Program Verification: Lecture 27

José Meseguer University of Illinois at Urbana-Champaign

We can verify invariants of a topmost rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ when $E \cup B$ is FVP by narrowing search with $\rightsquigarrow_{R/(E \cup B)}$ from a symbolic initial state $u_1 \vee \ldots \vee u_n$.

We can verify invariants of a topmost rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ when $E \cup B$ is FVP by narrowing search with $\rightsquigarrow_{R/(E \cup B)}$ from a symbolic initial state $u_1 \vee \ldots \vee u_n$. Can this be generalized to narrowing-based symbolic LTL model checking for such an \mathcal{R} ?

We can verify invariants of a topmost rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ when $E \cup B$ is FVP by narrowing search with $\rightsquigarrow_{R/(E \cup B)}$ from a symbolic initial state $u_1 \vee \ldots \vee u_n$. Can this be generalized to narrowing-based symbolic LTL model checking for such an \mathcal{R} ?

The main problem is that, in general, it is meaningless to say which state predicates $p \in \Pi$ are satisfied in a symbolic state u, since some ground instance $u\rho$ may satisfy some predicates in Π , and another ground instance $u\tau$ may satisfy a different set of predicates in Π .

We can verify invariants of a topmost rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ when $E \cup B$ is FVP by narrowing search with $\rightsquigarrow_{R/(E \cup B)}$ from a symbolic initial state $u_1 \vee \ldots \vee u_n$. Can this be generalized to narrowing-based symbolic LTL model checking for such an \mathcal{R} ?

The main problem is that, in general, it is meaningless to say which state predicates $p \in \Pi$ are satisfied in a symbolic state u, since some ground instance $u\rho$ may satisfy some predicates in Π , and another ground instance $u\tau$ may satisfy a different set of predicates in Π .

However, if the states \mathcal{R} -reachable from $u_1 \vee \ldots \vee u_n$ are deadlock-free, and the equations D defining the satisfaction relation $u \models p$ between terms of top sort *State* and state predicates Π for the true and false cases are such that $E \cup D \cup B$ are FVP and protect BOOL, LTL symbolic model checking of \mathcal{R} from a symbolic initial state $u_1 \vee \ldots \vee u_n$ becomes possible in a symbolic Kripke structure $\mathcal{N}_{\mathcal{R}}^{\Pi}(u_1 \vee \ldots \vee u_n)$, whose symbolic transitions are performed by a Π -aware narrowing relation \rightsquigarrow_{Π} .

Given a topmost rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ with rules $(l \to r) \in R$ s.t. $l, r \in T_{\Sigma}(X) \setminus X$, topmost of sort *State*, and a set $\Pi = \{p_1, \ldots, p_k\}$ of state predicates whose satisfaction in \mathcal{R} is defined by equations Dsuch that $E \cup D \cup B$ is FVP modulo axioms B, the Π -aware narrowing relation between terms $u, w \in T_{\Sigma,State}(X)$ is defined as follows:

Given a topmost rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ with rules $(l \to r) \in R$ s.t. $l, r \in T_{\Sigma}(X) \setminus X$, topmost of sort *State*, and a set $\Pi = \{p_1, \ldots, p_k\}$ of state predicates whose satisfaction in \mathcal{R} is defined by equations Dsuch that $E \cup D \cup B$ is FVP modulo axioms B, the Π -aware narrowing relation between terms $u, w \in T_{\Sigma,State}(X)$ is defined as follows:

$$u \stackrel{\alpha\gamma}{\leadsto_{\Pi}} w$$

Given a topmost rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ with rules $(l \to r) \in R$ s.t. $l, r \in T_{\Sigma}(X) \setminus X$, topmost of sort *State*, and a set $\Pi = \{p_1, \ldots, p_k\}$ of state predicates whose satisfaction in \mathcal{R} is defined by equations Dsuch that $E \cup D \cup B$ is FVP modulo axioms B, the Π -aware narrowing relation between terms $u, w \in T_{\Sigma,State}(X)$ is defined as follows:

$$u \stackrel{\alpha\gamma}{\leadsto_{\Pi}} w$$

•
$$\exists v \ s.t. \ u \rightsquigarrow_{R/(E \cup B)}^{\alpha} v$$

Given a topmost rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ with rules $(l \to r) \in R$ s.t. $l, r \in T_{\Sigma}(X) \setminus X$, topmost of sort *State*, and a set $\Pi = \{p_1, \ldots, p_k\}$ of state predicates whose satisfaction in \mathcal{R} is defined by equations Dsuch that $E \cup D \cup B$ is FVP modulo axioms B, the Π -aware narrowing relation between terms $u, w \in T_{\Sigma,State}(X)$ is defined as follows:

$$u \stackrel{\alpha\gamma}{\leadsto_{\Pi}} w$$

•
$$\exists v \ s.t. \ u \rightsquigarrow_{R/(E \cup B)}^{\alpha} v$$

•
$$\exists (b_1, \ldots, b_k) \in \{true, false\}^k$$

Given a topmost rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ with rules $(l \to r) \in R$ s.t. $l, r \in T_{\Sigma}(X) \setminus X$, topmost of sort *State*, and a set $\Pi = \{p_1, \ldots, p_k\}$ of state predicates whose satisfaction in \mathcal{R} is defined by equations Dsuch that $E \cup D \cup B$ is FVP modulo axioms B, the Π -aware narrowing relation between terms $u, w \in T_{\Sigma,State}(X)$ is defined as follows:

$$u \stackrel{\alpha\gamma}{\leadsto_{\Pi}} w$$

- $\exists v \ s.t. \ u \rightsquigarrow_{R/(E \cup B)}^{\alpha} v$
- $\exists (b_1, \ldots, b_k) \in \{true, false\}^k$
- $\exists \gamma \in Unif_{E \cup D \cup B}(v \models p_1 = b_1 \land \ldots \land v \models p_k = b_k)$

Given a topmost rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ with rules $(l \to r) \in R$ s.t. $l, r \in T_{\Sigma}(X) \setminus X$, topmost of sort *State*, and a set $\Pi = \{p_1, \ldots, p_k\}$ of state predicates whose satisfaction in \mathcal{R} is defined by equations Dsuch that $E \cup D \cup B$ is FVP modulo axioms B, the Π -aware narrowing relation between terms $u, w \in T_{\Sigma,State}(X)$ is defined as follows:

$$u \stackrel{\alpha\gamma}{\leadsto_{\Pi}} w$$

holds iff (by definition)

•
$$\exists v \ s.t. \ u \rightsquigarrow_{R/(E \cup B)}^{\alpha} v$$

•
$$\exists (b_1, \ldots, b_k) \in \{true, false\}^k$$

•
$$\exists \gamma \in Unif_{E \cup D \cup B}(v \models p_1 = b_1 \land \ldots \land v \models p_k = b_k)$$

such that $w = v\gamma$.

For $\bigvee_{i \in I} u_i$, $I = \{1, ..., n\}$, define its Π -instances $\{u'_1, ..., u'_m\} = \{u_i \gamma \mid i \in I, \exists (b_1, ..., b_k) \in \{true, false\}^k, \exists \gamma \in Unif_{E \cup D \cup B}(u \models p_1 = b_1 \land ... \land u \models p_k = b_k)\}.$ The Kripke structure $\mathcal{N}_{\mathcal{P}}^{\Pi}(\bigvee_{i \in I} u_i)$ has states

For $\bigvee_{i \in I} u_i$, $I = \{1, ..., n\}$, define its Π -instances $\{u'_1, ..., u'_m\} = \{u_i \gamma \mid i \in I, \exists (b_1, ..., b_k) \in \{true, false\}^k, \exists \gamma \in Unif_{E \cup D \cup B} (u \models p_1 = b_1 \land ... \land u \models p_k = b_k)\}.$ The Kripke structure $\mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ has states $N_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i) =$

For $\bigvee_{i \in I} u_i$, $I = \{1, ..., n\}$, define its Π -instances $\{u'_1, ..., u'_m\} = \{u_i \gamma \mid i \in I, \exists (b_1, ..., b_k) \in \{true, false\}^k, \exists \gamma \in Unif_{E \cup D \cup B} (u \models p_1 = b_1 \land ... \land u \models p_k = b_k)\}.$ The Kripke structure $\mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ has states $N_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i) = \{w \in T_{\Sigma,State}(X) \mid \exists j, 1 \leq j \leq m, u'_j \rightsquigarrow_{\Pi}^* w\} / \approx_{E \cup B},$

For $\bigvee_{i \in I} u_i$, $I = \{1, ..., n\}$, define its Π -instances $\{u'_1, ..., u'_m\} = \{u_i \gamma \mid i \in I, \exists (b_1, ..., b_k) \in \{true, false\}^k, \exists \gamma \in Unif_{E \cup D \cup B}(u \models p_1 = b_1 \land ... \land u \models p_k = b_k)\}$. The Kripke structure $\mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ has states $\mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i) = \{w \in T_{\Sigma,State}(X) \mid \exists j, 1 \leq j \leq m, u'_j \rightsquigarrow^*_{\Pi} w\} / \approx_{E \cup B}$, where $v \approx_{E \cup B} w$ iff exists a variable renaming α s.t. $v!_{\vec{E}/B} \alpha =_B w!_{\vec{E}/B}$,

For $\bigvee_{i \in I} u_i$, $I = \{1, ..., n\}$, define its Π -instances $\{u'_1, ..., u'_m\} = \{u_i \gamma \mid i \in I, \exists (b_1, ..., b_k) \in \{true, false\}^k, \exists \gamma \in Unif_{E \cup D \cup B}(u \models p_1 = b_1 \land ... \land u \models p_k = b_k)\}$. The Kripke structure $\mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ has states $\mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i) = \{w \in T_{\Sigma,State}(X) \mid \exists j, 1 \leq j \leq m, u'_j \rightsquigarrow_{\Pi}^* w\} / \approx_{E \cup B}$, where $v \approx_{E \cup B} w$ iff exists a variable renaming α s.t. $v!_{\vec{E}/B} \alpha =_B w!_{\vec{E}/B}$, transition relation \rightsquigarrow_{Π} ,

For $\bigvee_{i \in I} u_i$, $I = \{1, \ldots, n\}$, define its Π -instances $\{u'_1, \ldots, u'_m\} = \{u_i \gamma \mid i \in I, \exists (b_1, \ldots, b_k) \in \{true, false\}^k, \exists \gamma \in Unif_{E \cup D \cup B}(u \models p_1 = b_1 \land \ldots \land u \models p_k = b_k)\}$. The Kripke structure $\mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ has states $\mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i) = \{w \in T_{\Sigma,State}(X) \mid \exists j, 1 \leq j \leq m, u'_j \rightsquigarrow^*_{\Pi} w\} / \approx_{E \cup B}$, where $v \approx_{E \cup B} w$ iff exists a variable renaming α s.t. $v!_{\vec{E}/B} \alpha =_B w!_{\vec{E}/B}$, transition relation \sim_{Π} , and satisfaction relation $[w] \models_{\mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)} p_i$ defined for each $[w] \in \mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ and $p_i \in \Pi$ by the unique $b'_i \in \{true, false\}^k$ such that $(w \models p_i)!_{E \cup D, B} = b'_i, 1 \leq i \leq k$.

For $\bigvee_{i \in I} u_i$, $I = \{1, ..., n\}$, define its Π -instances $\{u'_1, ..., u'_m\} = \{u_i \gamma \mid i \in I, \exists (b_1, ..., b_k) \in \{true, false\}^k, \exists \gamma \in Unif_{E \cup D \cup B}(u \models p_1 = b_1 \land ... \land u \models p_k = b_k)\}$. The Kripke structure $\mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ has states $\mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i) = \{w \in T_{\Sigma,State}(X) \mid \exists j, 1 \leq j \leq m, u'_j \rightsquigarrow^*_{\Pi} w\} / \approx_{E \cup B}$, where $v \approx_{E \cup B} w$ iff exists a variable renaming α s.t. $v!_{\vec{E}/B} \alpha =_B w!_{\vec{E}/B}$, transition relation \sim_{Π} , and satisfaction relation $[w] \models_{\mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)} p_i$ defined for each $[w] \in \mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ and $p_i \in \Pi$ by the unique $b'_i \in \{true, false\}^k$ such that $(w \models p_i)!_{E \cup D,B} = b'_i, 1 \leq i \leq k$.

If $\mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ is deadlock-free, any LTL formula φ holds for a symbolic initial state $\bigvee_{i \in I} u_i$ in $\mathbb{T}_{\mathcal{R}}^{\Pi}$ if (resp. iff) it does in $\mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ from $\{u'_1, \ldots, u'_m\}$ (resp. assuming $\mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ is finite) (see Appendix 1):

For $\bigvee_{i \in I} u_i$, $I = \{1, ..., n\}$, define its Π -instances $\{u'_1, ..., u'_m\} = \{u_i \gamma \mid i \in I, \exists (b_1, ..., b_k) \in \{true, false\}^k, \exists \gamma \in Unif_{E \cup D \cup B}(u \models p_1 = b_1 \land ... \land u \models p_k = b_k)\}$. The Kripke structure $\mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ has states $\mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i) = \{w \in T_{\Sigma,State}(X) \mid \exists j, 1 \leq j \leq m, u'_j \rightsquigarrow^*_{\Pi} w\} / \approx_{E \cup B}$, where $v \approx_{E \cup B} w$ iff exists a variable renaming α s.t. $v!_{\vec{E}/B} \alpha =_B w!_{\vec{E}/B}$, transition relation \sim_{Π} , and satisfaction relation $[w] \models_{\mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)} p_i$ defined for each $[w] \in \mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ and $p_i \in \Pi$ by the unique $b'_i \in \{true, false\}^k$ such that $(w \models p_i)!_{E \cup D B} = b'_i, 1 \leq i \leq k$.

If $\mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ is deadlock-free, any LTL formula φ holds for a symbolic initial state $\bigvee_{i \in I} u_i$ in $\mathbb{T}_{\mathcal{R}}^{\Pi}$ if (resp. iff) it does in $\mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ from $\{u'_1, \ldots, u'_m\}$ (resp. assuming $\mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ is finite) (see Appendix 1):

Theorem

For
$$\varphi \in LTL(\Pi)$$
 (resp. assuming $N_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ is a finite set)

$$\mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i), \{u'_1, \dots, u'_m\} \models_{LTL} \varphi. \Rightarrow (resp. \Leftrightarrow) \mathbb{T}_{\mathcal{R}}^{\Pi} [\![\bigvee_{i \in I} u_i]\!]_{E \cup B} \models_{LTL} \varphi.$$

By the above Theorem, if the state space $N_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ is finite, the Kripke structure $\mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ supports explicit-state LTL model checking using the decision procedure described in Lecture 23 to verify $\mathbb{T}_{\mathcal{R}'}^{\Pi}[\bigvee_{i \in I} u_i]_{E \cup B} \models_{LTL} \varphi$.

By the above Theorem, if the state space $N_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ is finite, the Kripke structure $\mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ supports explicit-state LTL model checking using the decision procedure described in Lecture 23 to verify $\mathbb{T}_{\mathcal{R}'}^{\Pi}[\bigvee_{i \in I} u_i]_{E \cup B} \models_{LTL} \varphi$.

When $N_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ is infinite, we can try one of the following three possibilities to reduce the state space of $\mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ to a finite state space:

By the above Theorem, if the state space $N_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ is finite, the Kripke structure $\mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ supports explicit-state LTL model checking using the decision procedure described in Lecture 23 to verify $\mathbb{T}_{\mathcal{R}'}^{\Pi}[\bigvee_{i \in I} u_i]_{E \cup B} \models_{LTL} \varphi$.

When $N_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ is infinite, we can try one of the following three possibilities to reduce the state space of $\mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ to a finite state space:

• Perform LTL model checking by folding variant narrowing, provided the folding \rightsquigarrow_{Π} -narrowing forest from $\{u'_1, \ldots, u'_m\}$ is finite.

By the above Theorem, if the state space $N_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ is finite, the Kripke structure $\mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ supports explicit-state LTL model checking using the decision procedure described in Lecture 23 to verify $\mathbb{T}_{\mathcal{R}'}^{\Pi}[[\bigvee_{i \in I} u_i]]_{E \cup B} \models_{LTL} \varphi$.

When $N_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ is infinite, we can try one of the following three possibilities to reduce the state space of $\mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ to a finite state space:

- Perform LTL model checking by folding variant narrowing, provided the folding \rightsquigarrow_{Π} -narrowing forest from $\{u'_1, \ldots, u'_m\}$ is finite.
- 2 Define an equational abstraction *R*/*G* s.t.: (i) *E* ∪ *D* ∪ *D'* ∪ *G* ∪ *B* is FVP and protects BOOL, and (ii) the folding ~_Π-narrowing forest is finite for *N*^Π_{*R*/*G*}(*V*_{*i*∈*I*}*u_i*).

By the above Theorem, if the state space $N_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ is finite, the Kripke structure $\mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ supports explicit-state LTL model checking using the decision procedure described in Lecture 23 to verify $\mathbb{T}_{\mathcal{R}'}^{\Pi}[[\bigvee_{i \in I} u_i]]_{E \cup B} \models_{LTL} \varphi$.

When $N_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ is infinite, we can try one of the following three possibilities to reduce the state space of $\mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ to a finite state space:

- Perform LTL model checking by folding variant narrowing, provided the folding \rightsquigarrow_{Π} -narrowing forest from $\{u'_1, \ldots, u'_m\}$ is finite.
- 2 Define an equational abstraction *R*/*G* s.t.: (i) *E* ∪ *D* ∪ *D'* ∪ *G* ∪ *B* is FVP and protects BOOL, and (ii) the folding ~_Π-narrowing forest is finite for *N*^Π_{*R*/*G*}(*V*_{*i*∈*I*}*u_i*).
- 3 Perform bounded LTL symbolic model checking.

The Folding \rightsquigarrow_{Π} -narrowing forest from $\{u'_1, \ldots, u'_m\}$ Replacing $\rightsquigarrow_{R/(E\cup B)}$ by \rightsquigarrow_{Π} , just as we have a folding narrowing forest $FNF_{\mathcal{R}}(\bigvee_{i\in I} u_i)$ for the $\rightsquigarrow_{R/(E\cup B)}$ -narrowing tree, we also have a folding narrowing forest (a Kripke structure!) $FNF_{\mathcal{R}}^{\Pi}(\bigvee_{j\in I} u'_j)$ for $\mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i\in I} u_i)$ from $\{u'_j\}_{j\in J}, J = \{1, \ldots, m\}$, the Π -instances of $\bigvee_{i\in I} u_i$. The Folding \rightsquigarrow_{Π} -narrowing forest from $\{u'_1, \ldots, u'_m\}$ Replacing $\rightsquigarrow_{R/(E\cup B)}$ by \rightsquigarrow_{Π} , just as we have a folding narrowing forest $FNF_{\mathcal{R}}(\bigvee_{i\in I} u_i)$ for the $\rightsquigarrow_{R/(E\cup B)}$ -narrowing tree, we also have a folding narrowing forest (a Kripke structure!) $FNF_{\mathcal{R}}^{\Pi}(\bigvee_{j\in J} u'_j)$ for $\mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i\in I} u_i)$ from $\{u'_i\}_{j\in J}, J = \{1, \ldots, m\}$, the Π -instances of $\bigvee_{i\in I} u_i$.

The construction of $FNF_{\mathcal{R}}^{\Pi}(\bigvee_{j\in J} u'_j)$ is similar to that of $FNF_{\mathcal{R}}(\bigvee_{i\in I} u_i)$ in Lecture 25, replacing the folding relation $v \sqsubseteq_{E\cup B} w$ by the folding relation $v \sqsubseteq_{E\cup D\cup B} w$ defined by the equivalence:

The Folding \rightsquigarrow_{Π} -narrowing forest from $\{u'_1, \ldots, u'_m\}$ Replacing $\rightsquigarrow_{R/(E\cup B)}$ by \rightsquigarrow_{Π} , just as we have a folding narrowing forest $FNF_{\mathcal{R}}(\bigvee_{i\in I} u_i)$ for the $\rightsquigarrow_{R/(E\cup B)}$ -narrowing tree, we also have a folding narrowing forest (a Kripke structure!) $FNF_{\mathcal{R}}^{\Pi}(\bigvee_{i\in I} u'_i)$ for $\mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i\in I} u_i)$ from $\{u'_i\}_{j\in J}, J = \{1, \ldots, m\}$, the Π -instances of $\bigvee_{i\in I} u_i$.

The construction of $FNF_{\mathcal{R}}^{\Pi}(\bigvee_{j\in J}u'_j)$ is similar to that of $FNF_{\mathcal{R}}(\bigvee_{i\in I}u_i)$ in Lecture 25, replacing the folding relation $v \sqsubseteq_{E\cup B} w$ by the folding relation $v \sqsubseteq_{E\cup D\cup B} w$ defined by the equivalence:

 $v \sqsubseteq_{E \cup D \cup B}^{\Pi} w \iff_{def} v \sqsubseteq_{E \cup B} w \land \forall p \in \Pi, \ (v \models p)!_{E \cup D, B} = (w \models p)!_{E \cup D, B}.$

The Folding \rightsquigarrow_{Π} -narrowing forest from $\{u'_1, \ldots, u'_m\}$ Replacing $\rightsquigarrow_{R/(E\cup B)}$ by \rightsquigarrow_{Π} , just as we have a folding narrowing forest $FNF_{\mathcal{R}}(\bigvee_{i\in I} u_i)$ for the $\rightsquigarrow_{R/(E\cup B)}$ -narrowing tree, we also have a folding narrowing forest (a Kripke structure!) $FNF_{\mathcal{R}}^{\Pi}(\bigvee_{j\in J} u'_j)$ for $\mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i\in I} u_i)$ from $\{u'_i\}_{j\in J}, J = \{1, \ldots, m\}$, the Π -instances of $\bigvee_{i\in I} u_i$.

The construction of $FNF_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u'_i)$ is similar to that of $FNF_{\mathcal{R}}(\bigvee_{i \in I} u_i)$ in Lecture 25, replacing the folding relation $v \sqsubseteq_{E \cup B} w$ by the folding relation $v \sqsubseteq_{E \cup D \cup B} w$ defined by the equivalence:

 $v \sqsubseteq_{E \cup D \cup B}^{\Pi} w \iff_{def} v \sqsubseteq_{E \cup B} w \land \forall p \in \Pi, \ (v \models p)!_{E \cup D, B} = (w \models p)!_{E \cup D, B}.$ and adding extra transitions for each folding. The Folding \rightsquigarrow_{Π} -narrowing forest from $\{u'_1, \ldots, u'_m\}$ Replacing $\rightsquigarrow_{R/(E\cup B)}$ by \rightsquigarrow_{Π} , just as we have a folding narrowing forest $FNF_{\mathcal{R}}(\bigvee_{i\in I} u_i)$ for the $\rightsquigarrow_{R/(E\cup B)}$ -narrowing tree, we also have a folding narrowing forest (a Kripke structure!) $FNF_{\mathcal{R}}^{\Pi}(\bigvee_{j\in J} u'_j)$ for $\mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i\in I} u_i)$ from $\{u'_i\}_{i\in J}, J = \{1, \ldots, m\}$, the Π -instances of $\bigvee_{i\in I} u_i$.

The construction of $FNF_{\mathcal{R}}^{\Pi}(\bigvee_{j\in J} u'_j)$ is similar to that of $FNF_{\mathcal{R}}(\bigvee_{i\in I} u_i)$ in Lecture 25, replacing the folding relation $v \sqsubseteq_{E\cup B} w$ by the folding relation $v \sqsubseteq_{E\cup D\cup B} w$ defined by the equivalence:

 $v \sqsubseteq_{E \cup D \cup B}^{\Pi} w \Leftrightarrow_{def} v \sqsubseteq_{E \cup B} w \land \forall p \in \Pi, (v \models p)!_{E \cup D, B} = (w \models p)!_{E \cup D, B}.$ and adding extra transitions for each folding. The Completeness Theorem for $FNF_{\mathcal{R}}(\bigvee_{i \in I} u_i)$ in Lecture 25 generalizes to (**Ths** 8,12 in Appendix 2): The Folding \rightsquigarrow_{Π} -narrowing forest from $\{u'_1, \ldots, u'_m\}$ Replacing $\rightsquigarrow_{R/(E\cup B)}$ by \rightsquigarrow_{Π} , just as we have a folding narrowing forest $FNF_{\mathcal{R}}(\bigvee_{i\in I} u_i)$ for the $\rightsquigarrow_{R/(E\cup B)}$ -narrowing tree, we also have a folding narrowing forest (a Kripke structure!) $FNF_{\mathcal{R}}^{\Pi}(\bigvee_{j\in J} u'_j)$ for $\mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i\in I} u_i)$ from $\{u'_i\}_{i\in J}, J = \{1, \ldots, m\}$, the Π -instances of $\bigvee_{i\in I} u_i$.

The construction of $FNF_{\mathcal{R}}^{\Pi}(\bigvee_{j\in J} u'_j)$ is similar to that of $FNF_{\mathcal{R}}(\bigvee_{i\in I} u_i)$ in Lecture 25, replacing the folding relation $v \sqsubseteq_{E\cup B} w$ by the folding relation $v \sqsubseteq_{E\cup D\cup B} w$ defined by the equivalence:

 $v \sqsubseteq_{E \cup D \cup B}^{\Pi} w \Leftrightarrow_{def} v \sqsubseteq_{E \cup B} w \land \forall p \in \Pi, (v \models p)!_{E \cup D, B} = (w \models p)!_{E \cup D, B}.$ and adding extra transitions for each folding. The Completeness Theorem for $FNF_{\mathcal{R}}(\bigvee_{i \in I} u_i)$ in Lecture 25 generalizes to (**Ths** 8,12 in Appendix 2):

Theorem

For $\varphi \in LTL(\Pi)$ (resp. φ a safety formula) we have:

$$FNF_{\mathcal{R}}^{\Pi}(\bigvee_{j\in J}u'_{j}), \{u'_{j}\}_{j\in J}\models \varphi \;\;\Rightarrow\;\; (resp. \;\Leftrightarrow) \;\; \mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i\in I}u_{i}), \{u'_{j}\}_{j\in J}\models \varphi.$$

State Space Reduction through Equational Abstractions

Under the assumptions about \mathcal{R} in pg. 2, and those about \mathcal{R}/G in (2) of pg. 5, we are back in the game: \mathcal{R}/G itself satisfies the assumptions in pg. 2. Therefore, for $\varphi \in LTL(\Pi)$ we have (by **Theorem** in pg. 6):

(†)
$$FNF_{\mathcal{R}/G}^{\Pi}(\bigvee_{l\in L}u_l''), \{u_l''\}_{l\in L}\models \varphi \Rightarrow \mathcal{N}_{\mathcal{R}/G}^{\Pi}(\bigvee_{i\in I}u_i), \{u_j'\}_{j\in J}\models \varphi.$$

(†)
$$FNF_{\mathcal{R}/G}^{\Pi}(\bigvee_{l\in L}u_l''), \{u_l''\}_{l\in L}\models \varphi \Rightarrow \mathcal{N}_{\mathcal{R}/G}^{\Pi}(\bigvee_{i\in I}u_i), \{u_j'\}_{j\in J}\models \varphi.$$

where the $\{u_l''\}_{l \in L}$ are the Π -instances of $\bigvee_{i \in I} u_i$ in \mathcal{R}/G .

(†)
$$FNF_{\mathcal{R}/G}^{\Pi}(\bigvee_{l\in L}u_l''), \{u_l''\}_{l\in L}\models \varphi \Rightarrow \mathcal{N}_{\mathcal{R}/G}^{\Pi}(\bigvee_{i\in I}u_i), \{u_j'\}_{j\in J}\models \varphi.$$

where the $\{u_l''\}_{l \in L}$ are the Π -instances of $\bigvee_{i \in I} u_i$ in \mathcal{R}/G . Furthermore, it follows from **Theorem** in pg. 4 and **Theorem** 3 in Appendix to Lecture 26 (proof in Appendix 1), that we also have the implications:

(†)
$$FNF_{\mathcal{R}/G}^{\Pi}(\bigvee_{l\in L}u_l''), \{u_l''\}_{l\in L}\models \varphi \Rightarrow \mathcal{N}_{\mathcal{R}/G}^{\Pi}(\bigvee_{i\in I}u_i), \{u_j'\}_{j\in J}\models \varphi.$$

where the $\{u_l''\}_{l \in L}$ are the Π -instances of $\bigvee_{i \in I} u_i$ in \mathcal{R}/G . Furthermore, it follows from **Theorem** in pg. 4 and **Theorem** 3 in Appendix to Lecture 26 (proof in Appendix 1), that we also have the implications:

$$(\ddagger) \ \mathcal{N}_{\mathcal{R}/G}^{\Pi}(\bigvee_{i \in I} u_i), \{u_j'\}_{j \in J} \models \varphi \ \Rightarrow \ \mathbb{T}_{\mathcal{R}/G}^{\Pi}, \llbracket \bigvee_{i \in I} u_i \rrbracket_{E \cup G \cup B} \models_{LTL} \varphi \ \Rightarrow \ \mathbb{T}_{\mathcal{R}}^{\Pi}, \llbracket \bigvee_{i \in I} u_i \rrbracket_{E \cup B} \models_{LTL} \varphi$$

(†)
$$FNF_{\mathcal{R}/G}^{\Pi}(\bigvee_{l\in L}u_l''), \{u_l''\}_{l\in L}\models \varphi \Rightarrow \mathcal{N}_{\mathcal{R}/G}^{\Pi}(\bigvee_{i\in I}u_i), \{u_j'\}_{j\in J}\models \varphi.$$

where the $\{u_l''\}_{l \in L}$ are the Π -instances of $\bigvee_{i \in I} u_i$ in \mathcal{R}/G . Furthermore, it follows from **Theorem** in pg. 4 and **Theorem** 3 in Appendix to Lecture 26 (proof in Appendix 1), that we also have the implications:

$$(\ddagger) \ \mathcal{N}_{\mathcal{R}/\mathcal{G}}^{\Pi}(\bigvee_{i \in I} u_i), \{u_j'\}_{j \in J} \models \varphi \ \Rightarrow \ \mathbb{T}_{\mathcal{R}/\mathcal{G}}^{\Pi}, \llbracket \bigvee_{i \in I} u_i \rrbracket_{E \cup G \cup B} \models_{LTL} \varphi \ \Rightarrow \ \mathbb{T}_{\mathcal{R}}^{\Pi}, \llbracket \bigvee_{i \in I} u_i \rrbracket_{E \cup B} \models_{LTL} \varphi$$

Therefore, from (†) and (‡) if $\mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ is deadlock-free we get:
State Space Reduction through Equational Abstractions Under the assumptions about \mathcal{R} in pg. 2, and those about \mathcal{R}/G in (2) of pg. 5, we are back in the game: \mathcal{R}/G itself satisfies the assumptions in pg. 2. Therefore, for $\varphi \in LTL(\Pi)$ we have (by **Theorem** in pg. 6):

(†)
$$FNF_{\mathcal{R}/G}^{\Pi}(\bigvee_{l\in L}u_l''), \{u_l''\}_{l\in L}\models \varphi \Rightarrow \mathcal{N}_{\mathcal{R}/G}^{\Pi}(\bigvee_{i\in I}u_i), \{u_j'\}_{j\in J}\models \varphi.$$

where the $\{u_l''\}_{l \in L}$ are the Π -instances of $\bigvee_{i \in I} u_i$ in \mathcal{R}/G . Furthermore, it follows from **Theorem** in pg. 4 and **Theorem** 3 in Appendix to Lecture 26 (proof in Appendix 1), that we also have the implications:

$$(\ddagger) \ \mathcal{N}_{\mathcal{R}/\mathcal{G}}^{\Pi}(\bigvee_{i \in I} u_i), \{u'_j\}_{j \in J} \models \varphi \ \Rightarrow \ \mathbb{T}_{\mathcal{R}/\mathcal{G}}^{\Pi}, \llbracket \bigvee_{i \in I} u_i \rrbracket_{E \cup G \cup B} \models_{LTL} \varphi \ \Rightarrow \ \mathbb{T}_{\mathcal{R}}^{\Pi}, \llbracket \bigvee_{i \in I} u_i \rrbracket_{E \cup B} \models_{LTL} \varphi$$

Therefore, from (†) and (‡) if $\mathcal{N}_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u_i)$ is deadlock-free we get:

Theorem

Under the above assumptions about \mathcal{R} and \mathcal{R}/G the following implication holds:

$$FNF_{\mathcal{R}/G}^{\Pi}(\bigvee_{l\in L}u_{l}''), \{u_{l}''\}_{l\in L}\models \varphi \quad \Rightarrow \quad \mathbb{T}_{\mathcal{R}}^{\Pi}, \llbracket\bigvee_{i\in I}u_{i}\rrbracket_{E\cup B}\models_{LTL}\varphi.$$

 Construct a depth ≤ k under-approximation of the folding narrowing forest (and Kripke structure) FNF^{II}_R(V_{i∈I} u'_i)

 Construct a depth ≤ k under-approximation of the folding narrowing forest (and Kripke structure) FNF^Π_R(V_{j∈J} u'_j) (a more expensive, but more accurate, version under-approximates N^Π_R(V_{i∈I} u_i)).

Construct a depth ≤ k under-approximation of the folding narrowing forest (and Kripke structure) FNF^Π_R(V_{j∈J} u'_j) (a more expensive, but more accurate, version under-approximates N^Π_R(V_{i∈I} u_i)).

Construct a depth ≤ k under-approximation of the folding narrowing forest (and Kripke structure) FNF^Π_R(V_{j∈J} u'_j) (a more expensive, but more accurate, version under-approximates N^Π_R(V_{i∈I} u_i)).

Algorithm: Given a bound *n*, incrementally build a depth $\leq k$ under-approximation of $FNF_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u'_i)$, increasing $k \leq n$ iteratively.

 Apply a standard explicit-state LTL model checking algorithm to verify φ in the depth ≤ k under-approximation of FNF^Π_R(V_{j∈J} u'_j). If a counterexample is found, stop and return the counterexample.

 Construct a depth ≤ k under-approximation of the folding narrowing forest (and Kripke structure) FNF^Π_R(V_{j∈J} u'_j) (a more expensive, but more accurate, version under-approximates N^Π_R(V_{i∈I} u_i)).

- Apply a standard explicit-state LTL model checking algorithm to verify φ in the depth ≤ k under-approximation of FNF^Π_R(V_{j∈J} u'_j). If a counterexample is found, stop and return the counterexample.
- **2** Suppose that there is no counterexample at depth $\leq k$.

Construct a depth ≤ k under-approximation of the folding narrowing forest (and Kripke structure) FNF^Π_R(V_{j∈J} u'_j) (a more expensive, but more accurate, version under-approximates N^Π_R(V_{i∈I} u_i)).

- Apply a standard explicit-state LTL model checking algorithm to verify φ in the depth ≤ k under-approximation of FNF^Π_R(V_{j∈J} u'_j). If a counterexample is found, stop and return the counterexample.
- **2** Suppose that there is no counterexample at depth $\leq k$.
 - **1** If k = n, stop and report that the model does not violate φ up to the current bound n.

Construct a depth ≤ k under-approximation of the folding narrowing forest (and Kripke structure) FNF^Π_R(V_{j∈J} u'_j) (a more expensive, but more accurate, version under-approximates N^Π_R(V_{i∈I} u_i)).

- Apply a standard explicit-state LTL model checking algorithm to verify φ in the depth ≤ k under-approximation of FNF^Π_R(V_{j∈J} u'_j). If a counterexample is found, stop and return the counterexample.
- **2** Suppose that there is no counterexample at depth $\leq k$.
 - **1** If k = n, stop and report that the model does not violate φ up to the current bound n.
 - **2** Otherwise, generate the depth $\leq k+1$ under-approximation of $FNF_{\mathcal{R}}^{\Pi}(\bigvee_{j\in J}u'_j)$

Construct a depth ≤ k under-approximation of the folding narrowing forest (and Kripke structure) FNF^Π_R(V_{j∈J} u'_j) (a more expensive, but more accurate, version under-approximates N^Π_R(V_{i∈I} u_i)).

Algorithm: Given a bound *n*, incrementally build a depth $\leq k$ under-approximation of $FNF_{\mathcal{R}}^{\Pi}(\bigvee_{i \in I} u'_i)$, increasing $k \leq n$ iteratively.

- Apply a standard explicit-state LTL model checking algorithm to verify φ in the depth ≤ k under-approximation of FNF^Π_R(V_{j∈J} u'_j). If a counterexample is found, stop and return the counterexample.
- **2** Suppose that there is no counterexample at depth $\leq k$.
 - **1** If k = n, stop and report that the model does not violate φ up to the current bound n.
 - ② Otherwise, generate the depth ≤ k + 1 under-approximation of $FNF_{\mathcal{R}}^{\Pi}(\bigvee_{j \in J} u'_j)$

1 If no new nodes are added to the $\leq k$ under-approximation, $FNF_{\mathcal{R}}^{\Pi}(\bigvee_{j \in J} u'_j)$ has been actually generated! Then return *true*;

Construct a depth ≤ k under-approximation of the folding narrowing forest (and Kripke structure) FNF^Π_R(V_{j∈J} u'_j) (a more expensive, but more accurate, version under-approximates N^Π_R(V_{i∈I} u_i)).

- Apply a standard explicit-state LTL model checking algorithm to verify φ in the depth ≤ k under-approximation of FNF^Π_R(V_{j∈J} u'_j). If a counterexample is found, stop and return the counterexample.
- **2** Suppose that there is no counterexample at depth $\leq k$.
 - **1** If k = n, stop and report that the model does not violate φ up to the current bound n.
 - ② Otherwise, generate the depth ≤ k + 1 under-approximation of $FNF_{\mathcal{R}}^{\Pi}(\bigvee_{j \in J} u'_j)$
 - **1** If no new nodes are added to the $\leq k$ under-approximation, $FNF_{\mathcal{R}}^{\Pi}(\bigvee_{j\in J} u'_j)$ has been actually generated! Then return *true*;
 - **2** Otherwise, go to Step 1 with the depth $\leq k+1$ under-approximation of $FNF_{\mathcal{R}}^{\Pi}(\bigvee_{j\in J} u'_j)$.

Maude's Logical LTL Model Checker supports symbolic LTL model checking just explained.

Maude's Logical LTL Model Checker supports symbolic LTL model checking just explained. This is a new implementation, not that in the CS 476 web page.

Maude's Logical LTL Model Checker supports symbolic LTL model checking just explained. This is a new implementation, not that in the CS 476 web page. A README overview can be found here:

Maude's Logical LTL Model Checker supports symbolic LTL model checking just explained. This is a new implementation, not that in the CS 476 web page. A README overview can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-lmc.md

Maude's Logical LTL Model Checker supports symbolic LTL model checking just explained. This is a new implementation, not that in the CS 476 web page. A README overview can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-lmc.md

It uses a a special version of Maude that extends Maude 3.3.1. Executables for both Linux and MacOS and a folder symbolic-examples can be found here:

Maude's Logical LTL Model Checker supports symbolic LTL model checking just explained. This is a new implementation, not that in the CS 476 web page. A README overview can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-lmc.md

It uses a a special version of Maude that extends Maude 3.3.1. Executables for both Linux and MacOS and a folder symbolic-examples can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-ltlr-lmc

Maude's Logical LTL Model Checker supports symbolic LTL model checking just explained. This is a new implementation, not that in the CS 476 web page. A README overview can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-lmc.md

It uses a a special version of Maude that extends Maude 3.3.1. Executables for both Linux and MacOS and a folder symbolic-examples can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-ltlr-lmc

Maude's Logical LTL Model Checker supports symbolic LTL model checking just explained. This is a new implementation, not that in the CS 476 web page. A README overview can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-lmc.md

It uses a a special version of Maude that extends Maude 3.3.1. Executables for both Linux and MacOS and a folder symbolic-examples can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-ltlr-lmc

As explained in the README overview, the user:

1 Enters into this special version of Maude a user module M.

Maude's Logical LTL Model Checker supports symbolic LTL model checking just explained. This is a new implementation, not that in the CS 476 web page. A README overview can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-lmc.md

It uses a a special version of Maude that extends Maude 3.3.1. Executables for both Linux and MacOS and a folder symbolic-examples can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-ltlr-lmc

- 1 Enters into this special version of Maude a user module M.
- **2** Then gives the command load symbolic-checker.

Maude's Logical LTL Model Checker supports symbolic LTL model checking just explained. This is a new implementation, not that in the CS 476 web page. A README overview can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-lmc.md

It uses a a special version of Maude that extends Maude 3.3.1. Executables for both Linux and MacOS and a folder symbolic-examples can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-ltlr-lmc

- 1 Enters into this special version of Maude a user module M.
- ② Then gives the command load symbolic-checker. The user then enters enclosed in parentheses the user module M-CHECK defining:

Maude's Logical LTL Model Checker supports symbolic LTL model checking just explained. This is a new implementation, not that in the CS 476 web page. A README overview can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-lmc.md

It uses a a special version of Maude that extends Maude 3.3.1. Executables for both Linux and MacOS and a folder symbolic-examples can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-ltlr-lmc

- 1 Enters into this special version of Maude a user module M.
- ② Then gives the command load symbolic-checker. The user then enters enclosed in parentheses the user module M-CHECK defining:
 - the equational definition of state predicates just as for Maude's LTL model checker, but giving to all equations the [variant] attribute.

Maude's Logical LTL Model Checker supports symbolic LTL model checking just explained. This is a new implementation, not that in the CS 476 web page. A README overview can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-lmc.md

It uses a a special version of Maude that extends Maude 3.3.1. Executables for both Linux and MacOS and a folder symbolic-examples can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-ltlr-lmc

- 1 Enters into this special version of Maude a user module M.
- ② Then gives the command load symbolic-checker. The user then enters enclosed in parentheses the user module M-CHECK defining:
 - the equational definition of state predicates just as for Maude's LTL model checker, but giving to all equations the [variant] attribute.
 - a subsort inclusion User-State < State

Maude's Logical LTL Model Checker supports symbolic LTL model checking just explained. This is a new implementation, not that in the CS 476 web page. A README overview can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-lmc.md

It uses a a special version of Maude that extends Maude 3.3.1. Executables for both Linux and MacOS and a folder symbolic-examples can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-ltlr-lmc

- 1 Enters into this special version of Maude a user module M.
- ② Then gives the command load symbolic-checker. The user then enters enclosed in parentheses the user module M-CHECK defining:
 - the equational definition of state predicates just as for Maude's LTL model checker, but giving to all equations the [variant] attribute.
 - a subsort inclusion User-State < State</p>
 - imports M and SYMBOLIC-CHECKER as submodules.

Maude's Logical LTL Model Checker supports symbolic LTL model checking just explained. This is a new implementation, not that in the CS 476 web page. A README overview can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-lmc.md

It uses a a special version of Maude that extends Maude 3.3.1. Executables for both Linux and MacOS and a folder symbolic-examples can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-ltlr-lmc

- 1 Enters into this special version of Maude a user module M.
- ② Then gives the command load symbolic-checker. The user then enters enclosed in parentheses the user module M-CHECK defining:
 - the equational definition of state predicates just as for Maude's LTL model checker, but giving to all equations the [variant] attribute.
 - a subsort inclusion User-State < State</p>
 - imports M and SYMBOLIC-CHECKER as submodules.
- 3 Then one can give symbolic model checking commands to the tool.

Maude's Logical LTL Model Checker supports symbolic LTL model checking just explained. This is a new implementation, not that in the CS 476 web page. A README overview can be found here:

https://github.com/kquine/maude-model-checker/blob/master/README-lmc.md

It uses a a special version of Maude that extends Maude 3.3.1. Executables for both Linux and MacOS and a folder symbolic-examples can be found here:

https://github.com/kquine/maude-model-checker/releases/tag/v3.3.1-ltlr-lmc

As explained in the README overview, the user:

- 1 Enters into this special version of Maude a user module M.
- ② Then gives the command load symbolic-checker. The user then enters enclosed in parentheses the user module M-CHECK defining:
 - the equational definition of state predicates just as for Maude's LTL model checker, but giving to all equations the [variant] attribute.
 - a subsort inclusion User-State < State
 - imports M and SYMBOLIC-CHECKER as submodules.

3 Then one can give symbolic model checking commands to the tool.

Let us illustrate everything with two examples.

This special version of Maude supports the LTL symbolic model checker:

This special version of Maude supports the LTL symbolic model checker:

This special version of Maude supports the LTL symbolic model checker:

We then load the module of interest, here R&W:

This special version of Maude supports the LTL symbolic model checker:

We then load the module of interest, here R&W:

```
mod R&W is
sort Natural .
op 0 : -> Natural [ctor] .
op s : Natural -> Natural [ctor] .
sort Config .
op <_,_> : Natural Natural -> Config [ctor] .
vars R W : Natural .
rl [enter-w] : < 0, 0 > => < 0, s(0) > [narrowing] .
rl [leave-w] : < R, s(W) > => < R, W > [narrowing] .
rl [enter-r] : < R, 0 > => < s(R), 0 > [narrowing] .
rl [leave-r] : < s(R), W > => < R, W > [narrowing] .
```

We then load the symbolic LTL model checker and enter the R&W-CHECK module enclosed in parentheses:

We then load the symbolic LTL model checker and enter the R&W-CHECK module enclosed in parentheses:

```
load symbolic-checker
```

```
(mod R&W-CHECK is
 protecting R&W .
  including SYMBOLIC-CHECKER .
  subsort Config < State .</pre>
 vars N M : Natural .
 op reads : -> Prop .
  eq < s(N), M > |= reads = true [variant].
  eq < 0, M > |= reads = false [variant].
  op writes : -> Prop .
  eq < M. s(N) > |= writes = true [variant].
  e\alpha < M. 0 > |= writes = false [variant].
  op writers>1 : -> Prop .
  eq < M, s(s(N)) > |= writers>1 = true [variant].
   eq < M, s(0) > |= writers>1 = false [variant].
  eq < M, 0 > |= writers > 1 = false [variant].
endm)
```

We can now give symbolic model checking commands enclosed in parentheses. The lmc commands from the symbolic initial state < N, 0 > to verify mutex and one-writer invariants do not terminate, but we can model check check them up to, e.g., bound 100:

We can now give symbolic model checking commands enclosed in parentheses. The lmc commands from the symbolic initial state < N, 0 > to verify mutex and one-writer invariants do not terminate, but we can model check check them up to, e.g., bound 100:

```
Maude> (lmc [100] < N, 0 > |= [] ~ (reads /\ writes) .)
```

result: no counterexample found within bound 100

```
Maude> (lmc [100] < N, 0 > |= [] ~ (writers>1) .)
```

result: no counterexample found within bound 100

We can now give symbolic model checking commands enclosed in parentheses. The lmc commands from the symbolic initial state < N, 0 > to verify mutex and one-writer invariants do not terminate, but we can model check check them up to, e.g., bound 100:

```
Maude> (lmc [100] < N, 0 > |= [] ~ (reads /\ writes) .)
```

result: no counterexample found within bound 100

```
Maude> (lmc [100] < N, 0 > |= [] ~ (writers>1) .)
```

result: no counterexample found within bound 100

However, the folding 1fmc commands terminate proving the invariants:

We can now give symbolic model checking commands enclosed in parentheses. The lmc commands from the symbolic initial state < N, 0 > to verify mutex and one-writer invariants do not terminate, but we can model check check them up to, e.g., bound 100:

```
Maude> (lmc [100] < N, 0 > |= [] ~ (reads /\ writes) .)
```

```
result: no counterexample found within bound 100
```

```
Maude> (lmc [100] < N, 0 > |= [] ~ (writers>1) .)
```

result: no counterexample found within bound 100

However, the folding 1fmc commands terminate proving the invariants:

```
Maude> (lfmc < N, 0 > |= [] ~ (reads / writes) .)
```

```
result: true (complete with depth 3)
```

```
Maude> (lfmc < N, 0 > |= [] ~ (writers>1) .)
```

```
result: true (complete with depth 3)
```

Likewise, we can prove (or disprove) some non-starvation properties:
Symbolic LTL Model Checking: a R&W Example (IV)

Likewise, we can prove (or disprove) some non-starvation properties:

```
Maude> (lmc < N, 0 > |= []<> reads .)
```

result: counterexample found at depth 4

```
prefix
  {< 0,0 >,none,'enter-w}
1000
  {< 0,s(0)>,none,'leave-w}
  \{ < 0.0 > .none.'enter-w \}
Maude> (lmc < N, 0 > |= [] <> writes .)
result: counterexample found at depth 3
prefix
  {< N:Natural, 0 >, 'N <- s(%1:Natural), 'leave-r}</pre>
loop
  {< N:Natural.0 >.'N <- s(%1:Natural).'leave-r}</pre>
Maude> (lfmc < N. 0 > |= [] \Leftrightarrow (reads \/ writes) .)
result: true
```

Symbolic LTL Model Checking: a BAKERY Example The following BAKERY version is harder to verify than that in Lecture 21:

Symbolic LTL Model Checking: a BAKERY Example The following BAKERY version is harder to verify than that in Lecture 21:

```
fmod BAKERY-SYNTAX is
 sort Name .
 op 0 : → Name [ctor] .
 op s : -> Name [ctor] .
 op __ : Name Name -> Name [ctor comm assoc id: 0] .
 sorts ModeIdle ModeWait ModeCrit Mode Conf .
 subsorts ModeIdle ModeWait ModeCrit < Mode .</pre>
 sorts ProcIdle ProcWait Proc ProcIdleSet ProcWaitSet ProcSet .
 subsorts ProcIdle < ProcIdleSet .</pre>
  subsorts ProcWait < ProcWaitSet
 subsorts ProcIdle ProcWait < Proc < ProcSet .
 subsorts ProcIdleSet < ProcWaitSet < ProcSet .</pre>
 op idle : -> ModeIdle .
 op wait : Name -> ModeWait .
 op crit : Name -> ModeCrit .
 op [_] : ModeIdle -> ProcIdle .
 op [_] : ModeWait -> ProcWait .
 op [] : Mode -> Proc .
 op none : -> ProcIdleSet .
 op __ : ProcIdleSet ProcIdleSet -> ProcIdleSet [assoc comm ] .
 op : ProcWaitSet ProcWaitSet -> ProcWaitSet [assoc comm ] .
 op __ : ProcSet ProcSet -> ProcSet [assoc comm ] .
```

```
op _;_;_ : Name Name ProcSet -> Conf .
endfm
```

Symbolic LTL Model Checking: a BAKERY Example (II)

```
mod BAKERY is
 protecting BAKERY-SYNTAX .
 var PS : ProcSet . vars N M : Name .
 rl [wake] : N : M ; [idle] PS => s N ; M ; [wait(N)] PS [narrowing] .
 rl [crit] : N ; M ; [wait(M)] PS => N ; M ; [crit(M)] PS [narrowing] .
 rl [exit] : N : M : [crit(M)] PS => N : s M : [idle] PS [narrowing] .
endm
load symbolic-checker
(mod BAKERY-CHECK1 is
 pr BAKERY .
 including SYMBOLIC-CHECKER .
  subsort Conf < State
  ops was-wait? was-crit? : -> Prop . *** was or is in wait (resp. crit)
 vars N M : Name , vars PS : ProcSet .
  eq s N ; M ; PS |= was-wait? = true [variant] .
  eq 0 ; M ; PS |= was-wait? = false [variant] .
  eq N ; s M ; PS |= was-crit? = true [variant] .
  eq N ; 0 ; PS |= was-crit? = false [variant] .
endm)
```

Symbolic LTL Model Checking: a BAKERY Example (III) Does having been waiting always lead to some process being in the critical section?

Symbolic LTL Model Checking: a BAKERY Example (III) Does having been waiting always lead to some process being in the critical section?

```
(lfmc N ; N ; [idle] [idle] |= [] (was-wait? -> <> was-crit?) .)
```

```
result: true (complete with depth 5)
```

```
(lfmc N ; M ; IS:ProcIdleSet |= [] (was-wait? -> <> was-crit?) .)
```

result: counterexample found at depth 5 *** deadlock counterexample

```
prefix
```

```
{(s #1:Name); 0 ; IS:ProcIdleSet,'IS <- %1:ProcIdleSet[idle],'wake}
{(s s %2:Name); 0 ; %1:ProcIdleSet[wait(s %2:Name)],'%1 <-[idle],'wake}
loop
{(s s s %2:Name); 0 ;[wait(s %2:Name)][wait(s s %2:Name)],none,deadlock}
(lfmc N ; M ; WS:ProcWaitSet |= [] (was-wait? -> <> was-crit?) .)
result: counterexample found at depth 3 *** non-deadlock counterexample
```

```
prefix
{(s #1:Name); 0 ; WS:ProcWaitSet,'WS <- %1:ProcWaitSet[idle],'wake}
loop
{(s #1:Name): 0 : WS:ProcWaitSet.'WS <- %1:ProcWaitSet[idle].'wake}</pre>
```

Symbolic LTL Model Checking: a BAKERY Example (IV)

Does mutual exclusion hold?

Symbolic LTL Model Checking: a BAKERY Example (IV)

Does mutual exclusion hold?

```
(mod BAKERY-CHECK2 is pr BAKERY . including SYMBOLIC-CHECKER .
  subsort Conf < State
 ops mutex : -> Prop .
  var WS : ProcWaitSet . var IS : ProcIdleSet . var PS : ProcSet .
 vars N M M1 M2 : Name .
 eq N ; M ; WS |= mutex = true [variant] .
  eq N ; M ; [crit(M1)] WS |= mutex = true [variant] .
  eg N : M : [crit(M1)] [crit(M2)] PS |= mutex = false [variant].
endm)
(lmc [100] N:Name : N:Name : [idle] [idle] |= [] mutex .)
result: no counterexample found within bound 100
(lfmc N:Name ; N:Name ; [idle] [idle] |= [] mutex .)
result: true (complete with depth 5)
```

Symbolic LTL Model Checking: a BAKERY Example (V)

```
(lfmc N ; M ; WS |= [] mutex .)
result: counterexample found at depth 5
prefix
{N:Name : M:Name : WS:ProcWaitSet.'WS <- %1:ProcWaitSet[wait(M:Name)].'crit}</pre>
{N:Name : M:Name : %1:ProcWaitSet[crit(M:Name)],'%1 <- %3:ProcWaitSet[wait(M:Name)],'crit}</pre>
{N:Name : M:Name : %3:ProcWaitSet[crit(M:Name)][crit(M:Name)].'%3 <-[wait(M:Name)].'crit}</pre>
1000
  nil
(1 \text{ fmc } N : N : WS \mid = [] \text{ mutex } .)
result: counterexample found at depth 5
prefix
{N:Name : N:Name : WS:ProcWaitSet.'WS <- %1:ProcWaitSet[wait(N:Name)].'crit}</pre>
{N:Name : N:Name : %1:ProcWaitSet[crit(N:Name)],'%1 <- %2:ProcWaitSet[wait(N:Name)],'crit}</pre>
{N:Name ; N:Name ; %2:ProcWaitSet[crit(N:Name)][crit(N:Name)],'%2 <- [wait(N:Name)].'crit}</pre>
loop
  nil
(lfmc [100] N ; N ; IS |= [] mutex .)
result: no counterexample found within bound 100
```