Program Verification: Lecture 27

José Meseguer
University of lllinois at Urbana-Champaign

Meseguer Lecture 27

Narrowing-Based Symbolic LTL Model Checking

We can verify invariants of a topmost rewrite theory R = (X, EUB,R)
when EU B is FVP by narrowing search with ~~g /g p) from a symbolic
initial state uq V...V uy,.

Meseguer Lecture 27 2/18

Narrowing-Based Symbolic LTL Model Checking

We can verify invariants of a topmost rewrite theory R = (X, EUB,R)
when EU B is FVP by narrowing search with ~~g /g p) from a symbolic
initial state 1 V...V u,. Can this be generalized to narrowing-based
symbolic LTL model checking for such an R?

Meseguer Lecture 27 2/18

Narrowing-Based Symbolic LTL Model Checking

We can verify invariants of a topmost rewrite theory R = (X, EUB,R)
when EU B is FVP by narrowing search with ~~g /g p) from a symbolic
initial state u7 V...V u;,. Can this be generalized to narrowing-based
symbolic LTL model checking for such an R?

The main problem is that, in general, it is meaningless to say which state
predicates p € IT are satisfied in a symbolic state u, since some ground
instance up may satisfy some predicates in I1, and another ground
instance uT may satisfy a different set of predicates in IT.

Meseguer Lecture 27 2/18

Narrowing-Based Symbolic LTL Model Checking

We can verify invariants of a topmost rewrite theory R = (X, EUB,R)
when EU B is FVP by narrowing search with ~~g /g p) from a symbolic
initial state u7 V...V u;,. Can this be generalized to narrowing-based
symbolic LTL model checking for such an R?

The main problem is that, in general, it is meaningless to say which state
predicates p € IT are satisfied in a symbolic state u, since some ground
instance up may satisfy some predicates in I1, and another ground
instance uT may satisfy a different set of predicates in IT.

However, if the states R-reachable from uq V...V u, are deadlock-free,
and the equations D defining the satisfaction relation u |= p between
terms of top sort State and state predicates I1 for the true and false cases
are such that EUD U B are FVP and protect BOOL, LTL symbolic model
checking of R from a symbolic initial state uy V...V u, becomes
possible in a symbolic Kripke structure N}g(ul V...Vuy), whose
symbolic transitions are performed by a IT-aware narrowing relation ~>pj.

Meseguer Lecture 27 2/18

Narrowing-Based Symbolic LTL Model Checking

The Narrowing Relation ~»g

Given a topmost rewrite theory R = (X, EUB, R) with rules (I — r) € R
st. ,r € Te(X) \ X, topmost of sort State, and a set IT = {p1,...,px}
of state predicates whose satisfaction in R is defined by equations D
such that EUD U B is FVP modulo axioms B, the II-aware narrowing
relation between terms u, w € Ty, gta.(X) is defined as follows:

Meseguer Lecture 27 3/18

Narrowing-Based Symbolic LTL Model Checking

The Narrowing Relation ~»g

Given a topmost rewrite theory R = (X, EUB, R) with rules (I — r) € R
st. ,r € Te(X) \ X, topmost of sort State, and a set IT = {p1,...,px}
of state predicates whose satisfaction in R is defined by equations D
such that EUD U B is FVP modulo axioms B, the II-aware narrowing
relation between terms u, w € Ty, gta.(X) is defined as follows:

U~ W

holds iff (by definition)

Meseguer Lecture 27 3/18

Narrowing-Based Symbolic LTL Model Checking

The Narrowing Relation ~»g

Given a topmost rewrite theory R = (X, EUB, R) with rules (I — r) € R
st. ,r € Te(X) \ X, topmost of sort State, and a set IT = {p1,...,px}
of state predicates whose satisfaction in R is defined by equations D
such that EUD U B is FVP modulo axioms B, the II-aware narrowing
relation between terms u, w € Ty, gta.(X) is defined as follows:

U~ W
holds iff (by definition)

® Ju st u Wﬁ/(EUB) v

Meseguer Lecture 27 3/18

Narrowing-Based Symbolic LTL Model Checking

The Narrowing Relation ~»g

Given a topmost rewrite theory R = (X, EUB, R) with rules (I — r) € R
st. ,r € Te(X) \ X, topmost of sort State, and a set IT = {p1,...,px}
of state predicates whose satisfaction in R is defined by equations D
such that EUD U B is FVP modulo axioms B, the II-aware narrowing
relation between terms u, w € Ty, gta.(X) is defined as follows:

Xy
U ~=11 W

holds iff (by definition)
® Ju st u Wﬁ/(EUB) v
® 3(by,...,by) € {true, false}*

Meseguer Lecture 27 3/18

Narrowing-Based Symbolic LTL Model Checking

The Narrowing Relation ~»g

Given a topmost rewrite theory R = (X, EUB, R) with rules (I — r) € R
st. ,r € Te(X) \ X, topmost of sort State, and a set IT = {p1,...,px}
of state predicates whose satisfaction in R is defined by equations D
such that EUD U B is FVP modulo axioms B, the II-aware narrowing
relation between terms u, w € Ty, gta.(X) is defined as follows:

Xy
U ~=11 W

holds iff (by definition)
® Ju st u Wﬁ/(EUB) v
® 3(by,...,by) € {true, false}*
® JyeUnifp ppgEpr=biA...ANvEpr=Db)

Meseguer Lecture 27 3/18

The Narrowing Relation ~»g

Given a topmost rewrite theory R = (X, EUB, R) with rules (I — r) € R
st. ,r € Te(X) \ X, topmost of sort State, and a set IT = {p1,...,px}
of state predicates whose satisfaction in R is defined by equations D
such that EUD U B is FVP modulo axioms B, the II-aware narrowing
relation between terms u, w € Ty, gta.(X) is defined as follows:

Xy
U ~=11 W

holds iff (by definition)
® Ju st u Wﬁ/(EUB) v
® 3(by,...,by) € {true, false}*

® Jy € Unifp pp(vEpr=b1A...Av = pp=by)
such that w = v7y.

Meseguer Lecture 27 3/18

Narrowing-Based Symbolic LTL Model Checking

The Kripke Structure N5'(V;e; i)

For Vierui, I ={1,...,n}, define its Il-instances {u],...,u,} =

{upy|i€l, by, ..., by) € {true, false}*, Iy € Unifp pog(u Epr =bi A Aul=pe=b)}
The Kripke structure N}g(\/iel u;) has states

Meseguer Lecture 27

Narrowing-Based Symbolic LTL Model Checking

The Kripke Structure N5'(V;e; i)

For Vierui, I ={1,...,n}, define its Il-instances {u],...,u,} =

{upy|i€l, by, ..., by) € {true, false}*, Iy € Unifp pog(u Epr =bi A Aul=pe=b)}
The Kripke structure NJ (Ve u;) has states NJ (V;epu) =

Meseguer Lecture 27

The Kripke Structure N3 (V;c; 1:)

For Vierui, I ={1,...,n}, define its Il-instances {u],...,u,} =
{wy i€l 3by,...,b) € {true,false}*, Iy € Unif p p g = p1 =bi AL A= pr =)}
The Kripke structure NX(V/;cru;) has states NI (Vepu;) =

{w € Ty sare(X) | Fj, 1 <j < m, uj ~[yw}/~Eus,

Meseguer Lecture 27 4/18

The Kripke Structure N3 (V;c; 1:)

For Vierui, I ={1,...,n}, define its Il-instances {u],...,u,} =
{wy i€l 3by,...,b) € {true,false}*, Iy € Unif p p g = p1 =bi AL A= pr =)}
The Kripke structure NX(V/;cru;) has states NI (Vepu;) =

{w € Tystate(X) | Fj, 1 < j < m, uj ~y w}/~Epup, where v ~pup w iff

i ; i 1. — 0w
exists a variable renaming « s.t. vl ptt =B W!g p,

Meseguer Lecture 27 4/18

The Kripke Structure N3 (V;c; 1:)

For Vierui, I ={1,...,n}, define its Il-instances {u],...,u,} =

{wy i€l 3by,...,b) € {true,false}*, Iy € Unif p p g = p1 =bi AL A= pr =)}
The Kripke structure NX(V/;cru;) has states NI (Vepu;) =

{we Ty se(X) | F,1<j<m, u]’- ~i w}/~Eup, where v &g p w iff
exists a variable renaming « s.t. U!E/B“ =3 W!TS/B' transition relation

ML

Meseguer Lecture 27 4/18

The Kripke Structure N3 (Vier 1)

For Vierui, I ={1,...,n}, define its Il-instances {u],...,u,} =

{wy i€l 3by,...,b) € {true,false}*, Iy € Unif p p g = p1 =bi AL A= pr =)}
The Kripke structure NX(V/;cru;) has states NI (Vepu;) =

{w € Ty sare(X) | Fj, 1 <] <m, u] ~{] w}/~pup, where v =g p w iff
exists a variable renaming « s.t. U'E/B =g w! S transition relation

~>11, and satisfaction relation [w] |—N1‘[) pi defined for each

Vier i)
[w] € N%(\/iel u;) and p; € I1 by the unique b} € {true, false}* such
that (w |= pi)!EODB = b;, 1<i<k.

Meseguer Lecture 27 4/18

The Kripke Structure N3 (Vier 1)

For Vierui, I ={1,...,n}, define its Il-instances {u],...,u,} =

{wy i€l 3by,...,b) € {true,false}*, Iy € Unif p p g = p1 =bi AL A= pr =)}
The Kripke structure NX(V/;cru;) has states NI (Vepu;) =

{w € Ty sare(X) | 3, 1 <] <m, ”] ~{1 w}/~puB, where v ~pp w iff

exists a variable renaming « s.t. U'E/B =p w! transition relation

"E/B’
~>11, and satisfaction relation [w] |—N1‘[Vieyu;) Pi defined for each
[w] € N%(\/iel u;) and p; € IT by the unique b: € {true, false}* such
that (w |= pi)!EODB = b;, 1<i<k.

If N}g(\/ie[u;) is deadlock-free, any LTL formula ¢ holds for a symbolic
initial state \/;eyu; in TH if (resp. iff) it does in VR (V;epu;) from
{uf, ..., up,} (resp. assuming N1 (Vcpu;) is finite) (see Appendix 1):

Meseguer Lecture 27 4/18

The Kripke Structure N3 (Vier 1)

For Vierui, I ={1,...,n}, define its Il-instances {u],...,u,} =
{uy i€, by, ..., by) € {true, false}*, Iy € Unifp p (= pr =biA...Au = pr=b)}.
The Kripke structure NX(V/;cru;) has states NI (Vepu;) =

{w S TZStute() | El], 1 <] <m, 1/[] s w}/NEUB, where v ~fEUp W iff
exists a variable renaming « s.t. U'E/B =g w! S transition relation

~>11, and satisfaction relation [w] l—NH) pi defined for each

Viert;)
[w] € NY(Vierui) and p; € I by the unique b € {true, false}* such
that (w |: pi)!EGDB = b;, 1<i<k.

If N}g(\/ie[u;) is deadlock-free, any LTL formula ¢ holds for a symbolic
initial state \/;c;u; in "Jl"% if (resp. iff) it does in Ng(\/iel u;) from
{uf, ..., up,} (resp. assuming N1 (Vcpu;) is finite) (see Appendix 1):

Theorem
For ¢ € LTL(IT) (resp. assuming N5 (\/;cpu;) is a finite set)
NR N ui), {uy, - u} Erre 9. = (resp. &) TR, [\ wileus i 9.

i€l i€l
i

State Space Reduction in 7 (Vjcj ;)

State Space Reduction in N3 (V;e; 14:)

By the above Theorem, if the state space N%(\/ie[u;) is finite, the
Kripke structure Ng(\/iel u;) supports explicit-state LTL model checking
using the decision procedure described in Lecture 23 to verify

T3, [Vier wileus oL ¢-

Meseguer Lecture 27 5/18

State Space Reduction in 7 (Vjcj ;)

State Space Reduction in N3 (V;e; 14:)

By the above Theorem, if the state space N%(\/ie[u;) is finite, the
Kripke structure Ng(\/iel 1;) supports explicit-state LTL model checking
using the decision procedure described in Lecture 23 to verify

T3, [Vier wileus oL ¢-

When NY (V;cyu;) is infinite, we can try one of the following three
possibilities to reduce the state space of N}g(\/ie] u;) to a finite state
space:

Meseguer Lecture 27 5/18

State Space Reduction in 7 (Vjcj ;)

State Space Reduction in N3 (V;e; 14:)

By the above Theorem, if the state space N%(\/ie[u;) is finite, the
Kripke structure N%(Viel 1;) supports explicit-state LTL model checking
using the decision procedure described in Lecture 23 to verify

T3, [Vier wileus oL ¢-

When NY (V;cyu;) is infinite, we can try one of the following three
possibilities to reduce the state space of N}g(\/ie] u;) to a finite state
space:
@ Perform LTL model checking by folding variant narrowing, provided
the folding ~~pr-narrowing forest from {u},...,u},} is finite.

Meseguer Lecture 27 5/18

State Space Reduction in 7 (Vjcj ;)

State Space Reduction in N3 (V;e; 14:)

By the above Theorem, if the state space N%(\/ie[u;) is finite, the
Kripke structure N%(Viel 1;) supports explicit-state LTL model checking
using the decision procedure described in Lecture 23 to verify

T3, [Vier wileus oL ¢-

When NY (Ve u;) is infinite, we can try one of the following three
possibilities to reduce the state space of N}g(\/ie] u;) to a finite state
space:
@ Perform LTL model checking by folding variant narrowing, provided
the folding ~~pr-narrowing forest from {u},...,u},} is finite.
® Define an equational abstraction R/G s.t.: (i) EUDUD' UGUB
is FVP and protects BOOL, and (ii) the folding ~~rj-narrowing forest
is finite for Ng/c(\/iel u;).

Meseguer Lecture 27 5/18

State Space Reduction in 7 (Vjcj ;)

State Space Reduction in N3 (V;e; 14:)

By the above Theorem, if the state space N%(\/ie[u;) is finite, the
Kripke structure N%(Viel 1;) supports explicit-state LTL model checking
using the decision procedure described in Lecture 23 to verify

T3, [Vier wileus oL ¢-

When NY (Ve u;) is infinite, we can try one of the following three
possibilities to reduce the state space of N}g(\/ie] u;) to a finite state
space:
@ Perform LTL model checking by folding variant narrowing, provided
the folding ~~pr-narrowing forest from {u},...,u},} is finite.
® Define an equational abstraction R/G s.t.: (i) EUDUD' UGUB
is FVP and protects BOOL, and (ii) the folding ~~rj-narrowing forest
is finite for Ng/c(\/iel u;).
© Perform bounded LTL symbolic model checking.

Meseguer Lecture 27 5/18

State Space Reduction in 7 (Vjcj ;)

The Folding ~~-narrowing forest from {u}, ..., ul,}
Replacing ~>R/(EUB) by ~~11, just as we have a folding narrowing forest
FNFR (Ve ui) for the ~g,(pup)-narrowing tree, we also have a folding
narrowing forest (a Kripke structure!) FNF%(V]E] u]') for N (Verus)
from {u;}jej, J ={1,...m}, the I-instances of \/;cju;.

Meseguer Lecture 27 6/18

State Space Reduction in 7 (Vjcj ;)

The Folding ~~yj-narrowing forest from {u}, ..., u,,}
Replacing ~>R/(EUB) by ~~11, just as we have a folding narrowing forest
FNFR (Ve ui) for the ~g,(pup)-narrowing tree, we also have a folding
narrowing forest (a Kripke structure!) FNF%(V]E] u]') for N (Verus)
from {u](}jej, J ={1,...m}, the I-instances of \/;cju;.

The construction of FNF%(V]-,E] u]’) is similar to that of FNFg (V;c ;)

in Lecture 25, replacing the folding relation v Cg g w by the folding
relation v EEUDUB w defined by the equivalence:

Meseguer Lecture 27 6/18

State Space Reduction in 7 (Vjcj ;)

The Folding ~~yj-narrowing forest from {u}, ..., u,,}
Replacing ~>R/(EUB) by ~~11, just as we have a folding narrowing forest
FNFR (Ve ui) for the ~g,(pup)-narrowing tree, we also have a folding
narrowing forest (a Kripke structure!) FNF%(\/]E] u]') for N (Verus)
from {u;}jej, J ={1,...m}, the I-instances of \/;cju;.

The construction of FNF%(V]-,E] u]’) is similar to that of FNFg (V;c ;)
in Lecture 25, replacing the folding relation v Cg g w by the folding
relation v EIE_IUDUB w defined by the equivalence:

v EguDuB W Sgr vCpupwAYp €T], (v = p)!EOD’B = (w p)!EOD’B.

Meseguer Lecture 27 6/18

State Space Reduction in 7 (Vjcj ;)

The Folding ~~yj-narrowing forest from {u}, ..., u,,}
Replacing ~>R/(EUB) by ~~11, just as we have a folding narrowing forest
FNFR (Ve ui) for the ~g,(pup)-narrowing tree, we also have a folding
narrowing forest (a Kripke structure!) FNF%(\/]E] u]') for N (Verus)
from {u;}jej, J ={1,...m}, the I-instances of \/;cju;.

The construction of FNF%(V]-,E] u]’) is similar to that of FNFg (V;c ;)
in Lecture 25, replacing the folding relation v Cg g w by the folding
relation v EIE_IUDUB w defined by the equivalence:

I
v LEupup W “def U CEuUB W/\VP ell, (U): p)!EOD,B = (w ': p)!EOD,B'
and adding extra transitions for each folding.

Meseguer Lecture 27 6/18

State Space Reduction in ,"\f%—\,l(\/i{l u;)

The Folding ~~yj-narrowing forest from {u}, ..., u,,}
Replacing ~>R/(EUB) by ~~11, just as we have a folding narrowing forest
FNFR (Ve ui) for the ~g,(pup)-narrowing tree, we also have a folding
narrowing forest (a Kripke structure!) FNF%(\/]E] u]’) for N (Verus)
from {u]/‘}je]: J ={1,...m}, the IT-instances of \/;cj ;.

The construction of FNF%(\/]-,E] u]’) is similar to that of FNFg (V;c ;)

in Lecture 25, replacing the folding relation v Cg g w by the folding
relation v EIE_[UDUB w defined by the equivalence:

v ;EUBUB w Sg vCpupwAVp €11, (v = p)!EOD’B = (w p)!EOD’B.
and adding extra transitions for each folding. The Completeness Theorem
for FNFr (V;eru;) in Lecture 25 generalizes to (Ths 8,12 in Appendix 2):

Meseguer Lecture 27 6/18

State Space Reduction in 'M}(l(vi%l u;)

The Folding ~~yj-narrowing forest from {u}, ..., u,,}
Replacing ~>R/(EUB) by ~~11, just as we have a folding narrowing forest
FNFR (Ve ui) for the ~g,(pup)-narrowing tree, we also have a folding
narrowing forest (a Kripke structure!) FNF%(\/]E] u]’) for N (Verus)
from {u]/‘}je]: J ={1,...m}, the IT-instances of \/;cj ;.

The construction of FNF%(\/je] u]’) is similar to that of FNFg (V;c ;)
in Lecture 25, replacing the folding relation v Cg g w by the folding
relation v EIE_[UDUB w defined by the equivalence:
v ;EUBUB w Sg vCpupwAVp €11, (v = p)!EOD’B = (w p)!EOD’B.
and adding extra transitions for each folding. The Completeness Theorem
for FNFr (V;eru;) in Lecture 25 generalizes to (Ths 8,12 in Appendix 2):
Theorem
For ¢ € LTL(II) (resp. ¢ a safety formula) we have:

FNFr(\ w) {uj}jes E ¢ = (resp. &) NR(\V i), {u}jes E 0.

J€l i€l

Meseguer Lecture 27 6/18

State Space Reduction in 7 (Vjcj ;)

State Space Reduction through Equational Abstractions

Under the assumptions about R in pg. 2, and those about R/G in (2)
of pg. 5, we are back in the game: R /G itself satisfies the assumptions
in pg. 2. Therefore, for ¢ € LTL(IT) we have (by Theorem in pg. 6):

Meseguer Lecture 27 7/18

State Space Reduction in 7 (Vjcj ;)

State Space Reduction through Equational Abstractions

Under the assumptions about R in pg. 2, and those about R/G in (2)
of pg. 5, we are back in the game: R /G itself satisfies the assumptions
in pg. 2. Therefore, for ¢ € LTL(IT) we have (by Theorem in pg. 6):

(1) ENFR,o(\ ul) {w'her E o = N2 eo(V u) {u}ies = ¢

leL i€l

Meseguer Lecture 27 7/18

State Space Reduction in 7 (Vjcj ;)

State Space Reduction through Equational Abstractions

Under the assumptions about R in pg. 2, and those about R/G in (2)
of pg. 5, we are back in the game: R /G itself satisfies the assumptions
in pg. 2. Therefore, for ¢ € LTL(IT) we have (by Theorem in pg. 6):

(1) ENFig,o(\ ui) A her o = NRYo(V), {u}ies = 9

leL i€l

where the {u]'};cp are the IT-instances of \/;cju; in R/G.

Meseguer Lecture 27 7/18

State Space Reduction in 7 (Vjcj ;)

State Space Reduction through Equational Abstractions

Under the assumptions about R in pg. 2, and those about R/G in (2)
of pg. 5, we are back in the game: R /G itself satisfies the assumptions
in pg. 2. Therefore, for ¢ € LTL(IT) we have (by Theorem in pg. 6):

(1) ENFr,c(\ ul) {ufher 9 = Ny (Vi) {uj}jes E ¢-
leL iel

where the {u]'};cp are the IT-instances of \/;c;u; in R/G. Furthermore,

it follows from Theorem in pg. 4 and Theorem 3 in Appendix to
Lecture 26 (proof in Appendix 1), that we also have the implications:

Meseguer Lecture 27 7/18

State Space Reduction in 7 (Vjcj ;)

State Space Reduction through Equational Abstractions
Under the assumptions about R in pg. 2, and those about R/G in (2)
of pg. 5, we are back in the game: R /G itself satisfies the assumptions
in pg. 2. Therefore, for ¢ € LTL(IT) we have (by Theorem in pg. 6):

(1) ENFR (V) {w e E o = NRyo(V) {uj}jes E 9.
leL iel

where the {u]'};cp are the IT-instances of \/;c;u; in R/G. Furthermore,

it follows from Theorem in pg. 4 and Theorem 3 in Appendix to
Lecture 26 (proof in Appendix 1), that we also have the implications:

®) Nrye(Vu) {ulier E ¢ = Trye [\ uileocus Fim ¢ = T, [V wileus Fim ¢
el iel el

Meseguer Lecture 27 7/18

State Space Reduction in ,"\f%—\,l(\/i{l u;)

State Space Reduction through Equational Abstractions
Under the assumptions about R in pg. 2, and those about R/G in (2)
of pg. 5, we are back in the game: R /G itself satisfies the assumptions
in pg. 2. Therefore, for ¢ € LTL(IT) we have (by Theorem in pg. 6):

(1) ENFR (V) {w e E o = NRyo(V) {uj}jes E 9.
leL iel

where the {u]'};cp are the IT-instances of \/;c;u; in R/G. Furthermore,

it follows from Theorem in pg. 4 and Theorem 3 in Appendix to
Lecture 26 (proof in Appendix 1), that we also have the implications:

®) Nrye(Vu) {ulier E ¢ = Trye [\ uileocus Fim ¢ = T, [V wileus Fim ¢
el iel el

Therefore, from (1) and (1) if N5(V,epu;) is deadlock-free we get:

Meseguer Lecture 27

7/18

State Space Reduction in 'M}(l(vi%l u;)

State Space Reduction through Equational Abstractions

Under the assumptions about R in pg. 2, and those about R/G in (2)
of pg. 5, we are back in the game: R /G itself satisfies the assumptions
in pg. 2. Therefore, for ¢ € LTL(IT) we have (by Theorem in pg. 6):

(1) ENFR (V) {w e E o = NRyo(V) {uj}jes E 9.
leL iel

where the {u]'};cp are the IT-instances of \/;c;u; in R/G. Furthermore,
it follows from Theorem in pg. 4 and Theorem 3 in Appendix to
Lecture 26 (proof in Appendix 1), that we also have the implications:

®) Nrye(Vu) {ulier E ¢ = Trye [\ uileocus Fim ¢ = T, [V wileus Fim ¢
el iel el

Therefore, from (1) and (1) if N5(V,epu;) is deadlock-free we get:
Theorem

Under the above assumptions about R and R /G the following
implication holds:

ENFR,c(\V w) {u/ her E @ = TR, [V uileus Ermw ¢
leL iel

Meseguer Lecture 27 7/18

State Space Reduction in ,\’%\j\;’[fl ;)

Bounded Narrowing-Based LTL Model Checking

® Construct a depth < k under-approximation of the folding narrowing
forest (and Kripke structure) FNFjg (Ve u]’.

Meseguer Lecture 27

State Space Reduction in 7 (Vjcj ;)

Bounded Narrowing-Based LTL Model Checking

® Construct a depth < k under-approximation of the folding narrowing
forest (and Kripke structure) FNF%(V]G] u]’) (a more expensive, but

more accurate, version under-approximates N}g(vie] u;)).

Meseguer Lecture 27 8/18

State Space Reduction in 7 (Vjcj ;)

Bounded Narrowing-Based LTL Model Checking

® Construct a depth < k under-approximation of the folding narrowing
forest (and Kripke structure) FNF%(V]G] u]’) (a more expensive, but

more accurate, version under-approximates N}g(vie] u;)).

Algorithm: Given a bound 7, incrementally build a depth < k
under-approximation of FNF%(\/]-E] u]’) increasing k < n iteratively.

Meseguer Lecture 27 8/18

State Space Reduction in 7 (Vjcj ;)

Bounded Narrowing-Based LTL Model Checking

® Construct a depth < k under-approximation of the folding narrowing
forest (and Kripke structure) FNF%(V]'GI u]’) (a more expensive, but

more accurate, version under-approximates ./\/71;{(\/1-61 u;)).
Algorithm: Given a bound 7, incrementally build a depth < k
under-approximation of FNF%(\/]-E] u]’) increasing k < n iteratively.

@ Apply a standard explicit-state LTL model checking algorithm to

verify @ in the depth < k under-approximation of FNP%(\/]-E] u]')

If a counterexample is found, stop and return the counterexample.

Meseguer Lecture 27 8/18

State Space Reduction in 7 (Vjcj ;)

Bounded Narrowing-Based LTL Model Checking

® Construct a depth < k under-approximation of the folding narrowing
forest (and Kripke structure) FNF%(V]'GI u]’) (a more expensive, but

more accurate, version under-approximates Ng(\/iel u;)).
Algorithm: Given a bound 7, incrementally build a depth < k
under-approximation of FNF%(\/]E] u]’) increasing k < n iteratively.

@ Apply a standard explicit-state LTL model checking algorithm to

verify @ in the depth < k under-approximation of FNP%(\/]-E] u]')

If a counterexample is found, stop and return the counterexample.

® Suppose that there is no counterexample at depth < k.

Meseguer Lecture 27 8/18

State Space Reduction in ,"\f%—\,l(\/i{l u;)

Bounded Narrowing-Based LTL Model Checking

® Construct a depth < k under-approximation of the folding narrowing
forest (and Kripke structure) FNF%(V]'GI u]’) (a more expensive, but
more accurate, version under-approximates Ng(\/iel u;)).

Algorithm: Given a bound 7, incrementally build a depth < k
under-approximation of FNF%(\/]E] u]’) increasing k < n iteratively.

@ Apply a standard explicit-state LTL model checking algorithm to
verify @ in the depth < k under-approximation of FNF%(\/]-E] u]')
If a counterexample is found, stop and return the counterexample.
® Suppose that there is no counterexample at depth < k.

@ If k = n, stop and report that the model does not violate ¢ up to the
current bound n.

Meseguer Lecture 27 8/18

State Space Reduction in 'M}(l(vi%l u;)

Bounded Narrowing-Based LTL Model Checking

® Construct a depth < k under-approximation of the folding narrowing
forest (and Kripke structure) FNF%(V]'GI u]’) (a more expensive, but
more accurate, version under-approximates Ng(\/iel u;)).

Algorithm: Given a bound 7, incrementally build a depth < k
under-approximation of FNF%(\/]E] u]’) increasing k < n iteratively.

@ Apply a standard explicit-state LTL model checking algorithm to
verify @ in the depth < k under-approximation of FNF%(\/]-E] u]')
If a counterexample is found, stop and return the counterexample.
® Suppose that there is no counterexample at depth < k.

@ If k = n, stop and report that the model does not violate ¢ up to the
current bound n.
® Otherwise, generate the depth < k + 1 under-approximation of

11
FNFR(Vjej ”]/)

Meseguer Lecture 27 8/18

State Space Reduction in 'M}(l(vi%l u;)

Bounded Narrowing-Based LTL Model Checking

® Construct a depth < k under-approximation of the folding narrowing
forest (and Kripke structure) FNF%(V]'GI u]’) (a more expensive, but

more accurate, version under-approximates Ng(\/iel u;)).

Algorithm: Given a bound 7, incrementally build a depth < k
under-approximation of FNF%(\/]E] u]’) increasing k < n iteratively.

@ Apply a standard explicit-state LTL model checking algorithm to
verify @ in the depth < k under-approximation of FNF%(\/]-E] u]')
If a counterexample is found, stop and return the counterexample.
® Suppose that there is no counterexample at depth < k.

@ If k = n, stop and report that the model does not violate ¢ up to the
current bound n.
® Otherwise, generate the depth < k + 1 under-approximation of

11 I
FNFR(\/]-€] uj)
@ If no new nodes are added to the < k under-approximation,
FNF%(V]E] u]’) has been actually generated! Then return true;

Meseguer Lecture 27 8/18

State Space Reduction in 'N'R (Vier i)

Bounded Narrowing-Based LTL Model Checking

® Construct a depth < k under-approximation of the folding narrowing
forest (and Kripke structure) FNF%(V]'GI u]’) (a more expensive, but

more accurate, version under-approximates Ng(\/iel u;)).

Algorithm: Given a bound 7, incrementally build a depth < k
under-approximation of FNF%(\/]E] u]’) increasing k < n iteratively.

@ Apply a standard explicit-state LTL model checking algorithm to
verify @ in the depth < k under-approximation of FNF%(\/]-E] u]')
If a counterexample is found, stop and return the counterexample.
® Suppose that there is no counterexample at depth < k.

@ If k = n, stop and report that the model does not violate ¢ up to the
current bound n.
® Otherwise, generate the depth < k + 1 under-approximation of

11 I
FNFR(\/]-€] uj)
@ If no new nodes are added to the < k under-approximation,
FNF%(V]E] u]’) has been actually generated! Then return true;

@® Otherwise, go to Step 1 with the depth < k+ 1 under-approximation
of FNFi7 (Vjgs uj).

Meseguer Lecture 27 8/18

State Space Reduction in V% (Vjcp ;)

Maude's Logical LTL Model Checker Tool

Maude's Logical LTL Model Checker supports symbolic LTL model
checking just explained.

Meseguer Lecture 27

State Space Reduction in V% (Vjcp ;)

Maude's Logical LTL Model Checker Tool

Maude's Logical LTL Model Checker supports symbolic LTL model
checking just explained. This is a new implementation, not that in the
CS 476 web page.

Meseguer Lecture 27 9/18

State Space Reduction in 7 (Vjcj ;)

Maude's Logical LTL Model Checker Tool

Maude's Logical LTL Model Checker supports symbolic LTL model
checking just explained. This is a new implementation, not that in the
CS 476 web page. A README overview can be found here:

Meseguer Lecture 27 9/18

State Space Reduction in 7 (Vjcj ;)

Maude's Logical LTL Model Checker Tool

Maude's Logical LTL Model Checker supports symbolic LTL model
checking just explained. This is a new implementation, not that in the
CS 476 web page. A README overview can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-1mc.md

Meseguer Lecture 27 9/18

State Space Reduction in 7 (Vjcj ;)

Maude's Logical LTL Model Checker Tool

Maude's Logical LTL Model Checker supports symbolic LTL model
checking just explained. This is a new implementation, not that in the
CS 476 web page. A README overview can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-1mc.md

It uses a a special version of Maude that extends Maude 3.3.1.
Executables for both Linux and MacOS and a folder
symbolic-examples can be found here:

Meseguer Lecture 27 9/18

State Space Reduction in 7 (Vjcj ;)

Maude's Logical LTL Model Checker Tool

Maude's Logical LTL Model Checker supports symbolic LTL model
checking just explained. This is a new implementation, not that in the
CS 476 web page. A README overview can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-1mc.md
It uses a a special version of Maude that extends Maude 3.3.1.

Executables for both Linux and MacOS and a folder
symbolic-examples can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-1tlr-1mc

Meseguer Lecture 27 9/18

State Space Reduction in 7 (Vjcj ;)

Maude's Logical LTL Model Checker Tool

Maude's Logical LTL Model Checker supports symbolic LTL model
checking just explained. This is a new implementation, not that in the
CS 476 web page. A README overview can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-1mc.md

It uses a a special version of Maude that extends Maude 3.3.1.
Executables for both Linux and MacOS and a folder
symbolic-examples can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-1tlr-1mc

As explained in the README overview, the user:

Meseguer Lecture 27 9/18

State Space Reduction in 7 (Vjcj ;)

Maude's Logical LTL Model Checker Tool

Maude's Logical LTL Model Checker supports symbolic LTL model
checking just explained. This is a new implementation, not that in the
CS 476 web page. A README overview can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-1mc.md
It uses a a special version of Maude that extends Maude 3.3.1.

Executables for both Linux and MacOS and a folder
symbolic-examples can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-1tlr-1mc

As explained in the README overview, the user:
@ Enters into this special version of Maude a user module M.

Meseguer Lecture 27 9/18

State Space Reduction in ,"\f%—\,l(\/i{l u;)

Maude's Logical LTL Model Checker Tool

Maude's Logical LTL Model Checker supports symbolic LTL model
checking just explained. This is a new implementation, not that in the
CS 476 web page. A README overview can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-1mc.md
It uses a a special version of Maude that extends Maude 3.3.1.

Executables for both Linux and MacOS and a folder
symbolic-examples can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-1tlr-1mc
As explained in the README overview, the user:

@ Enters into this special version of Maude a user module M.
® Then gives the command load symbolic-checker.

Meseguer Lecture 27 9/18

State Space Reduction in 'M}(l(vi%l u;)

Maude's Logical LTL Model Checker Tool

Maude's Logical LTL Model Checker supports symbolic LTL model
checking just explained. This is a new implementation, not that in the
CS 476 web page. A README overview can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-1mc.md

It uses a a special version of Maude that extends Maude 3.3.1.
Executables for both Linux and MacOS and a folder
symbolic-examples can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-1tlr-1mc
As explained in the README overview, the user:
@ Enters into this special version of Maude a user module M.

® Then gives the command load symbolic-checker. The user then
enters enclosed in parentheses the user module M-CHECK defining;:

Meseguer Lecture 27 9/18

State Space Reduction in 'M}(l(vi%l u;)

Maude's Logical LTL Model Checker Tool

Maude's Logical LTL Model Checker supports symbolic LTL model
checking just explained. This is a new implementation, not that in the
CS 476 web page. A README overview can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-1mc.md

It uses a a special version of Maude that extends Maude 3.3.1.
Executables for both Linux and MacOS and a folder
symbolic-examples can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-1tlr-1mc

As explained in the README overview, the user:
@ Enters into this special version of Maude a user module M.
® Then gives the command load symbolic-checker. The user then
enters enclosed in parentheses the user module M-CHECK defining;:
® the equational definition of state predicates just as for Maude's LTL
model checker, but giving to all equations the [variant] attribute.

Meseguer Lecture 27 9/18

State Space Reduction in 'M}(l(vi%l u;)

Maude's Logical LTL Model Checker Tool

Maude's Logical LTL Model Checker supports symbolic LTL model
checking just explained. This is a new implementation, not that in the
CS 476 web page. A README overview can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-1mc.md

It uses a a special version of Maude that extends Maude 3.3.1.
Executables for both Linux and MacOS and a folder
symbolic-examples can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-1tlr-1mc

As explained in the README overview, the user:

@ Enters into this special version of Maude a user module M.
® Then gives the command load symbolic-checker. The user then
enters enclosed in parentheses the user module M-CHECK defining;:
® the equational definition of state predicates just as for Maude's LTL
model checker, but giving to all equations the [variant] attribute.
® a subsort inclusion User-State < State

Meseguer Lecture 27 9/18

State Space Reduction in 'M}(l(vi%l u;)

Maude's Logical LTL Model Checker Tool

Maude's Logical LTL Model Checker supports symbolic LTL model
checking just explained. This is a new implementation, not that in the
CS 476 web page. A README overview can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-1mc.md

It uses a a special version of Maude that extends Maude 3.3.1.
Executables for both Linux and MacOS and a folder
symbolic-examples can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-1tlr-1mc

As explained in the README overview, the user:

@ Enters into this special version of Maude a user module M.
® Then gives the command load symbolic-checker. The user then
enters enclosed in parentheses the user module M-CHECK defining;:
® the equational definition of state predicates just as for Maude's LTL
model checker, but giving to all equations the [variant] attribute.
® a subsort inclusion User-State < State
® imports M and SYMBOLIC-CHECKER as submodules.

Meseguer Lecture 27 9/18

State Space Reduction in 'M}(l(vi%l u;)

Maude's Logical LTL Model Checker Tool

Maude's Logical LTL Model Checker supports symbolic LTL model
checking just explained. This is a new implementation, not that in the
CS 476 web page. A README overview can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-1mc.md

It uses a a special version of Maude that extends Maude 3.3.1.
Executables for both Linux and MacOS and a folder
symbolic-examples can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-1tlr-1mc

As explained in the README overview, the user:
@ Enters into this special version of Maude a user module M.
® Then gives the command load symbolic-checker. The user then
enters enclosed in parentheses the user module M-CHECK defining;:
® the equational definition of state predicates just as for Maude's LTL
model checker, but giving to all equations the [variant] attribute.
® a subsort inclusion User-State < State
® imports M and SYMBOLIC-CHECKER as submodules.

©® Then one can give symbolic model checking commands to the tool.

Meseguer Lecture 27 9/18

State Space Reduction in 'M}(l(vi%l u;)

Maude's Logical LTL Model Checker Tool

Maude's Logical LTL Model Checker supports symbolic LTL model
checking just explained. This is a new implementation, not that in the
CS 476 web page. A README overview can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-1mc.md

It uses a a special version of Maude that extends Maude 3.3.1.
Executables for both Linux and MacOS and a folder
symbolic-examples can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-1tlr-1mc

As explained in the README overview, the user:
@ Enters into this special version of Maude a user module M.
® Then gives the command load symbolic-checker. The user then
enters enclosed in parentheses the user module M-CHECK defining;:
® the equational definition of state predicates just as for Maude's LTL
model checker, but giving to all equations the [variant] attribute.
® a subsort inclusion User-State < State
® imports M and SYMBOLIC-CHECKER as submodules.
©® Then one can give symbolic model checking commands to the tool.

Let us illustrate everything with two examples.
9/18

State Space Reduction in V% (Vjcp ;)

Symbolic LTL Model Checking: a R&W Example

This special version of Maude supports the LTL symbolic model checker:

Meseguer Lecture 27

State Space Reduction in AV

Symbolic LTL Model Checking: a R&W Example

This special version of Maude supports the LTL symbolic model checker:

meseguer@CS-MESEGUER-MBA LTL-LMC-11-23 % ./maude-1ltlr-lmc.darwin64
NARRRRRRRR RN RN NAYS

--- Welcome to Maude ---
ARRRRRRRRRRRRRRRRRAN
Maude 3.3.1 built: Nov 22 2023 21:46:36
Copyright 1997-2023 SRI International
Sat Nov 25 20:42:15 2023
Maude>

Meseguer Lecture 27 10/18

State Space Reduction in AV

Symbolic LTL Model Checking: a R&W Example

This special version of Maude supports the LTL symbolic model checker:

meseguer@CS-MESEGUER-MBA LTL-LMC-11-23 % ./maude-1ltlr-lmc.darwin64
NARRRRRRRR RN RN NAYS

--- Welcome to Maude ---
ARRRRRRRRRRRRRRRRRAN
Maude 3.3.1 built: Nov 22 2023 21:46:36
Copyright 1997-2023 SRI International
Sat Nov 25 20:42:15 2023
Maude>

We then load the module of interest, here R&W:

Meseguer Lecture 27 10/18

State Space Reduction in AV

Symbolic LTL Model Checking: a R&W Example

This special version of Maude supports the LTL symbolic model checker:

meseguer@CS-MESEGUER-MBA LTL-LMC-11-23 % ./maude-1ltlr-lmc.darwin64
NARRRRRRRR RN RN NAYS
--- Welcome to Maude ---
ARRRRRRRRRRRRRRRRRAN
Maude 3.3.1 built: Nov 22 2023 21:46:36
Copyright 1997-2023 SRI International
Sat Nov 25 20:42:15 2023
Maude>

We then load the module of interest, here R&W:

mod R&W is
sort Natural .
op ® : -> Natural [ctor]
op s : Natural -> Natural [ctor]
sort Config .
op <_,_> : Natural Natural -> Config [ctor]

vars R W : Natural .

rl [enter-w] : <0, ® > => < 0, s(0) > [narrowing]

rl [leave-w] : < R, s(W) > => < R, W > [narrowing]

rl [enter-r] : <R, ® > => < s(R), 0 > [narrowing]

rl [leave-r] : < s(R), W > => < R, W > [narrowing]
endm

Meseguer Lecture 27 10/18

State Space Reduction in V% (Vjcp ;)

Symbolic LTL Model Checking: a R&W Example (II)

We then load the symbolic LTL model checker and enter the R&W-CHECK
module enclosed in parentheses:

Meseguer Lecture 27 11/18

State Space Reduction in AV

Symbolic LTL Model Checking: a R&W Example (II)

We then load the symbolic LTL model checker and enter the R&W-CHECK
module enclosed in parentheses:

load symbolic-checker
(mod R&W-CHECK is
protecting R&W .
including SYMBOLIC-CHECKER .

subsort Config < State .

vars N M : Natural .

op reads : -> Prop .

eq < s(N), M > |= reads = true [variant]

eq < 0, M > |= reads = false [variant]

op writes : -> Prop .

eq < M, s(N) > |= writes = true [variant]

eq < M, ® > |= writes = false [variant]

op writers>1 : -> Prop .

eq < M, s(s(N)) > |= writers>1 = true [variant]
eq < M, s(® > |= writers>1 = false [variant]

eq < M, 0 > |= writers>1 = false [variant]

endm)

Meseguer Lecture 27 11/18

State Space Reduction in 7 (Vjcj ;)

Symbolic LTL Model Checking: a R&W Example (lII)

We can now give symbolic model checking commands enclosed in
parentheses. The Imc commands from the symbolic initial state < N,0 >
to verify mutex and one-writer invariants do not terminate, but we can
model check check them up to, e.g., bound 100:

Meseguer Lecture 27 12/18

State Space Reduction in 7 (Vjcj ;)

Symbolic LTL Model Checking: a R&W Example (lII)

We can now give symbolic model checking commands enclosed in
parentheses. The Imc commands from the symbolic initial state < N,0 >
to verify mutex and one-writer invariants do not terminate, but we can
model check check them up to, e.g., bound 100:

Maude> (Imc [100] < N, O > |= [] " (reads /\ writes) .)
result: no counterexample found within bound 100
Maude> (Imc [100] < N, O > |= [] ~ (writers>1) .)

result: no counterexample found within bound 100

Meseguer Lecture 27 12/18

State Space Reduction in 7 (Vjcj ;)

Symbolic LTL Model Checking: a R&W Example (lII)

We can now give symbolic model checking commands enclosed in
parentheses. The Imc commands from the symbolic initial state < N,0 >
to verify mutex and one-writer invariants do not terminate, but we can
model check check them up to, e.g., bound 100:

Maude> (Imc [100] < N, O > |= [] ~ (reads /\ writes) .)
result: no counterexample found within bound 100
Maude> (Imc [100] < N, O > |= [] ~ (writers>1) .)
result: no counterexample found within bound 100

However, the folding 1fmc commands terminate proving the invariants:

Meseguer Lecture 27 12/18

State Space Reduction in N

Symbolic LTL Model Checking: a R&W Example (lII)

We can now give symbolic model checking commands enclosed in
parentheses. The Imc commands from the symbolic initial state < N,0 >
to verify mutex and one-writer invariants do not terminate, but we can
model check check them up to, e.g., bound 100:

Maude> (Imc [100] < N, O > |= [] ~ (reads /\ writes) .)

result: no counterexample found within bound 100

Maude> (Imc [100] < N, O > |= [] ~ (writers>1) .)

result: no counterexample found within bound 100

However, the folding 1fmc commands terminate proving the invariants:
Maude> (1fmc < N, O > |= [] ~ (reads /\ writes) .)

result: true (complete with depth 3)

Maude> (1fmc < N, 0 > |= [] ~ (writers>1) .)

result: true (complete with depth 3)

Meseguer Lecture 27 12/18

State Space Reduction in V% (Vjcp ;)

Symbolic LTL Model Checking: a R&W Example (IV)

Likewise, we can prove (or disprove) some non-starvation properties:

Meseguer Lecture 27

State Space Reduction in AV

Symbolic LTL Model Checking: a R&W Example (IV)

Likewise, we can prove (or disprove) some non-starvation properties:
Maude> (Imc < N, ® > |= []<> reads .)
result: counterexample found at depth 4
prefix
{< 0,0 >,none, ’enter-w}
loop
{< 0,s(0)>,none, 'leave-w}
{< 0,0 >,none, 'enter-w}
Maude> (Imc < N, ® > |= []<> writes .)
result: counterexample found at depth 3
prefix
{< N:Natural,® >,’N <- s(%l:Natural),’leave-r}
loop
{< N:Natural,® >,’N <- s(%l:Natural),’leave-r}
Maude> (1fmc < N, ® > |= []<> (reads \/ writes) .)

result: true

Meseguer Lecture 27 13/18

State Space Reduction in V% (Vjcp ;)

Symbolic LTL Model Checking: a BAKERY Example

The following BAKERY version is harder to verify than that in Lecture 21:

Meseguer Lecture 27

State Space Reduction in N

Symbolic LTL Model Checking: a BAKERY Example

The following BAKERY version is harder to verify than that in Lecture 21:
fmod BAKERY-SYNTAX is

sort Name .

op ® : -> Name [ctor]

op s : -> Name [ctor]

op __ : Name Name -> Name [ctor comm assoc id: 0]

sorts ModeIdle ModeWait ModeCrit Mode Conf .

subsorts ModeIdle ModeWait ModeCrit < Mode .

sorts ProcIdle ProcWait Proc ProcIdleSet ProcWaitSet ProcSet .
subsorts ProcIdle < ProcIdleSet .

subsorts ProcWait < ProcWaitSet .

subsorts ProcIdle ProcWait < Proc < ProcSet .

subsorts ProcIdleSet < ProcWaitSet < ProcSet .

op idle : -> ModeIdle .

op wait : Name -> ModeWait .

op crit : Name -> ModeCrit .

op [_] : ModeIdle -> ProcIdle .
op [_] : ModeWait -> ProcWait .
op [_] : Mode -> Proc .

op none : -> ProcIdleSet .
op __ : ProcIdleSet ProcIdleSet -> ProcIdleSet [assoc comm]
op __ : ProcWaitSet ProcWaitSet -> ProcWaitSet [assoc comm]
op __ : ProcSet ProcSet -> ProcSet [assoc comm]
op _;_;_ : Name Name ProcSet -> Conf .

endfm

Meseguer Lecture 27 14 /18

State Space Reduction in N

Symbolic LTL Model Checking: a BAKERY Example (1)

mod BAKERY is
protecting BAKERY-SYNTAX .

var PS : ProcSet . vars N M : Name

rl [wake] : N ; M ; [idle] PS = s N ;

rl [crit] : N ; M ; [wait(M)] PS =N ; M

rl [exit] : N ; M ; [crit(M] PS == N s
endm

M ; [wait(N)] PS [narrowing]
; [crit(M)] PS [narrowing]
M ; [idle] PS [narrowing]

load symbolic-checker

(mod BAKERY-CHECK1 is
pr BAKERY .
including SYMBOLIC-CHECKER .
subsort Conf < State .

ops was-wait? was-crit? : -> Prop . *** was or is in wait (resp. crit)

vars N M : Name . vars PS : ProcSet .

eq s N ; M ; PS |= was-wait? = true [variant]

eq ® ; M ; PS |= was-wait? = false [variant]

eq N ; s M ; PS |= was-crit? = true [variant]

eq N; 0 ; PS |= was-crit? = false [variant]
endm)

Meseguer Lecture 27 15/18

State Space Reduction in ,\’%\j\;’[fl ;)

Symbolic LTL Model Checking: a BAKERY Example (I11)

Does having been waiting always lead to some process being in the
critical section?

Meseguer Lecture 27

State Space Reduction in AV

Symbolic LTL Model Checking: a BAKERY Example (I11)

Does having been waiting always lead to some process being in the
critical section?

(lfmc N ; N ; [idle] [didle] |= [] (was-wait? -> <> was-crit?) .)
result: true (complete with depth 5)
(lfmc N ; M ; IS:ProcIdleSet |= [] (was-wait? -> <> was-crit?) .)
result: counterexample found at depth 5 *** deadlock counterexample
prefix

{(s #1:Name); ® ; IS:ProcIdleSet,’IS <- %l:ProcIdleSet[idle], ’wake}

{(s s %2:Name); 0 ; %l:ProcIdleSet[wait(s %2:Name)],’ %1l <-[idle], 'wake}
loop

{(s s s %2:Name); 0 ;[wait(s %2:Name)][wait(s s %2:Name)],none,deadlock}
(l1fmc N ; M ; WS:ProcWaitSet |= [] (was-wait? -> <> was-crit?) .)
result: counterexample found at depth 3 *** non-deadlock counterexample
prefix

{(s #1:Name); ® ; WS:ProcWaitSet,’WS <- %l:ProcWaitSet[idle], ’'wake}

loop
{(s #1:Name); O ; WS:ProcWaitSet,’WS <- %l:ProcWaitSet[idle], ’'wake}

Meseguer Lecture 27 16/18

State Space Reduction in ,\'R (Vieru;)

Symbolic LTL Model Checking: a BAKERY Example (1V)

Does mutual exclusion hold?

Meseguer Lecture 27

State Space Reduction in N

Symbolic LTL Model Checking: a BAKERY Example (1V)

Does mutual exclusion hold?

(mod BAKERY-CHECK2 is pr BAKERY . including SYMBOLIC-CHECKER .
subsort Conf < State .
ops mutex : -> Prop .

var WS : ProcWaitSet . var IS : ProcIdleSet . var PS : ProcSet .
vars N M M1 M2 : Name .

eq N ; M ; WS |= mutex = true [variant]

eq N ; M ; [crit(M1)] WS |= mutex = true [variant]

eq N ; M ; [crit(M1)] [crit(M2)] PS |= mutex = false [variant]
endm)
(Imc [100] N:Name ; N:Name ; [idle] [idle] |= [] mutex .)
result: no counterexample found within bound 100

(1fmc N:Name ; N:Name ; [idle] [idle] |= [] mutex .)

result: true (complete with depth 5)

Meseguer Lecture 27 17 /18

State Space Reduction in N

Symbolic LTL Model Checking: a BAKERY Example (V)

(1fmc N ; M ; WS |= [] mutex .)
result: counterexample found at depth 5

prefix
{N:Name ; M:Name ; WS:ProcWaitSet,’'WS <- %l:ProcWaitSet[wait(M:Name)],’crit}
{N:Name ; M:Name ; %l:ProcWaitSet[crit(M:Name)],’ %1l <- %3:ProcWaitSet[wait(M:Name)],’crit}
{N:Name ; M:Name ; %3:ProcWaitSet[crit(M:Name)][crit(M:Name)], %3 <-[wait(M:Name)], crit}
loop

nil
(1fmc N ; N ; WS |= [] mutex .)
result: counterexample found at depth 5
prefix
{N:Name ; N:Name ; WS:ProcWaitSet,’WS <- %l:ProcWaitSet[wait(N:Name)], crit}
{N:Name ; N:Name ; %l:ProcWaitSet[crit(N:Name)],’ %l <- %2:ProcWaitSet[wait(N:Name)],’ ’crit}
{N:Name ; N:Name ; %2:ProcWaitSet[crit(N:Name)][crit(N:Name)], %2 <-[wait(N:Name)], crit}
loop

nil
(lfmc [100] N ; N ; IS |= [] mutex .)

result: no counterexample found within bound 100

Meseguer Lecture 27 18/18

	Narrowing-Based Symbolic LTL Model Checking
	State Space Reduction in NR(i Iui)

