate everything with two examples.

Meseguer Lecture 27 9 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Maude’s Logical LTL Model Checker Tool
Maude’s Logical LTL Model Checker supports symbolic LTL model
checking just explained. This is a new implementation, not that in the
CS 476 web page. A README overview can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-lmc.md

It uses a a special version of Maude that extends Maude 3.3.1.
Executables for both Linux and MacOS and a folder
symbolic-examples can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-ltlr-lmc

As explained in the README overview, the user:

1 Enters into this special version of Maude a user module M.
2 Then gives the command load symbolic-checker. The user then
enters enclosed in parentheses the user module M-CHECK defining:

• the equational definition of state predicates just as for Maude’s LTL
model checker, but giving to all equations the [variant] attribute.

• a subsort inclusion User-State < State

• imports M and SYMBOLIC-CHECKER as submodules.

3 Then one can give symbolic model checking commands to the tool.

Let us illustrate everything with two examples.

Meseguer Lecture 27 9 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Maude’s Logical LTL Model Checker Tool
Maude’s Logical LTL Model Checker supports symbolic LTL model
checking just explained. This is a new implementation, not that in the
CS 476 web page. A README overview can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-lmc.md

It uses a a special version of Maude that extends Maude 3.3.1.
Executables for both Linux and MacOS and a folder
symbolic-examples can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-ltlr-lmc

As explained in the README overview, the user:

1 Enters into this special version of Maude a user module M.
2 Then gives the command load symbolic-checker. The user then
enters enclosed in parentheses the user module M-CHECK defining:

• the equational definition of state predicates just as for Maude’s LTL
model checker, but giving to all equations the [variant] attribute.

• a subsort inclusion User-State < State
• imports M and SYMBOLIC-CHECKER as submodules.

3 Then one can give symbolic model checking commands to the tool.

Let us illustrate everything with two examples.

Meseguer Lecture 27 9 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Maude’s Logical LTL Model Checker Tool
Maude’s Logical LTL Model Checker supports symbolic LTL model
checking just explained. This is a new implementation, not that in the
CS 476 web page. A README overview can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-lmc.md

It uses a a special version of Maude that extends Maude 3.3.1.
Executables for both Linux and MacOS and a folder
symbolic-examples can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-ltlr-lmc

As explained in the README overview, the user:

1 Enters into this special version of Maude a user module M.
2 Then gives the command load symbolic-checker. The user then
enters enclosed in parentheses the user module M-CHECK defining:

• the equational definition of state predicates just as for Maude’s LTL
model checker, but giving to all equations the [variant] attribute.

• a subsort inclusion User-State < State
• imports M and SYMBOLIC-CHECKER as submodules.

3 Then one can give symbolic model checking commands to the tool.

Let us illustrate everything with two examples.

Meseguer Lecture 27 9 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Maude’s Logical LTL Model Checker Tool
Maude’s Logical LTL Model Checker supports symbolic LTL model
checking just explained. This is a new implementation, not that in the
CS 476 web page. A README overview can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-lmc.md

It uses a a special version of Maude that extends Maude 3.3.1.
Executables for both Linux and MacOS and a folder
symbolic-examples can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-ltlr-lmc

As explained in the README overview, the user:

1 Enters into this special version of Maude a user module M.
2 Then gives the command load symbolic-checker. The user then
enters enclosed in parentheses the user module M-CHECK defining:

• the equational definition of state predicates just as for Maude’s LTL
model checker, but giving to all equations the [variant] attribute.

• a subsort inclusion User-State < State
• imports M and SYMBOLIC-CHECKER as submodules.

3 Then one can give symbolic model checking commands to the tool.

Let us illustrate everything with two examples.
Meseguer Lecture 27 9 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Symbolic LTL Model Checking: a R&W Example
This special version of Maude supports the LTL symbolic model checker:

meseguer@CS-MESEGUER-MBA LTL-LMC-11-23 % ./maude-ltlr-lmc.darwin64
\||||||||||||||||||/

--- Welcome to Maude ---
/||||||||||||||||||\
Maude 3.3.1 built: Nov 22 2023 21:46:36
Copyright 1997-2023 SRI International

Sat Nov 25 20:42:15 2023
Maude>

We then load the module of interest, here R&W:

mod R&W is
sort Natural .
op 0 : -> Natural [ctor] .
op s : Natural -> Natural [ctor] .
sort Config .
op <_,_> : Natural Natural -> Config [ctor] .

vars R W : Natural .

rl [enter-w] : < 0, 0 > => < 0, s(0) > [narrowing] .
rl [leave-w] : < R, s(W) > => < R, W > [narrowing] .
rl [enter-r] : < R, 0 > => < s(R), 0 > [narrowing] .
rl [leave-r] : < s(R), W > => < R, W > [narrowing] .

endm

Meseguer Lecture 27 10 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Symbolic LTL Model Checking: a R&W Example
This special version of Maude supports the LTL symbolic model checker:

meseguer@CS-MESEGUER-MBA LTL-LMC-11-23 % ./maude-ltlr-lmc.darwin64
\||||||||||||||||||/

--- Welcome to Maude ---
/||||||||||||||||||\
Maude 3.3.1 built: Nov 22 2023 21:46:36
Copyright 1997-2023 SRI International

Sat Nov 25 20:42:15 2023
Maude>

We then load the module of interest, here R&W:

mod R&W is
sort Natural .
op 0 : -> Natural [ctor] .
op s : Natural -> Natural [ctor] .
sort Config .
op <_,_> : Natural Natural -> Config [ctor] .

vars R W : Natural .

rl [enter-w] : < 0, 0 > => < 0, s(0) > [narrowing] .
rl [leave-w] : < R, s(W) > => < R, W > [narrowing] .
rl [enter-r] : < R, 0 > => < s(R), 0 > [narrowing] .
rl [leave-r] : < s(R), W > => < R, W > [narrowing] .

endm

Meseguer Lecture 27 10 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Symbolic LTL Model Checking: a R&W Example
This special version of Maude supports the LTL symbolic model checker:

meseguer@CS-MESEGUER-MBA LTL-LMC-11-23 % ./maude-ltlr-lmc.darwin64
\||||||||||||||||||/

--- Welcome to Maude ---
/||||||||||||||||||\
Maude 3.3.1 built: Nov 22 2023 21:46:36
Copyright 1997-2023 SRI International

Sat Nov 25 20:42:15 2023
Maude>

We then load the module of interest, here R&W:

mod R&W is
sort Natural .
op 0 : -> Natural [ctor] .
op s : Natural -> Natural [ctor] .
sort Config .
op <_,_> : Natural Natural -> Config [ctor] .

vars R W : Natural .

rl [enter-w] : < 0, 0 > => < 0, s(0) > [narrowing] .
rl [leave-w] : < R, s(W) > => < R, W > [narrowing] .
rl [enter-r] : < R, 0 > => < s(R), 0 > [narrowing] .
rl [leave-r] : < s(R), W > => < R, W > [narrowing] .

endm

Meseguer Lecture 27 10 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Symbolic LTL Model Checking: a R&W Example
This special version of Maude supports the LTL symbolic model checker:

meseguer@CS-MESEGUER-MBA LTL-LMC-11-23 % ./maude-ltlr-lmc.darwin64
\||||||||||||||||||/

--- Welcome to Maude ---
/||||||||||||||||||\
Maude 3.3.1 built: Nov 22 2023 21:46:36
Copyright 1997-2023 SRI International

Sat Nov 25 20:42:15 2023
Maude>

We then load the module of interest, here R&W:

mod R&W is
sort Natural .
op 0 : -> Natural [ctor] .
op s : Natural -> Natural [ctor] .
sort Config .
op <_,_> : Natural Natural -> Config [ctor] .

vars R W : Natural .

rl [enter-w] : < 0, 0 > => < 0, s(0) > [narrowing] .
rl [leave-w] : < R, s(W) > => < R, W > [narrowing] .
rl [enter-r] : < R, 0 > => < s(R), 0 > [narrowing] .
rl [leave-r] : < s(R), W > => < R, W > [narrowing] .

endm

Meseguer Lecture 27 10 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Symbolic LTL Model Checking: a R&W Example (II)
We then load the symbolic LTL model checker and enter the R&W-CHECK
module enclosed in parentheses:

load symbolic-checker

(mod R&W-CHECK is
protecting R&W .
including SYMBOLIC-CHECKER .

subsort Config < State .

vars N M : Natural .

op reads : -> Prop .
eq < s(N), M > |= reads = true [variant] .
eq < 0, M > |= reads = false [variant] .

op writes : -> Prop .
eq < M, s(N) > |= writes = true [variant] .
eq < M, 0 > |= writes = false [variant] .

op writers>1 : -> Prop .
eq < M, s(s(N)) > |= writers>1 = true [variant] .
eq < M, s(0) > |= writers>1 = false [variant] .
eq < M, 0 > |= writers>1 = false [variant] .

endm)

Meseguer Lecture 27 11 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Symbolic LTL Model Checking: a R&W Example (II)
We then load the symbolic LTL model checker and enter the R&W-CHECK
module enclosed in parentheses:

load symbolic-checker

(mod R&W-CHECK is
protecting R&W .
including SYMBOLIC-CHECKER .

subsort Config < State .

vars N M : Natural .

op reads : -> Prop .
eq < s(N), M > |= reads = true [variant] .
eq < 0, M > |= reads = false [variant] .

op writes : -> Prop .
eq < M, s(N) > |= writes = true [variant] .
eq < M, 0 > |= writes = false [variant] .

op writers>1 : -> Prop .
eq < M, s(s(N)) > |= writers>1 = true [variant] .
eq < M, s(0) > |= writers>1 = false [variant] .
eq < M, 0 > |= writers>1 = false [variant] .

endm)

Meseguer Lecture 27 11 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Symbolic LTL Model Checking: a R&W Example (III)

We can now give symbolic model checking commands enclosed in
parentheses. The lmc commands from the symbolic initial state < N,0 >
to verify mutex and one-writer invariants do not terminate, but we can
model check check them up to, e.g., bound 100:

Maude> (lmc [100] < N, 0 > |= [] ˜ (reads /\ writes) .)

result: no counterexample found within bound 100

Maude> (lmc [100] < N, 0 > |= [] ˜ (writers>1) .)

result: no counterexample found within bound 100

However, the folding lfmc commands terminate proving the invariants:

Maude> (lfmc < N, 0 > |= [] ˜ (reads /\ writes) .)

result: true (complete with depth 3)

Maude> (lfmc < N, 0 > |= [] ˜ (writers>1) .)

result: true (complete with depth 3)

Meseguer Lecture 27 12 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Symbolic LTL Model Checking: a R&W Example (III)

We can now give symbolic model checking commands enclosed in
parentheses. The lmc commands from the symbolic initial state < N,0 >
to verify mutex and one-writer invariants do not terminate, but we can
model check check them up to, e.g., bound 100:

Maude> (lmc [100] < N, 0 > |= [] ˜ (reads /\ writes) .)

result: no counterexample found within bound 100

Maude> (lmc [100] < N, 0 > |= [] ˜ (writers>1) .)

result: no counterexample found within bound 100

However, the folding lfmc commands terminate proving the invariants:

Maude> (lfmc < N, 0 > |= [] ˜ (reads /\ writes) .)

result: true (complete with depth 3)

Maude> (lfmc < N, 0 > |= [] ˜ (writers>1) .)

result: true (complete with depth 3)

Meseguer Lecture 27 12 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Symbolic LTL Model Checking: a R&W Example (III)

We can now give symbolic model checking commands enclosed in
parentheses. The lmc commands from the symbolic initial state < N,0 >
to verify mutex and one-writer invariants do not terminate, but we can
model check check them up to, e.g., bound 100:

Maude> (lmc [100] < N, 0 > |= [] ˜ (reads /\ writes) .)

result: no counterexample found within bound 100

Maude> (lmc [100] < N, 0 > |= [] ˜ (writers>1) .)

result: no counterexample found within bound 100

However, the folding lfmc commands terminate proving the invariants:

Maude> (lfmc < N, 0 > |= [] ˜ (reads /\ writes) .)

result: true (complete with depth 3)

Maude> (lfmc < N, 0 > |= [] ˜ (writers>1) .)

result: true (complete with depth 3)

Meseguer Lecture 27 12 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Symbolic LTL Model Checking: a R&W Example (III)

We can now give symbolic model checking commands enclosed in
parentheses. The lmc commands from the symbolic initial state < N,0 >
to verify mutex and one-writer invariants do not terminate, but we can
model check check them up to, e.g., bound 100:

Maude> (lmc [100] < N, 0 > |= [] ˜ (reads /\ writes) .)

result: no counterexample found within bound 100

Maude> (lmc [100] < N, 0 > |= [] ˜ (writers>1) .)

result: no counterexample found within bound 100

However, the folding lfmc commands terminate proving the invariants:

Maude> (lfmc < N, 0 > |= [] ˜ (reads /\ writes) .)

result: true (complete with depth 3)

Maude> (lfmc < N, 0 > |= [] ˜ (writers>1) .)

result: true (complete with depth 3)

Meseguer Lecture 27 12 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Symbolic LTL Model Checking: a R&W Example (IV)

Likewise, we can prove (or disprove) some non-starvation properties:

Maude> (lmc < N, 0 > |= []<> reads .)

result: counterexample found at depth 4

prefix
{< 0,0 >,none,’enter-w}

loop
{< 0,s(0)>,none,’leave-w}
{< 0,0 >,none,’enter-w}

Maude> (lmc < N, 0 > |= []<> writes .)

result: counterexample found at depth 3

prefix
{< N:Natural,0 >,’N <- s(%1:Natural),’leave-r}

loop
{< N:Natural,0 >,’N <- s(%1:Natural),’leave-r}

Maude> (lfmc < N, 0 > |= []<> (reads \/ writes) .)

result: true

Meseguer Lecture 27 13 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Symbolic LTL Model Checking: a R&W Example (IV)

Likewise, we can prove (or disprove) some non-starvation properties:

Maude> (lmc < N, 0 > |= []<> reads .)

result: counterexample found at depth 4

prefix
{< 0,0 >,none,’enter-w}

loop
{< 0,s(0)>,none,’leave-w}
{< 0,0 >,none,’enter-w}

Maude> (lmc < N, 0 > |= []<> writes .)

result: counterexample found at depth 3

prefix
{< N:Natural,0 >,’N <- s(%1:Natural),’leave-r}

loop
{< N:Natural,0 >,’N <- s(%1:Natural),’leave-r}

Maude> (lfmc < N, 0 > |= []<> (reads \/ writes) .)

result: true

Meseguer Lecture 27 13 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Symbolic LTL Model Checking: a BAKERY Example
The following BAKERY version is harder to verify than that in Lecture 21:

fmod BAKERY-SYNTAX is
sort Name .
op 0 : -> Name [ctor] .
op s : -> Name [ctor] .
op __ : Name Name -> Name [ctor comm assoc id: 0] .

sorts ModeIdle ModeWait ModeCrit Mode Conf .
subsorts ModeIdle ModeWait ModeCrit < Mode .
sorts ProcIdle ProcWait Proc ProcIdleSet ProcWaitSet ProcSet .
subsorts ProcIdle < ProcIdleSet .
subsorts ProcWait < ProcWaitSet .
subsorts ProcIdle ProcWait < Proc < ProcSet .
subsorts ProcIdleSet < ProcWaitSet < ProcSet .

op idle : -> ModeIdle .
op wait : Name -> ModeWait .
op crit : Name -> ModeCrit .
op [_] : ModeIdle -> ProcIdle .
op [_] : ModeWait -> ProcWait .
op [_] : Mode -> Proc .
op none : -> ProcIdleSet .
op __ : ProcIdleSet ProcIdleSet -> ProcIdleSet [assoc comm] .
op __ : ProcWaitSet ProcWaitSet -> ProcWaitSet [assoc comm] .
op __ : ProcSet ProcSet -> ProcSet [assoc comm] .

op _;_;_ : Name Name ProcSet -> Conf .
endfm

mod BAKERY is
protecting BAKERY-SYNTAX .

var PS : ProcSet . vars N M : Name .

rl [wake] : N ; M ; [idle] PS => s N ; M ; [wait(N)] PS [narrowing] .
rl [crit] : N ; M ; [wait(M)] PS => N ; M ; [crit(M)] PS [narrowing] .
rl [exit] : N ; M ; [crit(M)] PS => N ; s M ; [idle] PS [narrowing] .

endm

Meseguer Lecture 27 14 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Symbolic LTL Model Checking: a BAKERY Example
The following BAKERY version is harder to verify than that in Lecture 21:
fmod BAKERY-SYNTAX is
sort Name .
op 0 : -> Name [ctor] .
op s : -> Name [ctor] .
op __ : Name Name -> Name [ctor comm assoc id: 0] .

sorts ModeIdle ModeWait ModeCrit Mode Conf .
subsorts ModeIdle ModeWait ModeCrit < Mode .
sorts ProcIdle ProcWait Proc ProcIdleSet ProcWaitSet ProcSet .
subsorts ProcIdle < ProcIdleSet .
subsorts ProcWait < ProcWaitSet .
subsorts ProcIdle ProcWait < Proc < ProcSet .
subsorts ProcIdleSet < ProcWaitSet < ProcSet .

op idle : -> ModeIdle .
op wait : Name -> ModeWait .
op crit : Name -> ModeCrit .
op [_] : ModeIdle -> ProcIdle .
op [_] : ModeWait -> ProcWait .
op [_] : Mode -> Proc .
op none : -> ProcIdleSet .
op __ : ProcIdleSet ProcIdleSet -> ProcIdleSet [assoc comm] .
op __ : ProcWaitSet ProcWaitSet -> ProcWaitSet [assoc comm] .
op __ : ProcSet ProcSet -> ProcSet [assoc comm] .

op _;_;_ : Name Name ProcSet -> Conf .
endfm

mod BAKERY is
protecting BAKERY-SYNTAX .

var PS : ProcSet . vars N M : Name .

rl [wake] : N ; M ; [idle] PS => s N ; M ; [wait(N)] PS [narrowing] .
rl [crit] : N ; M ; [wait(M)] PS => N ; M ; [crit(M)] PS [narrowing] .
rl [exit] : N ; M ; [crit(M)] PS => N ; s M ; [idle] PS [narrowing] .

endm

Meseguer Lecture 27 14 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Symbolic LTL Model Checking: a BAKERY Example (II)
mod BAKERY is
protecting BAKERY-SYNTAX .

var PS : ProcSet . vars N M : Name .

rl [wake] : N ; M ; [idle] PS => s N ; M ; [wait(N)] PS [narrowing] .
rl [crit] : N ; M ; [wait(M)] PS => N ; M ; [crit(M)] PS [narrowing] .
rl [exit] : N ; M ; [crit(M)] PS => N ; s M ; [idle] PS [narrowing] .

endm

load symbolic-checker

(mod BAKERY-CHECK1 is
pr BAKERY .
including SYMBOLIC-CHECKER .

subsort Conf < State .

ops was-wait? was-crit? : -> Prop . *** was or is in wait (resp. crit)

vars N M : Name . vars PS : ProcSet .

eq s N ; M ; PS |= was-wait? = true [variant] .
eq 0 ; M ; PS |= was-wait? = false [variant] .
eq N ; s M ; PS |= was-crit? = true [variant] .
eq N ; 0 ; PS |= was-crit? = false [variant] .

endm)

Meseguer Lecture 27 15 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Symbolic LTL Model Checking: a BAKERY Example (III)
Does having been waiting always lead to some process being in the
critical section?

(lfmc N ; N ; [idle] [idle] |= [] (was-wait? -> <> was-crit?) .)

result: true (complete with depth 5)

(lfmc N ; M ; IS:ProcIdleSet |= [] (was-wait? -> <> was-crit?) .)

result: counterexample found at depth 5 *** deadlock counterexample

prefix
{(s #1:Name); 0 ; IS:ProcIdleSet,’IS <- %1:ProcIdleSet[idle],’wake}
{(s s %2:Name); 0 ; %1:ProcIdleSet[wait(s %2:Name)],’%1 <-[idle],’wake}

loop
{(s s s %2:Name); 0 ;[wait(s %2:Name)][wait(s s %2:Name)],none,deadlock}

(lfmc N ; M ; WS:ProcWaitSet |= [] (was-wait? -> <> was-crit?) .)

result: counterexample found at depth 3 *** non-deadlock counterexample

prefix
{(s #1:Name); 0 ; WS:ProcWaitSet,’WS <- %1:ProcWaitSet[idle],’wake}

loop
{(s #1:Name); 0 ; WS:ProcWaitSet,’WS <- %1:ProcWaitSet[idle],’wake}

Meseguer Lecture 27 16 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Symbolic LTL Model Checking: a BAKERY Example (III)
Does having been waiting always lead to some process being in the
critical section?

(lfmc N ; N ; [idle] [idle] |= [] (was-wait? -> <> was-crit?) .)

result: true (complete with depth 5)

(lfmc N ; M ; IS:ProcIdleSet |= [] (was-wait? -> <> was-crit?) .)

result: counterexample found at depth 5 *** deadlock counterexample

prefix
{(s #1:Name); 0 ; IS:ProcIdleSet,’IS <- %1:ProcIdleSet[idle],’wake}
{(s s %2:Name); 0 ; %1:ProcIdleSet[wait(s %2:Name)],’%1 <-[idle],’wake}

loop
{(s s s %2:Name); 0 ;[wait(s %2:Name)][wait(s s %2:Name)],none,deadlock}

(lfmc N ; M ; WS:ProcWaitSet |= [] (was-wait? -> <> was-crit?) .)

result: counterexample found at depth 3 *** non-deadlock counterexample

prefix
{(s #1:Name); 0 ; WS:ProcWaitSet,’WS <- %1:ProcWaitSet[idle],’wake}

loop
{(s #1:Name); 0 ; WS:ProcWaitSet,’WS <- %1:ProcWaitSet[idle],’wake}

Meseguer Lecture 27 16 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Symbolic LTL Model Checking: a BAKERY Example (IV)

Does mutual exclusion hold?

(mod BAKERY-CHECK2 is pr BAKERY . including SYMBOLIC-CHECKER .
subsort Conf < State .

ops mutex : -> Prop .

var WS : ProcWaitSet . var IS : ProcIdleSet . var PS : ProcSet .
vars N M M1 M2 : Name .

eq N ; M ; WS |= mutex = true [variant] .
eq N ; M ; [crit(M1)] WS |= mutex = true [variant] .
eq N ; M ; [crit(M1)] [crit(M2)] PS |= mutex = false [variant] .

endm)

(lmc [100] N:Name ; N:Name ; [idle] [idle] |= [] mutex .)

result: no counterexample found within bound 100

(lfmc N:Name ; N:Name ; [idle] [idle] |= [] mutex .)

result: true (complete with depth 5)

Meseguer Lecture 27 17 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Symbolic LTL Model Checking: a BAKERY Example (IV)

Does mutual exclusion hold?

(mod BAKERY-CHECK2 is pr BAKERY . including SYMBOLIC-CHECKER .
subsort Conf < State .

ops mutex : -> Prop .

var WS : ProcWaitSet . var IS : ProcIdleSet . var PS : ProcSet .
vars N M M1 M2 : Name .

eq N ; M ; WS |= mutex = true [variant] .
eq N ; M ; [crit(M1)] WS |= mutex = true [variant] .
eq N ; M ; [crit(M1)] [crit(M2)] PS |= mutex = false [variant] .

endm)

(lmc [100] N:Name ; N:Name ; [idle] [idle] |= [] mutex .)

result: no counterexample found within bound 100

(lfmc N:Name ; N:Name ; [idle] [idle] |= [] mutex .)

result: true (complete with depth 5)

Meseguer Lecture 27 17 / 18

State Space Reduction in NΠ
R (

∨
i∈I ui)

Symbolic LTL Model Checking: a BAKERY Example (V)
(lfmc N ; M ; WS |= [] mutex .)

result: counterexample found at depth 5

prefix
{N:Name ; M:Name ; WS:ProcWaitSet,’WS <- %1:ProcWaitSet[wait(M:Name)],’crit}
{N:Name ; M:Name ; %1:ProcWaitSet[crit(M:Name)],’%1 <- %3:ProcWaitSet[wait(M:Name)],’crit}
{N:Name ; M:Name ; %3:ProcWaitSet[crit(M:Name)][crit(M:Name)],’%3 <-[wait(M:Name)],’crit}
loop
nil

(lfmc N ; N ; WS |= [] mutex .)

result: counterexample found at depth 5

prefix
{N:Name ; N:Name ; WS:ProcWaitSet,’WS <- %1:ProcWaitSet[wait(N:Name)],’crit}
{N:Name ; N:Name ; %1:ProcWaitSet[crit(N:Name)],’%1 <- %2:ProcWaitSet[wait(N:Name)],’crit}
{N:Name ; N:Name ; %2:ProcWaitSet[crit(N:Name)][crit(N:Name)],’%2 <-[wait(N:Name)],’crit}
loop
nil

(lfmc [100] N ; N ; IS |= [] mutex .)

result: no counterexample found within bound 100

Meseguer Lecture 27 18 / 18

	Narrowing-Based Symbolic LTL Model Checking
	State Space Reduction in NR(i Iui)

