
Program Verification: Lecture 26

Program Verification: Lecture 26

José Meseguer

University of Illinois at Urbana-Champaign

1/25

Program Verification: Lecture 26

Equational Abstractions

An equational abstraction of a rewrite theory R = (Σ,E ∪ B,R) is
another rewrite theory R/G = (Σ,E ∪B ∪G ,R), where G a set of
Σ-equations.

Equational abstractions can be very useful for both
symbolic and explicit state model checking.

This is because, some properties that may be hard to model check
in R may be model checked in R/G with the guarantee that if
they hold in R/G they also hold in R.

Even if R is admissible, R/G may not be so. But we can always
reason on the Σ transition systems TR = (TΣ/E∪B ,→R/E∪B) and
TR/G = (TΣ/E∪B∪G ,→R/E∪B∪G).

Ex.26.1 Prove that if R is admissible, the unique Σ-isomorphism
[!

E⃗/B
] : TΣ/E∪B → C

Σ/E⃗∪B defines an isomorphism of

Σ-transition systems. I.e., prove that for any Σ-terms u, v we have
[u]E∪B →R/E∪B [u]E∪B in TR iff [u!

E⃗/B
]B →R [v !

E⃗/B
]B in CR.

2/25

Program Verification: Lecture 26

Equational Abstractions

An equational abstraction of a rewrite theory R = (Σ,E ∪ B,R) is
another rewrite theory R/G = (Σ,E ∪B ∪G ,R), where G a set of
Σ-equations. Equational abstractions can be very useful for both
symbolic and explicit state model checking.

This is because, some properties that may be hard to model check
in R may be model checked in R/G with the guarantee that if
they hold in R/G they also hold in R.

Even if R is admissible, R/G may not be so. But we can always
reason on the Σ transition systems TR = (TΣ/E∪B ,→R/E∪B) and
TR/G = (TΣ/E∪B∪G ,→R/E∪B∪G).

Ex.26.1 Prove that if R is admissible, the unique Σ-isomorphism
[!

E⃗/B
] : TΣ/E∪B → C

Σ/E⃗∪B defines an isomorphism of

Σ-transition systems. I.e., prove that for any Σ-terms u, v we have
[u]E∪B →R/E∪B [u]E∪B in TR iff [u!

E⃗/B
]B →R [v !

E⃗/B
]B in CR.

2/25

Program Verification: Lecture 26

Equational Abstractions

An equational abstraction of a rewrite theory R = (Σ,E ∪ B,R) is
another rewrite theory R/G = (Σ,E ∪B ∪G ,R), where G a set of
Σ-equations. Equational abstractions can be very useful for both
symbolic and explicit state model checking.

This is because, some properties that may be hard to model check
in R may be model checked in R/G with the guarantee that if
they hold in R/G they also hold in R.

Even if R is admissible, R/G may not be so. But we can always
reason on the Σ transition systems TR = (TΣ/E∪B ,→R/E∪B) and
TR/G = (TΣ/E∪B∪G ,→R/E∪B∪G).

Ex.26.1 Prove that if R is admissible, the unique Σ-isomorphism
[!

E⃗/B
] : TΣ/E∪B → C

Σ/E⃗∪B defines an isomorphism of

Σ-transition systems. I.e., prove that for any Σ-terms u, v we have
[u]E∪B →R/E∪B [u]E∪B in TR iff [u!

E⃗/B
]B →R [v !

E⃗/B
]B in CR.

2/25

Program Verification: Lecture 26

Equational Abstractions

An equational abstraction of a rewrite theory R = (Σ,E ∪ B,R) is
another rewrite theory R/G = (Σ,E ∪B ∪G ,R), where G a set of
Σ-equations. Equational abstractions can be very useful for both
symbolic and explicit state model checking.

This is because, some properties that may be hard to model check
in R may be model checked in R/G with the guarantee that if
they hold in R/G they also hold in R.

Even if R is admissible, R/G may not be so.

But we can always
reason on the Σ transition systems TR = (TΣ/E∪B ,→R/E∪B) and
TR/G = (TΣ/E∪B∪G ,→R/E∪B∪G).

Ex.26.1 Prove that if R is admissible, the unique Σ-isomorphism
[!

E⃗/B
] : TΣ/E∪B → C

Σ/E⃗∪B defines an isomorphism of

Σ-transition systems. I.e., prove that for any Σ-terms u, v we have
[u]E∪B →R/E∪B [u]E∪B in TR iff [u!

E⃗/B
]B →R [v !

E⃗/B
]B in CR.

2/25

Program Verification: Lecture 26

Equational Abstractions

An equational abstraction of a rewrite theory R = (Σ,E ∪ B,R) is
another rewrite theory R/G = (Σ,E ∪B ∪G ,R), where G a set of
Σ-equations. Equational abstractions can be very useful for both
symbolic and explicit state model checking.

This is because, some properties that may be hard to model check
in R may be model checked in R/G with the guarantee that if
they hold in R/G they also hold in R.

Even if R is admissible, R/G may not be so. But we can always
reason on the Σ transition systems TR = (TΣ/E∪B ,→R/E∪B) and
TR/G = (TΣ/E∪B∪G ,→R/E∪B∪G).

Ex.26.1 Prove that if R is admissible, the unique Σ-isomorphism
[!

E⃗/B
] : TΣ/E∪B → C

Σ/E⃗∪B defines an isomorphism of

Σ-transition systems. I.e., prove that for any Σ-terms u, v we have
[u]E∪B →R/E∪B [u]E∪B in TR iff [u!

E⃗/B
]B →R [v !

E⃗/B
]B in CR.

2/25

Program Verification: Lecture 26

Equational Abstractions

An equational abstraction of a rewrite theory R = (Σ,E ∪ B,R) is
another rewrite theory R/G = (Σ,E ∪B ∪G ,R), where G a set of
Σ-equations. Equational abstractions can be very useful for both
symbolic and explicit state model checking.

This is because, some properties that may be hard to model check
in R may be model checked in R/G with the guarantee that if
they hold in R/G they also hold in R.

Even if R is admissible, R/G may not be so. But we can always
reason on the Σ transition systems TR = (TΣ/E∪B ,→R/E∪B) and
TR/G = (TΣ/E∪B∪G ,→R/E∪B∪G).

Ex.26.1 Prove that if R is admissible, the unique Σ-isomorphism
[!

E⃗/B
] : TΣ/E∪B → C

Σ/E⃗∪B defines an isomorphism of

Σ-transition systems. I.e., prove that for any Σ-terms u, v we have
[u]E∪B →R/E∪B [u]E∪B in TR iff [u!

E⃗/B
]B →R [v !

E⃗/B
]B in CR.

2/25

Program Verification: Lecture 26

The Kripke Structures TR and TR/G

Choosing a top sort State of states in Σ, we can define Kripke
structures TR = (TΣ/E∪B,State ,→R/E∪B , TR) and
TR/G = (TΣ/E∪B∪G ,State ,→R/E∪B∪G , TR/G

),

where the set Π of
state predicates is the set TΣ(X)State with X an infinite set of
variables, and its interpretation in TR (resp. TR/G) is given by:

uTR = JuKE∪B =def {[uθ]E∪B | θ ∈ [X → TΣ]}

resp.

uTR/G
= JuKE∪B∪G =def {[uθ]E∪B∪G | θ ∈ [X → TΣ]}

One reason why equational abstractions are so useful is
summarized by the following theorem, whose easy proof is given in
the Appendix.

3/25

Program Verification: Lecture 26

The Kripke Structures TR and TR/G

Choosing a top sort State of states in Σ, we can define Kripke
structures TR = (TΣ/E∪B,State ,→R/E∪B , TR) and
TR/G = (TΣ/E∪B∪G ,State ,→R/E∪B∪G , TR/G

), where the set Π of
state predicates is the set TΣ(X)State with X an infinite set of
variables, and

its interpretation in TR (resp. TR/G) is given by:

uTR = JuKE∪B =def {[uθ]E∪B | θ ∈ [X → TΣ]}

resp.

uTR/G
= JuKE∪B∪G =def {[uθ]E∪B∪G | θ ∈ [X → TΣ]}

One reason why equational abstractions are so useful is
summarized by the following theorem, whose easy proof is given in
the Appendix.

3/25

Program Verification: Lecture 26

The Kripke Structures TR and TR/G

Choosing a top sort State of states in Σ, we can define Kripke
structures TR = (TΣ/E∪B,State ,→R/E∪B , TR) and
TR/G = (TΣ/E∪B∪G ,State ,→R/E∪B∪G , TR/G

), where the set Π of
state predicates is the set TΣ(X)State with X an infinite set of
variables, and its interpretation in TR (resp. TR/G) is given by:

uTR = JuKE∪B =def {[uθ]E∪B | θ ∈ [X → TΣ]}

resp.

uTR/G
= JuKE∪B∪G =def {[uθ]E∪B∪G | θ ∈ [X → TΣ]}

One reason why equational abstractions are so useful is
summarized by the following theorem, whose easy proof is given in
the Appendix.

3/25

Program Verification: Lecture 26

The Kripke Structures TR and TR/G

Choosing a top sort State of states in Σ, we can define Kripke
structures TR = (TΣ/E∪B,State ,→R/E∪B , TR) and
TR/G = (TΣ/E∪B∪G ,State ,→R/E∪B∪G , TR/G

), where the set Π of
state predicates is the set TΣ(X)State with X an infinite set of
variables, and its interpretation in TR (resp. TR/G) is given by:

uTR = JuKE∪B =def {[uθ]E∪B | θ ∈ [X → TΣ]}

resp.

uTR/G
= JuKE∪B∪G =def {[uθ]E∪B∪G | θ ∈ [X → TΣ]}

One reason why equational abstractions are so useful is
summarized by the following theorem, whose easy proof is given in
the Appendix.

3/25

Program Verification: Lecture 26

The Kripke Structures TR and TR/G

Choosing a top sort State of states in Σ, we can define Kripke
structures TR = (TΣ/E∪B,State ,→R/E∪B , TR) and
TR/G = (TΣ/E∪B∪G ,State ,→R/E∪B∪G , TR/G

), where the set Π of
state predicates is the set TΣ(X)State with X an infinite set of
variables, and its interpretation in TR (resp. TR/G) is given by:

uTR = JuKE∪B =def {[uθ]E∪B | θ ∈ [X → TΣ]}

resp.

uTR/G
= JuKE∪B∪G =def {[uθ]E∪B∪G | θ ∈ [X → TΣ]}

One reason why equational abstractions are so useful is
summarized by the following theorem, whose easy proof is given in
the Appendix.

3/25

Program Verification: Lecture 26

The Kripke Structures TR and TR/G

Choosing a top sort State of states in Σ, we can define Kripke
structures TR = (TΣ/E∪B,State ,→R/E∪B , TR) and
TR/G = (TΣ/E∪B∪G ,State ,→R/E∪B∪G , TR/G

), where the set Π of
state predicates is the set TΣ(X)State with X an infinite set of
variables, and its interpretation in TR (resp. TR/G) is given by:

uTR = JuKE∪B =def {[uθ]E∪B | θ ∈ [X → TΣ]}

resp.

uTR/G
= JuKE∪B∪G =def {[uθ]E∪B∪G | θ ∈ [X → TΣ]}

One reason why equational abstractions are so useful is
summarized by the following theorem, whose easy proof is given in
the Appendix.

3/25

Program Verification: Lecture 26

Main Theorem About Equational Abstractions

Theorem. For R/G an equational abstraction of R and any state
predicates u1, . . . , un, v1, . . . , vm ∈ TΣ(X)State the following holds:

TR, (u1∨. . .∨un) |=S4 3(v1∨. . .∨vm) ⇒ TR/G , (u1∨. . .∨un) |=S4 3(v1∨. . .∨vm)

and therefore the dual, contrapositive implication also holds:

TR/G , (u1∨. . .∨un) |=S4 2(v1∨. . .∨vm)c ⇒ TR, (u1∨. . .∨un) |=S4 2(v1∨. . .∨vm)c

where, by definition,
J(v1 ∨ . . . ∨ vm)

cKE∪B =def TΣ/E∪B,State \ J(v1 ∨ . . . ∨ vm)KE∪B
resp.
J(v1∨. . .∨vm)cKE∪B∪G =def TΣ/E∪B∪G ,State\J(v1∨. . .∨vm)KE∪B∪G .

Therefore, TR/G , (u1 ∨ . . . ∨ un) ̸|=S4 3(v1 ∨ . . . ∨ vm) proves that
(v1 ∨ . . . ∨ vm)

c is an invariant from (u1 ∨ . . . ∨ un) in TR.

4/25

Program Verification: Lecture 26

Main Theorem About Equational Abstractions

Theorem. For R/G an equational abstraction of R and any state
predicates u1, . . . , un, v1, . . . , vm ∈ TΣ(X)State the following holds:

TR, (u1∨. . .∨un) |=S4 3(v1∨. . .∨vm) ⇒ TR/G , (u1∨. . .∨un) |=S4 3(v1∨. . .∨vm)

and therefore the dual, contrapositive implication also holds:

TR/G , (u1∨. . .∨un) |=S4 2(v1∨. . .∨vm)c ⇒ TR, (u1∨. . .∨un) |=S4 2(v1∨. . .∨vm)c

where, by definition,
J(v1 ∨ . . . ∨ vm)

cKE∪B =def TΣ/E∪B,State \ J(v1 ∨ . . . ∨ vm)KE∪B
resp.
J(v1∨. . .∨vm)cKE∪B∪G =def TΣ/E∪B∪G ,State\J(v1∨. . .∨vm)KE∪B∪G .

Therefore, TR/G , (u1 ∨ . . . ∨ un) ̸|=S4 3(v1 ∨ . . . ∨ vm) proves that
(v1 ∨ . . . ∨ vm)

c is an invariant from (u1 ∨ . . . ∨ un) in TR.

4/25

Program Verification: Lecture 26

Main Theorem About Equational Abstractions

Theorem. For R/G an equational abstraction of R and any state
predicates u1, . . . , un, v1, . . . , vm ∈ TΣ(X)State the following holds:

TR, (u1∨. . .∨un) |=S4 3(v1∨. . .∨vm) ⇒ TR/G , (u1∨. . .∨un) |=S4 3(v1∨. . .∨vm)

and therefore the dual, contrapositive implication also holds:

TR/G , (u1∨. . .∨un) |=S4 2(v1∨. . .∨vm)c ⇒ TR, (u1∨. . .∨un) |=S4 2(v1∨. . .∨vm)c

where, by definition,
J(v1 ∨ . . . ∨ vm)

cKE∪B =def TΣ/E∪B,State \ J(v1 ∨ . . . ∨ vm)KE∪B
resp.
J(v1∨. . .∨vm)cKE∪B∪G =def TΣ/E∪B∪G ,State\J(v1∨. . .∨vm)KE∪B∪G .

Therefore, TR/G , (u1 ∨ . . . ∨ un) ̸|=S4 3(v1 ∨ . . . ∨ vm) proves that
(v1 ∨ . . . ∨ vm)

c is an invariant from (u1 ∨ . . . ∨ un) in TR.

4/25

Program Verification: Lecture 26

Main Theorem About Equational Abstractions

Theorem. For R/G an equational abstraction of R and any state
predicates u1, . . . , un, v1, . . . , vm ∈ TΣ(X)State the following holds:

TR, (u1∨. . .∨un) |=S4 3(v1∨. . .∨vm) ⇒ TR/G , (u1∨. . .∨un) |=S4 3(v1∨. . .∨vm)

and therefore the dual, contrapositive implication also holds:

TR/G , (u1∨. . .∨un) |=S4 2(v1∨. . .∨vm)c ⇒ TR, (u1∨. . .∨un) |=S4 2(v1∨. . .∨vm)c

where, by definition,
J(v1 ∨ . . . ∨ vm)

cKE∪B =def TΣ/E∪B,State \ J(v1 ∨ . . . ∨ vm)KE∪B
resp.
J(v1∨. . .∨vm)cKE∪B∪G =def TΣ/E∪B∪G ,State\J(v1∨. . .∨vm)KE∪B∪G .

Therefore, TR/G , (u1 ∨ . . . ∨ un) ̸|=S4 3(v1 ∨ . . . ∨ vm) proves that
(v1 ∨ . . . ∨ vm)

c is an invariant from (u1 ∨ . . . ∨ un) in TR.

4/25

Program Verification: Lecture 26

Main Theorem About Equational Abstractions

Theorem. For R/G an equational abstraction of R and any state
predicates u1, . . . , un, v1, . . . , vm ∈ TΣ(X)State the following holds:

TR, (u1∨. . .∨un) |=S4 3(v1∨. . .∨vm) ⇒ TR/G , (u1∨. . .∨un) |=S4 3(v1∨. . .∨vm)

and therefore the dual, contrapositive implication also holds:

TR/G , (u1∨. . .∨un) |=S4 2(v1∨. . .∨vm)c ⇒ TR, (u1∨. . .∨un) |=S4 2(v1∨. . .∨vm)c

where, by definition,
J(v1 ∨ . . . ∨ vm)

cKE∪B =def TΣ/E∪B,State \ J(v1 ∨ . . . ∨ vm)KE∪B

resp.
J(v1∨. . .∨vm)cKE∪B∪G =def TΣ/E∪B∪G ,State\J(v1∨. . .∨vm)KE∪B∪G .

Therefore, TR/G , (u1 ∨ . . . ∨ un) ̸|=S4 3(v1 ∨ . . . ∨ vm) proves that
(v1 ∨ . . . ∨ vm)

c is an invariant from (u1 ∨ . . . ∨ un) in TR.

4/25

Program Verification: Lecture 26

Main Theorem About Equational Abstractions

Theorem. For R/G an equational abstraction of R and any state
predicates u1, . . . , un, v1, . . . , vm ∈ TΣ(X)State the following holds:

TR, (u1∨. . .∨un) |=S4 3(v1∨. . .∨vm) ⇒ TR/G , (u1∨. . .∨un) |=S4 3(v1∨. . .∨vm)

and therefore the dual, contrapositive implication also holds:

TR/G , (u1∨. . .∨un) |=S4 2(v1∨. . .∨vm)c ⇒ TR, (u1∨. . .∨un) |=S4 2(v1∨. . .∨vm)c

where, by definition,
J(v1 ∨ . . . ∨ vm)

cKE∪B =def TΣ/E∪B,State \ J(v1 ∨ . . . ∨ vm)KE∪B
resp.
J(v1∨. . .∨vm)cKE∪B∪G =def TΣ/E∪B∪G ,State\J(v1∨. . .∨vm)KE∪B∪G .

Therefore, TR/G , (u1 ∨ . . . ∨ un) ̸|=S4 3(v1 ∨ . . . ∨ vm) proves that
(v1 ∨ . . . ∨ vm)

c is an invariant from (u1 ∨ . . . ∨ un) in TR.

4/25

Program Verification: Lecture 26

Main Theorem About Equational Abstractions

Theorem. For R/G an equational abstraction of R and any state
predicates u1, . . . , un, v1, . . . , vm ∈ TΣ(X)State the following holds:

TR, (u1∨. . .∨un) |=S4 3(v1∨. . .∨vm) ⇒ TR/G , (u1∨. . .∨un) |=S4 3(v1∨. . .∨vm)

and therefore the dual, contrapositive implication also holds:

TR/G , (u1∨. . .∨un) |=S4 2(v1∨. . .∨vm)c ⇒ TR, (u1∨. . .∨un) |=S4 2(v1∨. . .∨vm)c

where, by definition,
J(v1 ∨ . . . ∨ vm)

cKE∪B =def TΣ/E∪B,State \ J(v1 ∨ . . . ∨ vm)KE∪B
resp.
J(v1∨. . .∨vm)cKE∪B∪G =def TΣ/E∪B∪G ,State\J(v1∨. . .∨vm)KE∪B∪G .

Therefore, TR/G , (u1 ∨ . . . ∨ un) ̸|=S4 3(v1 ∨ . . . ∨ vm) proves that
(v1 ∨ . . . ∨ vm)

c is an invariant from (u1 ∨ . . . ∨ un) in TR.

4/25

Program Verification: Lecture 26

Using Equational Abstractions in Symbolic Model
Checking

As a Corollary of the above theorem and the Completeness of
Folding Narrowing Search in Lecture 25 we get:

Theorem. For R = (Σ,E ∪ B,R) topmost with E ∪ B FVP and
G = E ′ ∪ B ′ such that E ∪ E ′ ∪ B ∪ B ′ is also FVP,
(v1 ∨ . . . ∨ vm)

c is an invariant from (u1 ∨ . . . ∨ un) in TR if
TR/G , (u1 ∨ . . . ∨ un) ̸|=S4 3(v1 ∨ . . . ∨ vm), i.e., if there doesn’t
exists w ∈ FNFR/G (u1 ∨ . . . ∨ un) having a E ∪ E ′ ∪ B ∪ B ′-unifier
γ ∈ Unif E∪E ′∪B∪B′(w = vj) for some j , 1 ≤ j ≤ m.

Let us see a simple example illustrating the power of this Theorem.

5/25

Program Verification: Lecture 26

Using Equational Abstractions in Symbolic Model
Checking

As a Corollary of the above theorem and the Completeness of
Folding Narrowing Search in Lecture 25 we get:

Theorem. For R = (Σ,E ∪ B,R) topmost with E ∪ B FVP and
G = E ′ ∪ B ′ such that E ∪ E ′ ∪ B ∪ B ′ is also FVP,
(v1 ∨ . . . ∨ vm)

c is an invariant from (u1 ∨ . . . ∨ un) in TR if
TR/G , (u1 ∨ . . . ∨ un) ̸|=S4 3(v1 ∨ . . . ∨ vm),

i.e., if there doesn’t
exists w ∈ FNFR/G (u1 ∨ . . . ∨ un) having a E ∪ E ′ ∪ B ∪ B ′-unifier
γ ∈ Unif E∪E ′∪B∪B′(w = vj) for some j , 1 ≤ j ≤ m.

Let us see a simple example illustrating the power of this Theorem.

5/25

Program Verification: Lecture 26

Using Equational Abstractions in Symbolic Model
Checking

As a Corollary of the above theorem and the Completeness of
Folding Narrowing Search in Lecture 25 we get:

Theorem. For R = (Σ,E ∪ B,R) topmost with E ∪ B FVP and
G = E ′ ∪ B ′ such that E ∪ E ′ ∪ B ∪ B ′ is also FVP,
(v1 ∨ . . . ∨ vm)

c is an invariant from (u1 ∨ . . . ∨ un) in TR if
TR/G , (u1 ∨ . . . ∨ un) ̸|=S4 3(v1 ∨ . . . ∨ vm), i.e., if there doesn’t
exists w ∈ FNFR/G (u1 ∨ . . . ∨ un) having a E ∪ E ′ ∪ B ∪ B ′-unifier
γ ∈ Unif E∪E ′∪B∪B′(w = vj) for some j , 1 ≤ j ≤ m.

Let us see a simple example illustrating the power of this Theorem.

5/25

Program Verification: Lecture 26

Using Equational Abstractions in Symbolic Model
Checking

As a Corollary of the above theorem and the Completeness of
Folding Narrowing Search in Lecture 25 we get:

Theorem. For R = (Σ,E ∪ B,R) topmost with E ∪ B FVP and
G = E ′ ∪ B ′ such that E ∪ E ′ ∪ B ∪ B ′ is also FVP,
(v1 ∨ . . . ∨ vm)

c is an invariant from (u1 ∨ . . . ∨ un) in TR if
TR/G , (u1 ∨ . . . ∨ un) ̸|=S4 3(v1 ∨ . . . ∨ vm), i.e., if there doesn’t
exists w ∈ FNFR/G (u1 ∨ . . . ∨ un) having a E ∪ E ′ ∪ B ∪ B ′-unifier
γ ∈ Unif E∪E ′∪B∪B′(w = vj) for some j , 1 ≤ j ≤ m.

Let us see a simple example illustrating the power of this Theorem.

5/25

Program Verification: Lecture 26

An Equational Abstraction for BAKERY

Recall that it was impossible to verify the mutual exclusion and
one-writer invariants for BAKERY from < 0, 0 > by narrowing in a
forwards direction: one had to narrow backwards.

But we can verify
both invariants by forwards narrowing in an equational abstraction
of BAKERY. Can you guess the G?
mod R&W is

sorts Nat Config .

op <_,_> : Nat Nat -> Config [ctor] .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

vars R W : Nat .

rl < 0, 0 > => < 0, s(0) > [narrowing] .

rl < R, s(W) > => < R, W > [narrowing] .

rl < R, 0 > => < s(R), 0 > [narrowing] .

rl < s(R), W > => < R, W > [narrowing] .

endm

The equation < s(s(N)),0 > = < s(0),0 > is confluent,
terminating and FVP and provides the desired abstraction:

6/25

Program Verification: Lecture 26

An Equational Abstraction for BAKERY

Recall that it was impossible to verify the mutual exclusion and
one-writer invariants for BAKERY from < 0, 0 > by narrowing in a
forwards direction: one had to narrow backwards. But we can verify
both invariants by forwards narrowing in an equational abstraction
of BAKERY.

Can you guess the G?
mod R&W is

sorts Nat Config .

op <_,_> : Nat Nat -> Config [ctor] .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

vars R W : Nat .

rl < 0, 0 > => < 0, s(0) > [narrowing] .

rl < R, s(W) > => < R, W > [narrowing] .

rl < R, 0 > => < s(R), 0 > [narrowing] .

rl < s(R), W > => < R, W > [narrowing] .

endm

The equation < s(s(N)),0 > = < s(0),0 > is confluent,
terminating and FVP and provides the desired abstraction:

6/25

Program Verification: Lecture 26

An Equational Abstraction for BAKERY

Recall that it was impossible to verify the mutual exclusion and
one-writer invariants for BAKERY from < 0, 0 > by narrowing in a
forwards direction: one had to narrow backwards. But we can verify
both invariants by forwards narrowing in an equational abstraction
of BAKERY. Can you guess the G?

mod R&W is

sorts Nat Config .

op <_,_> : Nat Nat -> Config [ctor] .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

vars R W : Nat .

rl < 0, 0 > => < 0, s(0) > [narrowing] .

rl < R, s(W) > => < R, W > [narrowing] .

rl < R, 0 > => < s(R), 0 > [narrowing] .

rl < s(R), W > => < R, W > [narrowing] .

endm

The equation < s(s(N)),0 > = < s(0),0 > is confluent,
terminating and FVP and provides the desired abstraction:

6/25

Program Verification: Lecture 26

An Equational Abstraction for BAKERY

Recall that it was impossible to verify the mutual exclusion and
one-writer invariants for BAKERY from < 0, 0 > by narrowing in a
forwards direction: one had to narrow backwards. But we can verify
both invariants by forwards narrowing in an equational abstraction
of BAKERY. Can you guess the G?
mod R&W is

sorts Nat Config .

op <_,_> : Nat Nat -> Config [ctor] .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

vars R W : Nat .

rl < 0, 0 > => < 0, s(0) > [narrowing] .

rl < R, s(W) > => < R, W > [narrowing] .

rl < R, 0 > => < s(R), 0 > [narrowing] .

rl < s(R), W > => < R, W > [narrowing] .

endm

The equation < s(s(N)),0 > = < s(0),0 > is confluent,
terminating and FVP and provides the desired abstraction:

6/25

Program Verification: Lecture 26

An Equational Abstraction for BAKERY

Recall that it was impossible to verify the mutual exclusion and
one-writer invariants for BAKERY from < 0, 0 > by narrowing in a
forwards direction: one had to narrow backwards. But we can verify
both invariants by forwards narrowing in an equational abstraction
of BAKERY. Can you guess the G?
mod R&W is

sorts Nat Config .

op <_,_> : Nat Nat -> Config [ctor] .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

vars R W : Nat .

rl < 0, 0 > => < 0, s(0) > [narrowing] .

rl < R, s(W) > => < R, W > [narrowing] .

rl < R, 0 > => < s(R), 0 > [narrowing] .

rl < s(R), W > => < R, W > [narrowing] .

endm

The equation < s(s(N)),0 > = < s(0),0 > is confluent,
terminating and FVP and provides the desired abstraction:6/25

Program Verification: Lecture 26

An Equational Abstraction for BAKERY (II)

mod R&W-ABS is including R&W . eq < s(s(N:Nat)),0 > = < s(0),0 > [variant] .

endm

get variants < R:Nat, W:Nat > .

Variant 1

Config: < #1:Nat,#2:Nat >

R --> #1:Nat

W --> #2:Nat

Variant 2

Config: < s(0),0 >

R --> s(s(%1:Nat))

W --> 0

No more variants.

fvu-narrow < 0, 0 > =>* < s(N:Nat), s(M:Nat) > . *** mutual exclusion

No solution.

fvu-narrow < 0 , 0 > =>* < N:Nat , s(s(M:Nat)) > . *** one writer

No solution.
7/25

Program Verification: Lecture 26

Equational Abstractions for Explicit-State Model
Checking

The application of equational abstraction to symbolic model
checking is particularly simple.

This is because executability
conditions do not matter, since for narrowing (i.e., for symbolic
execution), variant unification is enough, even when the rules R
are not coherent in R/G . In fact, the rules in R&W-ABS are not
coherent, but it did not matter at all for symbolic execution.

For explicit state model checking of modal logic or LTL properties,
the admissibility of R/G is crucial. Likewise, decidability by
matching modulo B of state predicates u, or u | φ is also crucial.

For symbolic model checking the meaning of u was a subset
JuKE∪B ⊆ TΣ/E∪B,State . Instead, for explicit-state model checking
we need a subset JuK!

E⃗/B
⊆ C

Σ/E⃗ ,B,State
. More generally, we can

define Ju | φK!
E⃗/B

as follows:

8/25

Program Verification: Lecture 26

Equational Abstractions for Explicit-State Model
Checking

The application of equational abstraction to symbolic model
checking is particularly simple. This is because executability
conditions do not matter, since for narrowing (i.e., for symbolic
execution), variant unification is enough, even when the rules R
are not coherent in R/G .

In fact, the rules in R&W-ABS are not
coherent, but it did not matter at all for symbolic execution.

For explicit state model checking of modal logic or LTL properties,
the admissibility of R/G is crucial. Likewise, decidability by
matching modulo B of state predicates u, or u | φ is also crucial.

For symbolic model checking the meaning of u was a subset
JuKE∪B ⊆ TΣ/E∪B,State . Instead, for explicit-state model checking
we need a subset JuK!

E⃗/B
⊆ C

Σ/E⃗ ,B,State
. More generally, we can

define Ju | φK!
E⃗/B

as follows:

8/25

Program Verification: Lecture 26

Equational Abstractions for Explicit-State Model
Checking

The application of equational abstraction to symbolic model
checking is particularly simple. This is because executability
conditions do not matter, since for narrowing (i.e., for symbolic
execution), variant unification is enough, even when the rules R
are not coherent in R/G . In fact, the rules in R&W-ABS are not
coherent, but it did not matter at all for symbolic execution.

For explicit state model checking of modal logic or LTL properties,
the admissibility of R/G is crucial. Likewise, decidability by
matching modulo B of state predicates u, or u | φ is also crucial.

For symbolic model checking the meaning of u was a subset
JuKE∪B ⊆ TΣ/E∪B,State . Instead, for explicit-state model checking
we need a subset JuK!

E⃗/B
⊆ C

Σ/E⃗ ,B,State
. More generally, we can

define Ju | φK!
E⃗/B

as follows:

8/25

Program Verification: Lecture 26

Equational Abstractions for Explicit-State Model
Checking

The application of equational abstraction to symbolic model
checking is particularly simple. This is because executability
conditions do not matter, since for narrowing (i.e., for symbolic
execution), variant unification is enough, even when the rules R
are not coherent in R/G . In fact, the rules in R&W-ABS are not
coherent, but it did not matter at all for symbolic execution.

For explicit state model checking of modal logic or LTL properties,
the admissibility of R/G is crucial.

Likewise, decidability by
matching modulo B of state predicates u, or u | φ is also crucial.

For symbolic model checking the meaning of u was a subset
JuKE∪B ⊆ TΣ/E∪B,State . Instead, for explicit-state model checking
we need a subset JuK!

E⃗/B
⊆ C

Σ/E⃗ ,B,State
. More generally, we can

define Ju | φK!
E⃗/B

as follows:

8/25

Program Verification: Lecture 26

Equational Abstractions for Explicit-State Model
Checking

The application of equational abstraction to symbolic model
checking is particularly simple. This is because executability
conditions do not matter, since for narrowing (i.e., for symbolic
execution), variant unification is enough, even when the rules R
are not coherent in R/G . In fact, the rules in R&W-ABS are not
coherent, but it did not matter at all for symbolic execution.

For explicit state model checking of modal logic or LTL properties,
the admissibility of R/G is crucial. Likewise, decidability by
matching modulo B of state predicates u, or u | φ is also crucial.

For symbolic model checking the meaning of u was a subset
JuKE∪B ⊆ TΣ/E∪B,State . Instead, for explicit-state model checking
we need a subset JuK!

E⃗/B
⊆ C

Σ/E⃗ ,B,State
. More generally, we can

define Ju | φK!
E⃗/B

as follows:

8/25

Program Verification: Lecture 26

Equational Abstractions for Explicit-State Model
Checking

The application of equational abstraction to symbolic model
checking is particularly simple. This is because executability
conditions do not matter, since for narrowing (i.e., for symbolic
execution), variant unification is enough, even when the rules R
are not coherent in R/G . In fact, the rules in R&W-ABS are not
coherent, but it did not matter at all for symbolic execution.

For explicit state model checking of modal logic or LTL properties,
the admissibility of R/G is crucial. Likewise, decidability by
matching modulo B of state predicates u, or u | φ is also crucial.

For symbolic model checking the meaning of u was a subset
JuKE∪B ⊆ TΣ/E∪B,State .

Instead, for explicit-state model checking
we need a subset JuK!

E⃗/B
⊆ C

Σ/E⃗ ,B,State
. More generally, we can

define Ju | φK!
E⃗/B

as follows:

8/25

Program Verification: Lecture 26

Equational Abstractions for Explicit-State Model
Checking

The application of equational abstraction to symbolic model
checking is particularly simple. This is because executability
conditions do not matter, since for narrowing (i.e., for symbolic
execution), variant unification is enough, even when the rules R
are not coherent in R/G . In fact, the rules in R&W-ABS are not
coherent, but it did not matter at all for symbolic execution.

For explicit state model checking of modal logic or LTL properties,
the admissibility of R/G is crucial. Likewise, decidability by
matching modulo B of state predicates u, or u | φ is also crucial.

For symbolic model checking the meaning of u was a subset
JuKE∪B ⊆ TΣ/E∪B,State . Instead, for explicit-state model checking
we need a subset JuK!

E⃗/B
⊆ C

Σ/E⃗ ,B,State
.

More generally, we can

define Ju | φK!
E⃗/B

as follows:

8/25

Program Verification: Lecture 26

Equational Abstractions for Explicit-State Model
Checking

The application of equational abstraction to symbolic model
checking is particularly simple. This is because executability
conditions do not matter, since for narrowing (i.e., for symbolic
execution), variant unification is enough, even when the rules R
are not coherent in R/G . In fact, the rules in R&W-ABS are not
coherent, but it did not matter at all for symbolic execution.

For explicit state model checking of modal logic or LTL properties,
the admissibility of R/G is crucial. Likewise, decidability by
matching modulo B of state predicates u, or u | φ is also crucial.

For symbolic model checking the meaning of u was a subset
JuKE∪B ⊆ TΣ/E∪B,State . Instead, for explicit-state model checking
we need a subset JuK!

E⃗/B
⊆ C

Σ/E⃗ ,B,State
. More generally, we can

define Ju | φK!
E⃗/B

as follows:
8/25

Program Verification: Lecture 26

State Predicates for Admissible Rewrite Theories

For R = (Σ,E ∪ B,R) admissible with constructors Ω we require
u ∈ TΩ(X)State s.t. u = u!

E⃗/B
, and that the conjunction of

Σ-equalities φ is s.t. vars(φ) ⊆ vars(u).

Then Ju | φK!
E⃗/B

= {[v] ∈
C
Σ/E⃗ ,B,State

| ∃ρ ∈ [X → TΩ] s.t. v =B uρ ∧ E ∪ B ⊢ φρ}. Since
[v] ∈ C

Σ/E⃗ ,B,State
, this forces ρ to be a normalized substitution on

vars(u). Note that, under these assumptions, the membership
[v] ∈ Ju | φK!

E⃗/B
is decidable by B-matching and evaluation of φρ.

Although (Σ,E ∪ B) need not be FVP, we require that its
constructor subtheory (Ω+,EΩ+ ∪ BΩ+) is FVP. We will the only
consider equational abstractions R/G where E ∪ B ∪ G is ground
convergent, G = E ′

Ω+ ∪ B ′
Ω+ are Ω+ equations and axioms, and

EΩ+ ∪ E ′
Ω+ ∪ BΩ+ ∪ B ′

Ω+ is also FVP.

How are state predicates Ju | φK!
E⃗/B

in R and Ju′ | φ′K!
E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

in R/G related? This can be answered as follows:

9/25

Program Verification: Lecture 26

State Predicates for Admissible Rewrite Theories

For R = (Σ,E ∪ B,R) admissible with constructors Ω we require
u ∈ TΩ(X)State s.t. u = u!

E⃗/B
, and that the conjunction of

Σ-equalities φ is s.t. vars(φ) ⊆ vars(u). Then Ju | φK!
E⃗/B

= {[v] ∈
C
Σ/E⃗ ,B,State

| ∃ρ ∈ [X → TΩ] s.t. v =B uρ ∧ E ∪ B ⊢ φρ}.

Since

[v] ∈ C
Σ/E⃗ ,B,State

, this forces ρ to be a normalized substitution on

vars(u). Note that, under these assumptions, the membership
[v] ∈ Ju | φK!

E⃗/B
is decidable by B-matching and evaluation of φρ.

Although (Σ,E ∪ B) need not be FVP, we require that its
constructor subtheory (Ω+,EΩ+ ∪ BΩ+) is FVP. We will the only
consider equational abstractions R/G where E ∪ B ∪ G is ground
convergent, G = E ′

Ω+ ∪ B ′
Ω+ are Ω+ equations and axioms, and

EΩ+ ∪ E ′
Ω+ ∪ BΩ+ ∪ B ′

Ω+ is also FVP.

How are state predicates Ju | φK!
E⃗/B

in R and Ju′ | φ′K!
E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

in R/G related? This can be answered as follows:

9/25

Program Verification: Lecture 26

State Predicates for Admissible Rewrite Theories

For R = (Σ,E ∪ B,R) admissible with constructors Ω we require
u ∈ TΩ(X)State s.t. u = u!

E⃗/B
, and that the conjunction of

Σ-equalities φ is s.t. vars(φ) ⊆ vars(u). Then Ju | φK!
E⃗/B

= {[v] ∈
C
Σ/E⃗ ,B,State

| ∃ρ ∈ [X → TΩ] s.t. v =B uρ ∧ E ∪ B ⊢ φρ}. Since
[v] ∈ C

Σ/E⃗ ,B,State
, this forces ρ to be a normalized substitution on

vars(u).

Note that, under these assumptions, the membership
[v] ∈ Ju | φK!

E⃗/B
is decidable by B-matching and evaluation of φρ.

Although (Σ,E ∪ B) need not be FVP, we require that its
constructor subtheory (Ω+,EΩ+ ∪ BΩ+) is FVP. We will the only
consider equational abstractions R/G where E ∪ B ∪ G is ground
convergent, G = E ′

Ω+ ∪ B ′
Ω+ are Ω+ equations and axioms, and

EΩ+ ∪ E ′
Ω+ ∪ BΩ+ ∪ B ′

Ω+ is also FVP.

How are state predicates Ju | φK!
E⃗/B

in R and Ju′ | φ′K!
E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

in R/G related? This can be answered as follows:

9/25

Program Verification: Lecture 26

State Predicates for Admissible Rewrite Theories

For R = (Σ,E ∪ B,R) admissible with constructors Ω we require
u ∈ TΩ(X)State s.t. u = u!

E⃗/B
, and that the conjunction of

Σ-equalities φ is s.t. vars(φ) ⊆ vars(u). Then Ju | φK!
E⃗/B

= {[v] ∈
C
Σ/E⃗ ,B,State

| ∃ρ ∈ [X → TΩ] s.t. v =B uρ ∧ E ∪ B ⊢ φρ}. Since
[v] ∈ C

Σ/E⃗ ,B,State
, this forces ρ to be a normalized substitution on

vars(u). Note that, under these assumptions, the membership
[v] ∈ Ju | φK!

E⃗/B
is decidable by B-matching and evaluation of φρ.

Although (Σ,E ∪ B) need not be FVP, we require that its
constructor subtheory (Ω+,EΩ+ ∪ BΩ+) is FVP. We will the only
consider equational abstractions R/G where E ∪ B ∪ G is ground
convergent, G = E ′

Ω+ ∪ B ′
Ω+ are Ω+ equations and axioms, and

EΩ+ ∪ E ′
Ω+ ∪ BΩ+ ∪ B ′

Ω+ is also FVP.

How are state predicates Ju | φK!
E⃗/B

in R and Ju′ | φ′K!
E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

in R/G related? This can be answered as follows:

9/25

Program Verification: Lecture 26

State Predicates for Admissible Rewrite Theories

For R = (Σ,E ∪ B,R) admissible with constructors Ω we require
u ∈ TΩ(X)State s.t. u = u!

E⃗/B
, and that the conjunction of

Σ-equalities φ is s.t. vars(φ) ⊆ vars(u). Then Ju | φK!
E⃗/B

= {[v] ∈
C
Σ/E⃗ ,B,State

| ∃ρ ∈ [X → TΩ] s.t. v =B uρ ∧ E ∪ B ⊢ φρ}. Since
[v] ∈ C

Σ/E⃗ ,B,State
, this forces ρ to be a normalized substitution on

vars(u). Note that, under these assumptions, the membership
[v] ∈ Ju | φK!

E⃗/B
is decidable by B-matching and evaluation of φρ.

Although (Σ,E ∪ B) need not be FVP, we require that its
constructor subtheory (Ω+,EΩ+ ∪ BΩ+) is FVP.

We will the only
consider equational abstractions R/G where E ∪ B ∪ G is ground
convergent, G = E ′

Ω+ ∪ B ′
Ω+ are Ω+ equations and axioms, and

EΩ+ ∪ E ′
Ω+ ∪ BΩ+ ∪ B ′

Ω+ is also FVP.

How are state predicates Ju | φK!
E⃗/B

in R and Ju′ | φ′K!
E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

in R/G related? This can be answered as follows:

9/25

Program Verification: Lecture 26

State Predicates for Admissible Rewrite Theories

For R = (Σ,E ∪ B,R) admissible with constructors Ω we require
u ∈ TΩ(X)State s.t. u = u!

E⃗/B
, and that the conjunction of

Σ-equalities φ is s.t. vars(φ) ⊆ vars(u). Then Ju | φK!
E⃗/B

= {[v] ∈
C
Σ/E⃗ ,B,State

| ∃ρ ∈ [X → TΩ] s.t. v =B uρ ∧ E ∪ B ⊢ φρ}. Since
[v] ∈ C

Σ/E⃗ ,B,State
, this forces ρ to be a normalized substitution on

vars(u). Note that, under these assumptions, the membership
[v] ∈ Ju | φK!

E⃗/B
is decidable by B-matching and evaluation of φρ.

Although (Σ,E ∪ B) need not be FVP, we require that its
constructor subtheory (Ω+,EΩ+ ∪ BΩ+) is FVP. We will the only
consider equational abstractions R/G where E ∪ B ∪ G is ground
convergent, G = E ′

Ω+ ∪ B ′
Ω+ are Ω+ equations and axioms, and

EΩ+ ∪ E ′
Ω+ ∪ BΩ+ ∪ B ′

Ω+ is also FVP.

How are state predicates Ju | φK!
E⃗/B

in R and Ju′ | φ′K!
E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

in R/G related? This can be answered as follows:

9/25

Program Verification: Lecture 26

State Predicates for Admissible Rewrite Theories

For R = (Σ,E ∪ B,R) admissible with constructors Ω we require
u ∈ TΩ(X)State s.t. u = u!

E⃗/B
, and that the conjunction of

Σ-equalities φ is s.t. vars(φ) ⊆ vars(u). Then Ju | φK!
E⃗/B

= {[v] ∈
C
Σ/E⃗ ,B,State

| ∃ρ ∈ [X → TΩ] s.t. v =B uρ ∧ E ∪ B ⊢ φρ}. Since
[v] ∈ C

Σ/E⃗ ,B,State
, this forces ρ to be a normalized substitution on

vars(u). Note that, under these assumptions, the membership
[v] ∈ Ju | φK!

E⃗/B
is decidable by B-matching and evaluation of φρ.

Although (Σ,E ∪ B) need not be FVP, we require that its
constructor subtheory (Ω+,EΩ+ ∪ BΩ+) is FVP. We will the only
consider equational abstractions R/G where E ∪ B ∪ G is ground
convergent, G = E ′

Ω+ ∪ B ′
Ω+ are Ω+ equations and axioms, and

EΩ+ ∪ E ′
Ω+ ∪ BΩ+ ∪ B ′

Ω+ is also FVP.

How are state predicates Ju | φK!
E⃗/B

in R and Ju′ | φ′K!
E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

in R/G related?

This can be answered as follows:

9/25

Program Verification: Lecture 26

State Predicates for Admissible Rewrite Theories

For R = (Σ,E ∪ B,R) admissible with constructors Ω we require
u ∈ TΩ(X)State s.t. u = u!

E⃗/B
, and that the conjunction of

Σ-equalities φ is s.t. vars(φ) ⊆ vars(u). Then Ju | φK!
E⃗/B

= {[v] ∈
C
Σ/E⃗ ,B,State

| ∃ρ ∈ [X → TΩ] s.t. v =B uρ ∧ E ∪ B ⊢ φρ}. Since
[v] ∈ C

Σ/E⃗ ,B,State
, this forces ρ to be a normalized substitution on

vars(u). Note that, under these assumptions, the membership
[v] ∈ Ju | φK!

E⃗/B
is decidable by B-matching and evaluation of φρ.

Although (Σ,E ∪ B) need not be FVP, we require that its
constructor subtheory (Ω+,EΩ+ ∪ BΩ+) is FVP. We will the only
consider equational abstractions R/G where E ∪ B ∪ G is ground
convergent, G = E ′

Ω+ ∪ B ′
Ω+ are Ω+ equations and axioms, and

EΩ+ ∪ E ′
Ω+ ∪ BΩ+ ∪ B ′

Ω+ is also FVP.

How are state predicates Ju | φK!
E⃗/B

in R and Ju′ | φ′K!
E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

in R/G related? This can be answered as follows:9/25

Program Verification: Lecture 26

G -Abstractable State Predicates

Call a state predicate u | φ in R G -abstractable

if for
(u′1, γ1), . . . , (u

′
k , γk) the EΩ+ ∪ BΩ+-variants of u, we have

vars((φγi)!E⃗∪E⃗ ′
Ω+/B∪B′

Ω+
) ⊆ vars(ui) 1 ≤ i ≤ k. Abbreviate

(φγi)!E⃗∪E⃗ ′
Ω+/B∪B′

Ω+
to φ′

i and call u′1 | φ′
1 ∨ . . . ∨ u′k | φ′

k the

G -abstraction of u | φ in R/G .

Consider now the unique surjective Σ-homomorphism:

[!
E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

] : C
Σ/E⃗ ,B

→ C
Σ/E⃗ ,E⃗ ′

Ω+/B∪B′
Ω+

A key theorem, proved in the Appendix, is:

Theorem. The image of the set Ju | φK!
E⃗/B

under the above

homomorphism is contained in the set
J(u′1 | φ′

1 ∨ . . . ∨ u′k | φ′
k)K!E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

.

Let us see an example.

10/25

Program Verification: Lecture 26

G -Abstractable State Predicates

Call a state predicate u | φ in R G -abstractable if for
(u′1, γ1), . . . , (u

′
k , γk) the EΩ+ ∪ BΩ+-variants of u, we have

vars((φγi)!E⃗∪E⃗ ′
Ω+/B∪B′

Ω+
) ⊆ vars(ui) 1 ≤ i ≤ k.

Abbreviate

(φγi)!E⃗∪E⃗ ′
Ω+/B∪B′

Ω+
to φ′

i and call u′1 | φ′
1 ∨ . . . ∨ u′k | φ′

k the

G -abstraction of u | φ in R/G .

Consider now the unique surjective Σ-homomorphism:

[!
E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

] : C
Σ/E⃗ ,B

→ C
Σ/E⃗ ,E⃗ ′

Ω+/B∪B′
Ω+

A key theorem, proved in the Appendix, is:

Theorem. The image of the set Ju | φK!
E⃗/B

under the above

homomorphism is contained in the set
J(u′1 | φ′

1 ∨ . . . ∨ u′k | φ′
k)K!E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

.

Let us see an example.

10/25

Program Verification: Lecture 26

G -Abstractable State Predicates

Call a state predicate u | φ in R G -abstractable if for
(u′1, γ1), . . . , (u

′
k , γk) the EΩ+ ∪ BΩ+-variants of u, we have

vars((φγi)!E⃗∪E⃗ ′
Ω+/B∪B′

Ω+
) ⊆ vars(ui) 1 ≤ i ≤ k. Abbreviate

(φγi)!E⃗∪E⃗ ′
Ω+/B∪B′

Ω+
to φ′

i and call u′1 | φ′
1 ∨ . . . ∨ u′k | φ′

k the

G -abstraction of u | φ in R/G .

Consider now the unique surjective Σ-homomorphism:

[!
E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

] : C
Σ/E⃗ ,B

→ C
Σ/E⃗ ,E⃗ ′

Ω+/B∪B′
Ω+

A key theorem, proved in the Appendix, is:

Theorem. The image of the set Ju | φK!
E⃗/B

under the above

homomorphism is contained in the set
J(u′1 | φ′

1 ∨ . . . ∨ u′k | φ′
k)K!E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

.

Let us see an example.

10/25

Program Verification: Lecture 26

G -Abstractable State Predicates

Call a state predicate u | φ in R G -abstractable if for
(u′1, γ1), . . . , (u

′
k , γk) the EΩ+ ∪ BΩ+-variants of u, we have

vars((φγi)!E⃗∪E⃗ ′
Ω+/B∪B′

Ω+
) ⊆ vars(ui) 1 ≤ i ≤ k. Abbreviate

(φγi)!E⃗∪E⃗ ′
Ω+/B∪B′

Ω+
to φ′

i and call u′1 | φ′
1 ∨ . . . ∨ u′k | φ′

k the

G -abstraction of u | φ in R/G .

Consider now the unique surjective Σ-homomorphism:

[!
E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

] : C
Σ/E⃗ ,B

→ C
Σ/E⃗ ,E⃗ ′

Ω+/B∪B′
Ω+

A key theorem, proved in the Appendix, is:

Theorem. The image of the set Ju | φK!
E⃗/B

under the above

homomorphism is contained in the set
J(u′1 | φ′

1 ∨ . . . ∨ u′k | φ′
k)K!E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

.

Let us see an example.

10/25

Program Verification: Lecture 26

G -Abstractable State Predicates

Call a state predicate u | φ in R G -abstractable if for
(u′1, γ1), . . . , (u

′
k , γk) the EΩ+ ∪ BΩ+-variants of u, we have

vars((φγi)!E⃗∪E⃗ ′
Ω+/B∪B′

Ω+
) ⊆ vars(ui) 1 ≤ i ≤ k. Abbreviate

(φγi)!E⃗∪E⃗ ′
Ω+/B∪B′

Ω+
to φ′

i and call u′1 | φ′
1 ∨ . . . ∨ u′k | φ′

k the

G -abstraction of u | φ in R/G .

Consider now the unique surjective Σ-homomorphism:

[!
E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

] : C
Σ/E⃗ ,B

→ C
Σ/E⃗ ,E⃗ ′

Ω+/B∪B′
Ω+

A key theorem, proved in the Appendix, is:

Theorem. The image of the set Ju | φK!
E⃗/B

under the above

homomorphism is contained in the set
J(u′1 | φ′

1 ∨ . . . ∨ u′k | φ′
k)K!E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

.

Let us see an example.

10/25

Program Verification: Lecture 26

G -Abstractable State Predicates

Call a state predicate u | φ in R G -abstractable if for
(u′1, γ1), . . . , (u

′
k , γk) the EΩ+ ∪ BΩ+-variants of u, we have

vars((φγi)!E⃗∪E⃗ ′
Ω+/B∪B′

Ω+
) ⊆ vars(ui) 1 ≤ i ≤ k. Abbreviate

(φγi)!E⃗∪E⃗ ′
Ω+/B∪B′

Ω+
to φ′

i and call u′1 | φ′
1 ∨ . . . ∨ u′k | φ′

k the

G -abstraction of u | φ in R/G .

Consider now the unique surjective Σ-homomorphism:

[!
E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

] : C
Σ/E⃗ ,B

→ C
Σ/E⃗ ,E⃗ ′

Ω+/B∪B′
Ω+

A key theorem, proved in the Appendix, is:

Theorem. The image of the set Ju | φK!
E⃗/B

under the above

homomorphism is contained in the set
J(u′1 | φ′

1 ∨ . . . ∨ u′k | φ′
k)K!E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

.

Let us see an example.

10/25

Program Verification: Lecture 26

G -Abstractable State Predicates

Call a state predicate u | φ in R G -abstractable if for
(u′1, γ1), . . . , (u

′
k , γk) the EΩ+ ∪ BΩ+-variants of u, we have

vars((φγi)!E⃗∪E⃗ ′
Ω+/B∪B′

Ω+
) ⊆ vars(ui) 1 ≤ i ≤ k. Abbreviate

(φγi)!E⃗∪E⃗ ′
Ω+/B∪B′

Ω+
to φ′

i and call u′1 | φ′
1 ∨ . . . ∨ u′k | φ′

k the

G -abstraction of u | φ in R/G .

Consider now the unique surjective Σ-homomorphism:

[!
E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

] : C
Σ/E⃗ ,B

→ C
Σ/E⃗ ,E⃗ ′

Ω+/B∪B′
Ω+

A key theorem, proved in the Appendix, is:

Theorem. The image of the set Ju | φK!
E⃗/B

under the above

homomorphism is contained in the set
J(u′1 | φ′

1 ∨ . . . ∨ u′k | φ′
k)K!E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

.

Let us see an example.10/25

Program Verification: Lecture 26

Abstractable State Predicates for R&W

In R&W, state predicates for the complements of the mutual
exclusion and one writer invariants are, respectively,
< s(N:Nat), s(M:Nat) > and < N:Nat , s(s(M:Nat)) >.
What are their corresponding G -abstractions in R&W-ABS?

get variants < s(N:Nat), s(M:Nat) > .

Variant 1

Config: < s(#1:Nat),s(#2:Nat) >

N --> #1:Nat

M --> #2:Nat

No more variants.

get variants < N:Nat , s(s(M:Nat)) > .

Variant 1

Config: < #1:Nat,s(s(#2:Nat)) >

N --> #1:Nat

M --> #2:Nat

No more variants.

Up to renaming of variables, they are the same.

11/25

Program Verification: Lecture 26

Abstractable State Predicates for R&W

In R&W, state predicates for the complements of the mutual
exclusion and one writer invariants are, respectively,
< s(N:Nat), s(M:Nat) > and < N:Nat , s(s(M:Nat)) >.
What are their corresponding G -abstractions in R&W-ABS?
get variants < s(N:Nat), s(M:Nat) > .

Variant 1

Config: < s(#1:Nat),s(#2:Nat) >

N --> #1:Nat

M --> #2:Nat

No more variants.

get variants < N:Nat , s(s(M:Nat)) > .

Variant 1

Config: < #1:Nat,s(s(#2:Nat)) >

N --> #1:Nat

M --> #2:Nat

No more variants.

Up to renaming of variables, they are the same.

11/25

Program Verification: Lecture 26

Abstractable State Predicates for R&W

In R&W, state predicates for the complements of the mutual
exclusion and one writer invariants are, respectively,
< s(N:Nat), s(M:Nat) > and < N:Nat , s(s(M:Nat)) >.
What are their corresponding G -abstractions in R&W-ABS?
get variants < s(N:Nat), s(M:Nat) > .

Variant 1

Config: < s(#1:Nat),s(#2:Nat) >

N --> #1:Nat

M --> #2:Nat

No more variants.

get variants < N:Nat , s(s(M:Nat)) > .

Variant 1

Config: < #1:Nat,s(s(#2:Nat)) >

N --> #1:Nat

M --> #2:Nat

No more variants.

Up to renaming of variables, they are the same.11/25

Program Verification: Lecture 26

G -Abstractable Rewrite Rules

Even though equational abstraction can be used for any admissible
rewrite theory R, executability of R/G is easier to achieve when R
is topmost, for which making R/G executable is closely connected
with the notion of a rule in R being G -abstractable.

Under the same assumptions on G , call a rule l → r if φ in R
(where we assume vars(r) ∪ vars(φ) ⊆ vars(l)) G -abstractable iff
for (l ′1, γ1), . . . , (l

′
k , γk) the EΩ+ ∪ BΩ+-variants of l , we have

vars((rγi)!E⃗∪E⃗ ′
Ω+/B∪B′

Ω+
) ∪ vars((φγi)!E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

) ⊆ vars(l ′i)

1 ≤ i ≤ k . Call {l ′i → r ′i if φ′
i}1≤i≤k the G -abstraction of

l → r if φ, where r ′i =def (rγi)!E⃗∪E⃗ ′
Ω+/B∪B′

Ω+
, and

φ′
i =def (φγi)!E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

. Let R̂/G have rules R̂ replacing each

l → r if φ in R/G by its G -abstraction. Then (see Appendix):

Theorem. If all rules in R are G -abstractable, R̂/G is admissible.

12/25

Program Verification: Lecture 26

G -Abstractable Rewrite Rules

Even though equational abstraction can be used for any admissible
rewrite theory R, executability of R/G is easier to achieve when R
is topmost, for which making R/G executable is closely connected
with the notion of a rule in R being G -abstractable.

Under the same assumptions on G , call a rule l → r if φ in R
(where we assume vars(r) ∪ vars(φ) ⊆ vars(l)) G -abstractable iff

for (l ′1, γ1), . . . , (l
′
k , γk) the EΩ+ ∪ BΩ+-variants of l , we have

vars((rγi)!E⃗∪E⃗ ′
Ω+/B∪B′

Ω+
) ∪ vars((φγi)!E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

) ⊆ vars(l ′i)

1 ≤ i ≤ k . Call {l ′i → r ′i if φ′
i}1≤i≤k the G -abstraction of

l → r if φ, where r ′i =def (rγi)!E⃗∪E⃗ ′
Ω+/B∪B′

Ω+
, and

φ′
i =def (φγi)!E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

. Let R̂/G have rules R̂ replacing each

l → r if φ in R/G by its G -abstraction. Then (see Appendix):

Theorem. If all rules in R are G -abstractable, R̂/G is admissible.

12/25

Program Verification: Lecture 26

G -Abstractable Rewrite Rules

Even though equational abstraction can be used for any admissible
rewrite theory R, executability of R/G is easier to achieve when R
is topmost, for which making R/G executable is closely connected
with the notion of a rule in R being G -abstractable.

Under the same assumptions on G , call a rule l → r if φ in R
(where we assume vars(r) ∪ vars(φ) ⊆ vars(l)) G -abstractable iff
for (l ′1, γ1), . . . , (l

′
k , γk) the EΩ+ ∪ BΩ+-variants of l , we have

vars((rγi)!E⃗∪E⃗ ′
Ω+/B∪B′

Ω+
) ∪ vars((φγi)!E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

) ⊆ vars(l ′i)

1 ≤ i ≤ k .

Call {l ′i → r ′i if φ′
i}1≤i≤k the G -abstraction of

l → r if φ, where r ′i =def (rγi)!E⃗∪E⃗ ′
Ω+/B∪B′

Ω+
, and

φ′
i =def (φγi)!E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

. Let R̂/G have rules R̂ replacing each

l → r if φ in R/G by its G -abstraction. Then (see Appendix):

Theorem. If all rules in R are G -abstractable, R̂/G is admissible.

12/25

Program Verification: Lecture 26

G -Abstractable Rewrite Rules

Even though equational abstraction can be used for any admissible
rewrite theory R, executability of R/G is easier to achieve when R
is topmost, for which making R/G executable is closely connected
with the notion of a rule in R being G -abstractable.

Under the same assumptions on G , call a rule l → r if φ in R
(where we assume vars(r) ∪ vars(φ) ⊆ vars(l)) G -abstractable iff
for (l ′1, γ1), . . . , (l

′
k , γk) the EΩ+ ∪ BΩ+-variants of l , we have

vars((rγi)!E⃗∪E⃗ ′
Ω+/B∪B′

Ω+
) ∪ vars((φγi)!E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

) ⊆ vars(l ′i)

1 ≤ i ≤ k . Call {l ′i → r ′i if φ′
i}1≤i≤k the G -abstraction of

l → r if φ, where r ′i =def (rγi)!E⃗∪E⃗ ′
Ω+/B∪B′

Ω+
, and

φ′
i =def (φγi)!E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

.

Let R̂/G have rules R̂ replacing each

l → r if φ in R/G by its G -abstraction. Then (see Appendix):

Theorem. If all rules in R are G -abstractable, R̂/G is admissible.

12/25

Program Verification: Lecture 26

G -Abstractable Rewrite Rules

Even though equational abstraction can be used for any admissible
rewrite theory R, executability of R/G is easier to achieve when R
is topmost, for which making R/G executable is closely connected
with the notion of a rule in R being G -abstractable.

Under the same assumptions on G , call a rule l → r if φ in R
(where we assume vars(r) ∪ vars(φ) ⊆ vars(l)) G -abstractable iff
for (l ′1, γ1), . . . , (l

′
k , γk) the EΩ+ ∪ BΩ+-variants of l , we have

vars((rγi)!E⃗∪E⃗ ′
Ω+/B∪B′

Ω+
) ∪ vars((φγi)!E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

) ⊆ vars(l ′i)

1 ≤ i ≤ k . Call {l ′i → r ′i if φ′
i}1≤i≤k the G -abstraction of

l → r if φ, where r ′i =def (rγi)!E⃗∪E⃗ ′
Ω+/B∪B′

Ω+
, and

φ′
i =def (φγi)!E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

. Let R̂/G have rules R̂ replacing each

l → r if φ in R/G by its G -abstraction.

Then (see Appendix):

Theorem. If all rules in R are G -abstractable, R̂/G is admissible.

12/25

Program Verification: Lecture 26

G -Abstractable Rewrite Rules

Even though equational abstraction can be used for any admissible
rewrite theory R, executability of R/G is easier to achieve when R
is topmost, for which making R/G executable is closely connected
with the notion of a rule in R being G -abstractable.

Under the same assumptions on G , call a rule l → r if φ in R
(where we assume vars(r) ∪ vars(φ) ⊆ vars(l)) G -abstractable iff
for (l ′1, γ1), . . . , (l

′
k , γk) the EΩ+ ∪ BΩ+-variants of l , we have

vars((rγi)!E⃗∪E⃗ ′
Ω+/B∪B′

Ω+
) ∪ vars((φγi)!E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

) ⊆ vars(l ′i)

1 ≤ i ≤ k . Call {l ′i → r ′i if φ′
i}1≤i≤k the G -abstraction of

l → r if φ, where r ′i =def (rγi)!E⃗∪E⃗ ′
Ω+/B∪B′

Ω+
, and

φ′
i =def (φγi)!E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

. Let R̂/G have rules R̂ replacing each

l → r if φ in R/G by its G -abstraction. Then (see Appendix):

Theorem. If all rules in R are G -abstractable, R̂/G is admissible.
12/25

Program Verification: Lecture 26

G -Abstraction of Rules for R&W

Let us compute the G -variants of all lefthand sides of rules R&W in
the theory R&W-ABS:

get variants < 0, 0 > . *** For rule rl < 0, 0 > => < 0, s(0) > .

Variant 1

Config: < 0,0 >

No more variants.

*** Its G-abstraction is itself.

get variants < R, s(W) > . *** For rule rl < R, s(W) > => < R, W > .

Variant 1

Config: < #1:Nat,s(#2:Nat) >

R --> #1:Nat

W --> #2:Nat

No more variants.

*** Its G-abstraction is itself

13/25

Program Verification: Lecture 26

G -Abstraction of Rules for R&W

Let us compute the G -variants of all lefthand sides of rules R&W in
the theory R&W-ABS:
get variants < 0, 0 > . *** For rule rl < 0, 0 > => < 0, s(0) > .

Variant 1

Config: < 0,0 >

No more variants.

*** Its G-abstraction is itself.

get variants < R, s(W) > . *** For rule rl < R, s(W) > => < R, W > .

Variant 1

Config: < #1:Nat,s(#2:Nat) >

R --> #1:Nat

W --> #2:Nat

No more variants.

*** Its G-abstraction is itself
13/25

Program Verification: Lecture 26

G -Abstraction of Rules for R&W (II)

Maude> get variants < R, 0 > . *** For rule rl < R, s(W) > => < R, W > .

Variant 1

Config: < #1:Nat,0 >

R --> #1:Nat

Variant 2

Config: < s(0),0 >

R --> s(s(%1:Nat))

No more variants.

*** G-abstraction: itself and < s(0) , 0 > => < s(s(R)), 0 >! = < s(0) , 0 > .

get variants < s(R),W > . *** For rule rl < s(R), W > => < R, W > .

Variant 1

Config: < s(#1:Nat),#2:Nat >

R --> #1:Nat

W --> #2:Nat

14/25

Program Verification: Lecture 26

G -Abstraction of Rules for R&W (III)

Variant 2

Config: < s(0),0 >

R --> s(%1:Nat)

W --> 0

*** Its G-abstraction includes itself, but rule

*** < s(0), 0 > => < s(N), 0 > .

*** is NOT EXECUTABLE. However, in R&W-ABS we can prove the inductive theorem:

*** < s(N), 0 > = < s(0) , 0 > using as generator set {0,s(x)}

*** so we get the semantically equivalent EXECUTABLE rule:

*** < s(0), 0 > => < s(0), 0 > .

*** making R&W-ABS ADMISSIBLE.

Since we have made R&W-ABS admissible as the system module:

15/25

Program Verification: Lecture 26

G -Abstraction of Rules for R&W (III)

Variant 2

Config: < s(0),0 >

R --> s(%1:Nat)

W --> 0

*** Its G-abstraction includes itself, but rule

*** < s(0), 0 > => < s(N), 0 > .

*** is NOT EXECUTABLE. However, in R&W-ABS we can prove the inductive theorem:

*** < s(N), 0 > = < s(0) , 0 > using as generator set {0,s(x)}

*** so we get the semantically equivalent EXECUTABLE rule:

*** < s(0), 0 > => < s(0), 0 > .

*** making R&W-ABS ADMISSIBLE.

Since we have made R&W-ABS admissible as the system module:

15/25

Program Verification: Lecture 26

G -Abstraction of Rules for R&W (IV)

mod R&W-ABS-ADMISSIBLE is

including R&W .

vars N M R W : Nat .

eq < s(s(N)),0 > = < s(0),0 > [variant] .

rl < s(0) , 0 > => < s(0) , 0 > .

endm

we can use it to verify properties of R&W by search:

search < 0, 0 > =>* < s(N), s(M) > .

No solution.

search < 0, 0 > =>* < N, s(s(M)) > .

No solution.

thanks to the following Main Theorem (proof in the Appendix):

16/25

Program Verification: Lecture 26

G -Abstraction of Rules for R&W (IV)

mod R&W-ABS-ADMISSIBLE is

including R&W .

vars N M R W : Nat .

eq < s(s(N)),0 > = < s(0),0 > [variant] .

rl < s(0) , 0 > => < s(0) , 0 > .

endm

we can use it to verify properties of R&W by search:

search < 0, 0 > =>* < s(N), s(M) > .

No solution.

search < 0, 0 > =>* < N, s(s(M)) > .

No solution.

thanks to the following Main Theorem (proof in the Appendix):

16/25

Program Verification: Lecture 26

G -Abstraction of Rules for R&W (IV)

mod R&W-ABS-ADMISSIBLE is

including R&W .

vars N M R W : Nat .

eq < s(s(N)),0 > = < s(0),0 > [variant] .

rl < s(0) , 0 > => < s(0) , 0 > .

endm

we can use it to verify properties of R&W by search:

search < 0, 0 > =>* < s(N), s(M) > .

No solution.

search < 0, 0 > =>* < N, s(s(M)) > .

No solution.

thanks to the following Main Theorem (proof in the Appendix):

16/25

Program Verification: Lecture 26

Main Theorem on Equational Abstractions

Main Theorem (Explicit-State Model Checking with Equational
Abstractions). For R topmost and admissible with all its rules
G -abstractable and (v1 | φ1 ∨ . . . ∨ vm | φm) such that each vi | φi

is abstractable as v ′i ,1 | φ′
i ,1 ∨ . . . ∨ v ′i ,ki | φ

′
i ,ki

. The following holds

for any initial states [u] ∈ CR, [u!] = [u!
E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

] ∈ CR/G :

CR, [u] |=S4 3(v1 | φ1 ∨ . . . ∨ vm | φm) ⇒ C
R̂/G

, [u!] |=S4 3
∨

1≤i≤m

(v′i,1 | φ′
i,1 ∨ . . . ∨ v′i,ki

| φ′
i,ki

)

and therefore the dual, contrapositive implication also holds:

C
R̂/G

, [u!] |=S4 2(
∨

1≤i≤m

(v′i,1 | φ′
i,1 ∨ . . . ∨ v′i,ki

| φ′
i,ki

))c ⇒ CR, [u] |=S4 2(v1 | φ1 ∨ . . . ∨ vm | φm)c

Therefore,

CR̂/G
, [u!] ̸|=S4 3

∨
1≤i≤m

(v ′
i,1 | φ′

i,1 ∨ . . . ∨ v ′
i,ki | φ

′
i,ki)

proves that (v1 | φ1 ∨ . . . ∨ vm | φm)
c is an invariant from [u] in

CR.

17/25

Program Verification: Lecture 26

Main Theorem on Equational Abstractions

Main Theorem (Explicit-State Model Checking with Equational
Abstractions). For R topmost and admissible with all its rules
G -abstractable and (v1 | φ1 ∨ . . . ∨ vm | φm) such that each vi | φi

is abstractable as v ′i ,1 | φ′
i ,1 ∨ . . . ∨ v ′i ,ki | φ

′
i ,ki

. The following holds

for any initial states [u] ∈ CR, [u!] = [u!
E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

] ∈ CR/G :

CR, [u] |=S4 3(v1 | φ1 ∨ . . . ∨ vm | φm) ⇒ C
R̂/G

, [u!] |=S4 3
∨

1≤i≤m

(v′i,1 | φ′
i,1 ∨ . . . ∨ v′i,ki

| φ′
i,ki

)

and therefore the dual, contrapositive implication also holds:

C
R̂/G

, [u!] |=S4 2(
∨

1≤i≤m

(v′i,1 | φ′
i,1 ∨ . . . ∨ v′i,ki

| φ′
i,ki

))c ⇒ CR, [u] |=S4 2(v1 | φ1 ∨ . . . ∨ vm | φm)c

Therefore,

CR̂/G
, [u!] ̸|=S4 3

∨
1≤i≤m

(v ′
i,1 | φ′

i,1 ∨ . . . ∨ v ′
i,ki | φ

′
i,ki)

proves that (v1 | φ1 ∨ . . . ∨ vm | φm)
c is an invariant from [u] in

CR.

17/25

Program Verification: Lecture 26

Main Theorem on Equational Abstractions

Main Theorem (Explicit-State Model Checking with Equational
Abstractions). For R topmost and admissible with all its rules
G -abstractable and (v1 | φ1 ∨ . . . ∨ vm | φm) such that each vi | φi

is abstractable as v ′i ,1 | φ′
i ,1 ∨ . . . ∨ v ′i ,ki | φ

′
i ,ki

. The following holds

for any initial states [u] ∈ CR, [u!] = [u!
E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

] ∈ CR/G :

CR, [u] |=S4 3(v1 | φ1 ∨ . . . ∨ vm | φm) ⇒ C
R̂/G

, [u!] |=S4 3
∨

1≤i≤m

(v′i,1 | φ′
i,1 ∨ . . . ∨ v′i,ki

| φ′
i,ki

)

and therefore the dual, contrapositive implication also holds:

C
R̂/G

, [u!] |=S4 2(
∨

1≤i≤m

(v′i,1 | φ′
i,1 ∨ . . . ∨ v′i,ki

| φ′
i,ki

))c ⇒ CR, [u] |=S4 2(v1 | φ1 ∨ . . . ∨ vm | φm)c

Therefore,

CR̂/G
, [u!] ̸|=S4 3

∨
1≤i≤m

(v ′
i,1 | φ′

i,1 ∨ . . . ∨ v ′
i,ki | φ

′
i,ki)

proves that (v1 | φ1 ∨ . . . ∨ vm | φm)
c is an invariant from [u] in

CR.

17/25

Program Verification: Lecture 26

Main Theorem on Equational Abstractions

Main Theorem (Explicit-State Model Checking with Equational
Abstractions). For R topmost and admissible with all its rules
G -abstractable and (v1 | φ1 ∨ . . . ∨ vm | φm) such that each vi | φi

is abstractable as v ′i ,1 | φ′
i ,1 ∨ . . . ∨ v ′i ,ki | φ

′
i ,ki

. The following holds

for any initial states [u] ∈ CR, [u!] = [u!
E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

] ∈ CR/G :

CR, [u] |=S4 3(v1 | φ1 ∨ . . . ∨ vm | φm) ⇒ C
R̂/G

, [u!] |=S4 3
∨

1≤i≤m

(v′i,1 | φ′
i,1 ∨ . . . ∨ v′i,ki

| φ′
i,ki

)

and therefore the dual, contrapositive implication also holds:

C
R̂/G

, [u!] |=S4 2(
∨

1≤i≤m

(v′i,1 | φ′
i,1 ∨ . . . ∨ v′i,ki

| φ′
i,ki

))c ⇒ CR, [u] |=S4 2(v1 | φ1 ∨ . . . ∨ vm | φm)c

Therefore,

CR̂/G
, [u!] ̸|=S4 3

∨
1≤i≤m

(v ′
i,1 | φ′

i,1 ∨ . . . ∨ v ′
i,ki | φ

′
i,ki)

proves that (v1 | φ1 ∨ . . . ∨ vm | φm)
c is an invariant from [u] in

CR.

17/25

Program Verification: Lecture 26

Main Theorem on Equational Abstractions

Main Theorem (Explicit-State Model Checking with Equational
Abstractions). For R topmost and admissible with all its rules
G -abstractable and (v1 | φ1 ∨ . . . ∨ vm | φm) such that each vi | φi

is abstractable as v ′i ,1 | φ′
i ,1 ∨ . . . ∨ v ′i ,ki | φ

′
i ,ki

. The following holds

for any initial states [u] ∈ CR, [u!] = [u!
E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

] ∈ CR/G :

CR, [u] |=S4 3(v1 | φ1 ∨ . . . ∨ vm | φm) ⇒ C
R̂/G

, [u!] |=S4 3
∨

1≤i≤m

(v′i,1 | φ′
i,1 ∨ . . . ∨ v′i,ki

| φ′
i,ki

)

and therefore the dual, contrapositive implication also holds:

C
R̂/G

, [u!] |=S4 2(
∨

1≤i≤m

(v′i,1 | φ′
i,1 ∨ . . . ∨ v′i,ki

| φ′
i,ki

))c ⇒ CR, [u] |=S4 2(v1 | φ1 ∨ . . . ∨ vm | φm)c

Therefore,

CR̂/G
, [u!] ̸|=S4 3

∨
1≤i≤m

(v ′
i,1 | φ′

i,1 ∨ . . . ∨ v ′
i,ki | φ

′
i,ki)

proves that (v1 | φ1 ∨ . . . ∨ vm | φm)
c is an invariant from [u] in

CR.

17/25

Program Verification: Lecture 26

Main Theorem on Equational Abstractions

Main Theorem (Explicit-State Model Checking with Equational
Abstractions). For R topmost and admissible with all its rules
G -abstractable and (v1 | φ1 ∨ . . . ∨ vm | φm) such that each vi | φi

is abstractable as v ′i ,1 | φ′
i ,1 ∨ . . . ∨ v ′i ,ki | φ

′
i ,ki

. The following holds

for any initial states [u] ∈ CR, [u!] = [u!
E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

] ∈ CR/G :

CR, [u] |=S4 3(v1 | φ1 ∨ . . . ∨ vm | φm) ⇒ C
R̂/G

, [u!] |=S4 3
∨

1≤i≤m

(v′i,1 | φ′
i,1 ∨ . . . ∨ v′i,ki

| φ′
i,ki

)

and therefore the dual, contrapositive implication also holds:

C
R̂/G

, [u!] |=S4 2(
∨

1≤i≤m

(v′i,1 | φ′
i,1 ∨ . . . ∨ v′i,ki

| φ′
i,ki

))c ⇒ CR, [u] |=S4 2(v1 | φ1 ∨ . . . ∨ vm | φm)c

Therefore,

CR̂/G
, [u!] ̸|=S4 3

∨
1≤i≤m

(v ′
i,1 | φ′

i,1 ∨ . . . ∨ v ′
i,ki | φ

′
i,ki)

proves that (v1 | φ1 ∨ . . . ∨ vm | φm)
c is an invariant from [u] in

CR.

17/25

Program Verification: Lecture 26

Main Theorem on Equational Abstractions

Main Theorem (Explicit-State Model Checking with Equational
Abstractions). For R topmost and admissible with all its rules
G -abstractable and (v1 | φ1 ∨ . . . ∨ vm | φm) such that each vi | φi

is abstractable as v ′i ,1 | φ′
i ,1 ∨ . . . ∨ v ′i ,ki | φ

′
i ,ki

. The following holds

for any initial states [u] ∈ CR, [u!] = [u!
E⃗∪E⃗ ′

Ω+/B∪B′
Ω+

] ∈ CR/G :

CR, [u] |=S4 3(v1 | φ1 ∨ . . . ∨ vm | φm) ⇒ C
R̂/G

, [u!] |=S4 3
∨

1≤i≤m

(v′i,1 | φ′
i,1 ∨ . . . ∨ v′i,ki

| φ′
i,ki

)

and therefore the dual, contrapositive implication also holds:

C
R̂/G

, [u!] |=S4 2(
∨

1≤i≤m

(v′i,1 | φ′
i,1 ∨ . . . ∨ v′i,ki

| φ′
i,ki

))c ⇒ CR, [u] |=S4 2(v1 | φ1 ∨ . . . ∨ vm | φm)c

Therefore,

CR̂/G
, [u!] ̸|=S4 3

∨
1≤i≤m

(v ′
i,1 | φ′

i,1 ∨ . . . ∨ v ′
i,ki | φ

′
i,ki)

proves that (v1 | φ1 ∨ . . . ∨ vm | φm)
c is an invariant from [u] in

CR.
17/25

Program Verification: Lecture 26

Equational Abstractions for Explicit-State Model
Checking: the LTL Case

Equational abstractions can also be used for explicit-state LTL
model checking.

The requirements are:

1 those for model checking modal logic properties of a topmost

R using R̂/G and search, as explained above, plus:

2 R (or at least the set of states reachable from the initial
state(s)) must be deadlock-free, or made so by adding an
extra, conditional rule to loop on deadlock states (always
possible, and easy for topmost rewrite theories), and

3 (i) specifying state predicates in both the true and false

cases in R-PREDS, (ii) using their G -abstractions in
R/G -PREDS, and (iii) R/G -PREDS must protect BOOL.

Main Theorem. Under requirements (1)–(3), if R̂/G , [u!] |=LTL φ,
then R, [u] |=LTL φ for any φ ∈ LTL(Π). (Proof in Appendix).

18/25

Program Verification: Lecture 26

Equational Abstractions for Explicit-State Model
Checking: the LTL Case

Equational abstractions can also be used for explicit-state LTL
model checking. The requirements are:

1 those for model checking modal logic properties of a topmost

R using R̂/G and search, as explained above, plus:

2 R (or at least the set of states reachable from the initial
state(s)) must be deadlock-free, or made so by adding an
extra, conditional rule to loop on deadlock states (always
possible, and easy for topmost rewrite theories), and

3 (i) specifying state predicates in both the true and false

cases in R-PREDS, (ii) using their G -abstractions in
R/G -PREDS, and (iii) R/G -PREDS must protect BOOL.

Main Theorem. Under requirements (1)–(3), if R̂/G , [u!] |=LTL φ,
then R, [u] |=LTL φ for any φ ∈ LTL(Π). (Proof in Appendix).

18/25

Program Verification: Lecture 26

Equational Abstractions for Explicit-State Model
Checking: the LTL Case

Equational abstractions can also be used for explicit-state LTL
model checking. The requirements are:

1 those for model checking modal logic properties of a topmost

R using R̂/G and search, as explained above, plus:

2 R (or at least the set of states reachable from the initial
state(s)) must be deadlock-free, or made so by adding an
extra, conditional rule to loop on deadlock states (always
possible, and easy for topmost rewrite theories), and

3 (i) specifying state predicates in both the true and false

cases in R-PREDS, (ii) using their G -abstractions in
R/G -PREDS, and (iii) R/G -PREDS must protect BOOL.

Main Theorem. Under requirements (1)–(3), if R̂/G , [u!] |=LTL φ,
then R, [u] |=LTL φ for any φ ∈ LTL(Π). (Proof in Appendix).

18/25

Program Verification: Lecture 26

Equational Abstractions for Explicit-State Model
Checking: the LTL Case

Equational abstractions can also be used for explicit-state LTL
model checking. The requirements are:

1 those for model checking modal logic properties of a topmost

R using R̂/G and search, as explained above, plus:

2 R (or at least the set of states reachable from the initial
state(s)) must be deadlock-free, or made so by adding an
extra, conditional rule to loop on deadlock states (always
possible, and easy for topmost rewrite theories), and

3 (i) specifying state predicates in both the true and false

cases in R-PREDS, (ii) using their G -abstractions in
R/G -PREDS, and (iii) R/G -PREDS must protect BOOL.

Main Theorem. Under requirements (1)–(3), if R̂/G , [u!] |=LTL φ,
then R, [u] |=LTL φ for any φ ∈ LTL(Π). (Proof in Appendix).

18/25

Program Verification: Lecture 26

Equational Abstractions for Explicit-State Model
Checking: the LTL Case

Equational abstractions can also be used for explicit-state LTL
model checking. The requirements are:

1 those for model checking modal logic properties of a topmost

R using R̂/G and search, as explained above, plus:

2 R (or at least the set of states reachable from the initial
state(s)) must be deadlock-free, or made so by adding an
extra, conditional rule to loop on deadlock states (always
possible, and easy for topmost rewrite theories), and

3 (i) specifying state predicates in both the true and false

cases in R-PREDS,

(ii) using their G -abstractions in
R/G -PREDS, and (iii) R/G -PREDS must protect BOOL.

Main Theorem. Under requirements (1)–(3), if R̂/G , [u!] |=LTL φ,
then R, [u] |=LTL φ for any φ ∈ LTL(Π). (Proof in Appendix).

18/25

Program Verification: Lecture 26

Equational Abstractions for Explicit-State Model
Checking: the LTL Case

Equational abstractions can also be used for explicit-state LTL
model checking. The requirements are:

1 those for model checking modal logic properties of a topmost

R using R̂/G and search, as explained above, plus:

2 R (or at least the set of states reachable from the initial
state(s)) must be deadlock-free, or made so by adding an
extra, conditional rule to loop on deadlock states (always
possible, and easy for topmost rewrite theories), and

3 (i) specifying state predicates in both the true and false

cases in R-PREDS, (ii) using their G -abstractions in
R/G -PREDS, and

(iii) R/G -PREDS must protect BOOL.

Main Theorem. Under requirements (1)–(3), if R̂/G , [u!] |=LTL φ,
then R, [u] |=LTL φ for any φ ∈ LTL(Π). (Proof in Appendix).

18/25

Program Verification: Lecture 26

Equational Abstractions for Explicit-State Model
Checking: the LTL Case

Equational abstractions can also be used for explicit-state LTL
model checking. The requirements are:

1 those for model checking modal logic properties of a topmost

R using R̂/G and search, as explained above, plus:

2 R (or at least the set of states reachable from the initial
state(s)) must be deadlock-free, or made so by adding an
extra, conditional rule to loop on deadlock states (always
possible, and easy for topmost rewrite theories), and

3 (i) specifying state predicates in both the true and false

cases in R-PREDS, (ii) using their G -abstractions in
R/G -PREDS, and (iii) R/G -PREDS must protect BOOL.

Main Theorem. Under requirements (1)–(3), if R̂/G , [u!] |=LTL φ,
then R, [u] |=LTL φ for any φ ∈ LTL(Π). (Proof in Appendix).

18/25

Program Verification: Lecture 26

Equational Abstractions for Explicit-State Model
Checking: the LTL Case

Equational abstractions can also be used for explicit-state LTL
model checking. The requirements are:

1 those for model checking modal logic properties of a topmost

R using R̂/G and search, as explained above, plus:

2 R (or at least the set of states reachable from the initial
state(s)) must be deadlock-free, or made so by adding an
extra, conditional rule to loop on deadlock states (always
possible, and easy for topmost rewrite theories), and

3 (i) specifying state predicates in both the true and false

cases in R-PREDS, (ii) using their G -abstractions in
R/G -PREDS, and (iii) R/G -PREDS must protect BOOL.

Main Theorem. Under requirements (1)–(3), if R̂/G , [u!] |=LTL φ,
then R, [u] |=LTL φ for any φ ∈ LTL(Π). (Proof in Appendix).

18/25

Program Verification: Lecture 26

Explicit-State LTL Model Checking of R&W

For R&W requirement (1) is fulfilled by R&W-ABS-ADMISSIBLE and
requirement (2) by R&W is deadlock free. Consider the predicates:

in model-checker.maude

mod R&W-PREDS is protecting R&W . extending SATISFACTION .

subsort Config < State .

ops mutex one-writer reads writes : -> Prop .

eq < s(N:Nat),s(M:Nat) > |= mutex = false .

eq < 0,N:Nat > |= mutex = true .

eq < N:Nat,0 > |= mutex = true .

eq < N:Nat,s(s(M:Nat)) > |= one-writer = false .

eq < N:Nat,0 > |= one-writer = true .

eq < N:Nat,s(0) > |= one-writer = true .

eq < s(N:Nat), M:Nat > |= reads = true .

eq < 0, M:Nat > |= reads = false .

eq < M:Nat, s(N:Nat) > |= writes = true .

eq < N:Nat, 0 > |= writes = false .

endm

In the negative cases of mutex and one-writer we checked that
their G -abstractions are themselves. For all other cases we get:
variants:

19/25

Program Verification: Lecture 26

Explicit-State LTL Model Checking of R&W

For R&W requirement (1) is fulfilled by R&W-ABS-ADMISSIBLE and
requirement (2) by R&W is deadlock free. Consider the predicates:
in model-checker.maude

mod R&W-PREDS is protecting R&W . extending SATISFACTION .

subsort Config < State .

ops mutex one-writer reads writes : -> Prop .

eq < s(N:Nat),s(M:Nat) > |= mutex = false .

eq < 0,N:Nat > |= mutex = true .

eq < N:Nat,0 > |= mutex = true .

eq < N:Nat,s(s(M:Nat)) > |= one-writer = false .

eq < N:Nat,0 > |= one-writer = true .

eq < N:Nat,s(0) > |= one-writer = true .

eq < s(N:Nat), M:Nat > |= reads = true .

eq < 0, M:Nat > |= reads = false .

eq < M:Nat, s(N:Nat) > |= writes = true .

eq < N:Nat, 0 > |= writes = false .

endm

In the negative cases of mutex and one-writer we checked that
their G -abstractions are themselves. For all other cases we get:
variants:

19/25

Program Verification: Lecture 26

Explicit-State LTL Model Checking of R&W

For R&W requirement (1) is fulfilled by R&W-ABS-ADMISSIBLE and
requirement (2) by R&W is deadlock free. Consider the predicates:
in model-checker.maude

mod R&W-PREDS is protecting R&W . extending SATISFACTION .

subsort Config < State .

ops mutex one-writer reads writes : -> Prop .

eq < s(N:Nat),s(M:Nat) > |= mutex = false .

eq < 0,N:Nat > |= mutex = true .

eq < N:Nat,0 > |= mutex = true .

eq < N:Nat,s(s(M:Nat)) > |= one-writer = false .

eq < N:Nat,0 > |= one-writer = true .

eq < N:Nat,s(0) > |= one-writer = true .

eq < s(N:Nat), M:Nat > |= reads = true .

eq < 0, M:Nat > |= reads = false .

eq < M:Nat, s(N:Nat) > |= writes = true .

eq < N:Nat, 0 > |= writes = false .

endm

In the negative cases of mutex and one-writer we checked that
their G -abstractions are themselves. For all other cases we get:
variants:

19/25

Program Verification: Lecture 26

Explicit-State LTL Model Checking of R&W (II)

get variants < 0,N:Nat > . *** For eq < 0,N:Nat > |= mutex = true .

Variant 1

Config: < 0,#1:Nat >

N --> #1:Nat

No more variants.

*** The G-abstraction is itself

get variants < N:Nat,0 > . *** For eq < N:Nat,0 > |= mutex = true .

Variant 1

Config: < #1:Nat,0 >

N --> #1:Nat

Variant 2

Config: < s(0),0 >

N --> s(s(%1:Nat))

No more variants.

*** The G-abstraction adds the equation < s(0),0 > |= mutex = true .

20/25

Program Verification: Lecture 26

Explicit-State LTL Model Checking of R&W (III)

get variants < N:Nat,0 > . *** For eq < N:Nat,0 > |= one-writer = true .

*** has already been computed for mutex

*** The G-abstraction adds the equation < s(0),0 > |= one-writer = true .

get variants < N:Nat,s(0) > . *** For eq < N:Nat,s(0) > |= one-writer = true .

Variant 1

Config: < #1:Nat,s(0) >

N --> #1:Nat

No more variants.

*** The G-abstraction is itself

get variants < s(N:Nat), M:Nat > . *** For < s(N:Nat), M:Nat > |= reads = true .

Variant 1

Config: < s(#1:Nat),#2:Nat >

N --> #1:Nat

M --> #2:Nat

21/25

Program Verification: Lecture 26

Explicit-State LTL Model Checking of R&W (IV)

Variant 2

Config: < s(0),0 >

N --> s(%1:Nat)

M --> 0

No more variants.

*** The G-abstraction adds < s(0),0 > |= reads = true .

get variants < 0, M:Nat > . *** For < 0, M:Nat > |= reads = false .

Variant 1

Config: < 0,#1:Nat >

M --> #1:Nat

No more variants.

*** The G-abstraction is itself

22/25

Program Verification: Lecture 26

Explicit-State LTL Model Checking of R&W (V)

get variants < M:Nat, s(N:Nat) > . *** For < M:Nat, s(N:Nat) > |= writes = true .

Variant 1

rewrites: 0 in 0ms cpu (0ms real) (0 rewrites/second)

Config: < #1:Nat,s(#2:Nat) >

M:Nat --> #1:Nat

N:Nat --> #2:Nat

No more variants.

*** The G-abstraction is itself

< N:Nat, 0 > |= writes = false .

get variants < N:Nat, 0 > *** For < N:Nat, 0 > |= writes = false .

*** same variants as for eq mutex(< N:Nat,0 >) = true .

*** The G-abstraction adds the equation < s(0),0 > |= writes = false .

Therefore, we get the following modules
R&W-ABS-ADMISSIBLE-PREDS and R&W-ABS-ADMISSIBLE-CHECK:

23/25

Program Verification: Lecture 26

Explicit-State LTL Model Checking of R&W (V)

get variants < M:Nat, s(N:Nat) > . *** For < M:Nat, s(N:Nat) > |= writes = true .

Variant 1

rewrites: 0 in 0ms cpu (0ms real) (0 rewrites/second)

Config: < #1:Nat,s(#2:Nat) >

M:Nat --> #1:Nat

N:Nat --> #2:Nat

No more variants.

*** The G-abstraction is itself

< N:Nat, 0 > |= writes = false .

get variants < N:Nat, 0 > *** For < N:Nat, 0 > |= writes = false .

*** same variants as for eq mutex(< N:Nat,0 >) = true .

*** The G-abstraction adds the equation < s(0),0 > |= writes = false .

Therefore, we get the following modules
R&W-ABS-ADMISSIBLE-PREDS and R&W-ABS-ADMISSIBLE-CHECK:

23/25

Program Verification: Lecture 26

Explicit-State LTL Model Checking of R&W (VI)

mod R&W-ABS-ADMISSIBLE-PREDS is protecting R&W-ABS-ADMISSIBLE .

including R&W-PREDS .

eq < s(0),0 > |= mutex = true .

eq < s(0),0 > |= one-writer = true .

eq < s(0),0 > |= reads = true .

eq < s(0),0 > |= writes = false .

endm

mod R&W-ABS-ADMISSIBLE-CHECK is protecting R&W-ABS-ADMISSIBLE-PREDS .

including MODEL-CHECKER .

endm

red modelCheck(< 0,0 >,[] mutex) .

result Bool: true

red modelCheck(< 0,0 >,[] one-writer) .

result Bool: true

24/25

Program Verification: Lecture 26

Explicit-State LTL Model Checking of R&W (VII)

red modelCheck(< 0,0 >,[] <> reads) .

result ModelCheckResult:

counterexample(nil, {< 0,0 >,unlabeled} {< 0,s(0) >,unlabeled})

red modelCheck(< 0,0 >,[] <> writes) .

result ModelCheckResult:

counterexample({< 0,0 >,unlabeled}, {< s(0),0 >,unlabeled})

red modelCheck(< 0,0 >,[] <> (reads \/ writes)) .

result Bool: true

25/25

