Program Verification: Lecture 26

José Meseguer
University of Illinois at Urbana-Champaign

Equational Abstractions

An equational abstraction of a rewrite theory $\mathcal{R}=(\Sigma, E \cup B, R)$ is another rewrite theory $\mathcal{R} / G=(\Sigma, E \cup B \cup G, R)$, where G a set of Σ-equations.

Equational Abstractions

An equational abstraction of a rewrite theory $\mathcal{R}=(\Sigma, E \cup B, R)$ is another rewrite theory $\mathcal{R} / G=(\Sigma, E \cup B \cup G, R)$, where G a set of Σ-equations. Equational abstractions can be very useful for both symbolic and explicit state model checking.

Equational Abstractions

An equational abstraction of a rewrite theory $\mathcal{R}=(\Sigma, E \cup B, R)$ is another rewrite theory $\mathcal{R} / G=(\Sigma, E \cup B \cup G, R)$, where G a set of Σ-equations. Equational abstractions can be very useful for both symbolic and explicit state model checking.

This is because, some properties that may be hard to model check in \mathcal{R} may be model checked in \mathcal{R} / G with the guarantee that if they hold in \mathcal{R} / G they also hold in \mathcal{R}.

Equational Abstractions

An equational abstraction of a rewrite theory $\mathcal{R}=(\Sigma, E \cup B, R)$ is another rewrite theory $\mathcal{R} / G=(\Sigma, E \cup B \cup G, R)$, where G a set of Σ-equations. Equational abstractions can be very useful for both symbolic and explicit state model checking.

This is because, some properties that may be hard to model check in \mathcal{R} may be model checked in \mathcal{R} / G with the guarantee that if they hold in \mathcal{R} / G they also hold in \mathcal{R}.

Even if \mathcal{R} is admissible, \mathcal{R} / G may not be so.

Equational Abstractions

An equational abstraction of a rewrite theory $\mathcal{R}=(\Sigma, E \cup B, R)$ is another rewrite theory $\mathcal{R} / G=(\Sigma, E \cup B \cup G, R)$, where G a set of Σ-equations. Equational abstractions can be very useful for both symbolic and explicit state model checking.

This is because, some properties that may be hard to model check in \mathcal{R} may be model checked in \mathcal{R} / G with the guarantee that if they hold in \mathcal{R} / G they also hold in \mathcal{R}.

Even if \mathcal{R} is admissible, \mathcal{R} / G may not be so. But we can always reason on the Σ transition systems $\mathbb{T}_{\mathcal{R}}=\left(\mathbb{T}_{\Sigma / E \cup B}, \rightarrow_{R / E \cup B}\right)$ and $\mathbb{T}_{\mathcal{R} / G}=\left(T_{\Sigma / E \cup B \cup G}, \rightarrow_{R / E \cup B \cup G}\right)$.

Equational Abstractions

An equational abstraction of a rewrite theory $\mathcal{R}=(\Sigma, E \cup B, R)$ is another rewrite theory $\mathcal{R} / G=(\Sigma, E \cup B \cup G, R)$, where G a set of Σ-equations. Equational abstractions can be very useful for both symbolic and explicit state model checking.

This is because, some properties that may be hard to model check in \mathcal{R} may be model checked in \mathcal{R} / G with the guarantee that if they hold in \mathcal{R} / G they also hold in \mathcal{R}.

Even if \mathcal{R} is admissible, \mathcal{R} / G may not be so. But we can always reason on the Σ transition systems $\mathbb{T}_{\mathcal{R}}=\left(\mathbb{T}_{\Sigma / E \cup B}, \rightarrow_{R / E \cup B}\right)$ and $\mathbb{T}_{\mathcal{R} / G}=\left(T_{\Sigma / E \cup B \cup G}, \rightarrow_{R / E \cup B \cup G}\right)$.
Ex.26.1 Prove that if \mathcal{R} is admissible, the unique Σ-isomorphism $\left[-!_{\vec{E} / B}\right]: \mathbb{T}_{\Sigma / E \cup B} \rightarrow \mathbb{C}_{\Sigma / E \cup B}$ defines an isomorphism of Σ-transition systems. I.e., prove that for any Σ-terms u, v we have $[u]_{E \cup B} \rightarrow_{R / E \cup B}[u]_{E \cup B}$ in $\mathbb{T}_{\mathcal{R}}$ iff $\left[u!_{\vec{E} / B}\right]_{B} \rightarrow_{\mathcal{R}}\left[v!_{\vec{E} / B}\right]_{B}$ in $\mathbb{C}_{\mathcal{E}}$.

The Kripke Structures $\mathbb{T}_{\mathcal{R}}$ and $\mathbb{T}_{\mathcal{R} / G}$

Choosing a top sort State of states in Σ, we can define Kripke structures $\mathbb{T}_{\mathcal{R}}=\left(T_{\Sigma / E \cup B, \text { State }}, \rightarrow_{R / E \cup B},{ }_{-\mathbb{T}_{\mathcal{R}}}\right)$ and $\mathbb{T}_{\mathcal{R} / G}=\left(T_{\Sigma / E \cup B \cup G, \text { State }}, \rightarrow_{R / E \cup B \cup G,-\mathbb{T}_{\mathcal{R} / G}}\right)$,

The Kripke Structures $\mathbb{T}_{\mathcal{R}}$ and $\mathbb{T}_{\mathcal{R} / \mathcal{G}}$

Choosing a top sort State of states in Σ, we can define Kripke structures $\mathbb{T}_{\mathcal{R}}=\left(T_{\Sigma / E \cup B, S \text { State }}, \rightarrow_{R / E \cup B},-\mathbb{T}_{\mathcal{R}}\right)$ and $\mathbb{T}_{\mathcal{R} / G}=\left(T_{\Sigma / E \cup B \cup G, \text { State }}, \rightarrow_{R / E \cup B \cup G},{ }_{-\mathbb{T}_{\mathcal{R} / G}}\right)$, where the set Π of state predicates is the set $T_{\Sigma}(X)_{\text {State }}$ with X an infinite set of variables, and

The Kripke Structures $\mathbb{T}_{\mathcal{R}}$ and $\mathbb{T}_{\mathcal{R} / G}$

Choosing a top sort State of states in Σ, we can define Kripke structures $\mathbb{T}_{\mathcal{R}}=\left(T_{\Sigma / E \cup B, S \text { State }}, \rightarrow_{R / E \cup B},-\mathbb{T}_{\mathcal{R}}\right)$ and $\mathbb{T}_{\mathcal{R} / G}=\left(T_{\Sigma / E \cup B \cup G, \text { State }}, \rightarrow_{R / E \cup B \cup G,-\mathbb{T}_{\mathcal{R} / G}}\right)$, where the set Π of state predicates is the set $T_{\Sigma}(X)_{\text {State }}$ with X an infinite set of variables, and its interpretation in $\mathbb{T}_{\mathcal{R}}\left(\right.$ resp. $\left.\mathbb{T}_{\mathcal{R} / G}\right)$ is given by:

The Kripke Structures $\mathbb{T}_{\mathcal{R}}$ and $\mathbb{T}_{\mathcal{R} / \mathcal{G}}$

Choosing a top sort State of states in Σ, we can define Kripke structures $\mathbb{T}_{\mathcal{R}}=\left(T_{\Sigma / E \cup B, S \text { State }}, \rightarrow_{R / E \cup B},-\mathbb{T}_{\mathcal{R}}\right)$ and $\mathbb{T}_{\mathcal{R} / G}=\left(T_{\Sigma / E \cup B \cup G, \text { State }}, \rightarrow_{R / E \cup B \cup G},{ }_{-\mathbb{T}_{\mathcal{R} / G}}\right)$, where the set Π of state predicates is the set $T_{\Sigma}(X)_{\text {State }}$ with X an infinite set of variables, and its interpretation in $\mathbb{T}_{\mathcal{R}}\left(\right.$ resp. $\left.\mathbb{T}_{\mathcal{R} / G}\right)$ is given by:

$$
u_{\mathbb{T}_{\mathcal{R}}}=\llbracket u \rrbracket_{E \cup B}=\operatorname{def}\left\{[u \theta]_{E \cup B} \mid \theta \in\left[X \rightarrow T_{\Sigma}\right]\right\}
$$

resp.

The Kripke Structures $\mathbb{T}_{\mathcal{R}}$ and $\mathbb{T}_{\mathcal{R} / \mathcal{G}}$

Choosing a top sort State of states in Σ, we can define Kripke structures $\mathbb{T}_{\mathcal{R}}=\left(T_{\Sigma / E \cup B, \text { State }}, \rightarrow_{R / E \cup B},-\mathbb{T}_{\mathcal{R}}\right)$ and $\mathbb{T}_{\mathcal{R} / G}=\left(T_{\Sigma / E \cup B \cup G, \text { State }}, \rightarrow_{R / E \cup B \cup G},{ }_{-\mathbb{T}_{\mathcal{R} / G}}\right)$, where the set Π of state predicates is the set $T_{\Sigma}(X)_{\text {state }}$ with X an infinite set of variables, and its interpretation in $\mathbb{T}_{\mathcal{R}}$ (resp. $\mathbb{T}_{\mathcal{R} / G}$) is given by:

$$
u_{\mathbb{T}_{\mathcal{R}}}=\llbracket u \rrbracket_{E \cup B}=\operatorname{def}\left\{[u \theta]_{E \cup B} \mid \theta \in\left[X \rightarrow T_{\Sigma}\right]\right\}
$$

resp.

$$
u_{\mathbb{T}_{\mathcal{R} / G}}=\llbracket u \rrbracket_{E \cup B \cup G}={ }_{\operatorname{def}}\left\{[u \theta]_{E \cup B \cup G} \mid \theta \in\left[X \rightarrow T_{\Sigma}\right]\right\}
$$

The Kripke Structures $\mathbb{T}_{\mathcal{R}}$ and $\mathbb{T}_{\mathcal{R} / \mathcal{G}}$

Choosing a top sort State of states in Σ, we can define Kripke structures $\mathbb{T}_{\mathcal{R}}=\left(T_{\Sigma / E \cup B, \text { State }}, \rightarrow_{R / E \cup B},{ }_{-\mathbb{T}_{\mathcal{R}}}\right)$ and $\mathbb{T}_{\mathcal{R} / G}=\left(T_{\Sigma / E \cup B \cup G, \text { State }}, \rightarrow_{R / E \cup B \cup G},{ }_{-\mathbb{T}_{\mathcal{R} / G}}\right)$, where the set Π of state predicates is the set $T_{\Sigma}(X)_{\text {State }}$ with X an infinite set of variables, and its interpretation in $\mathbb{T}_{\mathcal{R}}$ (resp. $\mathbb{T}_{\mathcal{R} / G}$) is given by:

$$
u_{\mathbb{T}_{\mathcal{R}}}=\llbracket u \rrbracket_{E \cup B}=\operatorname{def}\left\{[u \theta]_{E \cup B} \mid \theta \in\left[X \rightarrow T_{\Sigma}\right]\right\}
$$

resp.

$$
u_{\mathbb{T}_{\mathcal{R} / G}}=\llbracket u \rrbracket_{E \cup B \cup G}={ }_{\operatorname{def}}\left\{[u \theta]_{E \cup B \cup G} \mid \theta \in\left[X \rightarrow T_{\Sigma}\right]\right\}
$$

One reason why equational abstractions are so useful is summarized by the following theorem, whose easy proof is given in the Appendix.

Main Theorem About Equational Abstractions

Theorem. For \mathcal{R} / G an equational abstraction of \mathcal{R} and any state predicates $u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{m} \in T_{\Sigma}(X)_{\text {State }}$ the following holds:

Main Theorem About Equational Abstractions

Theorem. For \mathcal{R} / G an equational abstraction of \mathcal{R} and any state predicates $u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{m} \in T_{\Sigma}(X)_{\text {State }}$ the following holds: $\mathbb{T}_{\mathcal{R}},\left(u_{1} \vee \ldots \vee u_{n}\right) \models s_{4} \diamond\left(v_{1} \vee \ldots \vee v_{m}\right) \Rightarrow \mathbb{T}_{\mathcal{R} / G},\left(u_{1} \vee \ldots \vee u_{n}\right) \models s_{4} \diamond\left(v_{1} \vee \ldots \vee v_{m}\right)$

Main Theorem About Equational Abstractions

Theorem. For \mathcal{R} / G an equational abstraction of \mathcal{R} and any state predicates $u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{m} \in T_{\Sigma}(X)_{\text {State }}$ the following holds: $\mathbb{T}_{\mathcal{R}},\left(u_{1} \vee \ldots \vee u_{n}\right) \models{ }_{s 4} \diamond\left(v_{1} \vee \ldots \vee v_{m}\right) \Rightarrow \mathbb{T}_{\mathcal{R} / G},\left(u_{1} \vee \ldots \vee u_{n}\right) \models{ }_{s 4} \diamond\left(v_{1} \vee \ldots \vee v_{m}\right)$ and therefore the dual, contrapositive implication also holds:

Main Theorem About Equational Abstractions

Theorem. For \mathcal{R} / G an equational abstraction of \mathcal{R} and any state predicates $u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{m} \in T_{\Sigma}(X)_{\text {State }}$ the following holds: $\mathbb{T}_{\mathcal{R}},\left(u_{1} \vee \ldots \vee u_{n}\right) \models s 4 \diamond\left(v_{1} \vee \ldots \vee v_{m}\right) \Rightarrow \mathbb{T}_{\mathcal{R} / G},\left(u_{1} \vee \ldots \vee u_{n}\right) \models{ }_{s 4} \diamond\left(v_{1} \vee \ldots \vee v_{m}\right)$ and therefore the dual, contrapositive implication also holds:
$\mathbb{T}_{\mathcal{R} / G},\left(u_{1} \vee \ldots \vee u_{n}\right) \models s 4 \square\left(v_{1} \vee \ldots \vee v_{m}\right)^{c} \Rightarrow \mathbb{T}_{\mathcal{R}},\left(u_{1} \vee \ldots \vee u_{n}\right) \models{ }_{s 4} \square\left(v_{1} \vee \ldots \vee v_{m}\right)^{c}$

Main Theorem About Equational Abstractions

Theorem. For \mathcal{R} / G an equational abstraction of \mathcal{R} and any state predicates $u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{m} \in T_{\Sigma}(X)_{\text {State }}$ the following holds:
$\mathbb{T}_{\mathcal{R}},\left(u_{1} \vee \ldots \vee u_{n}\right) \models s 4 \diamond\left(v_{1} \vee \ldots \vee v_{m}\right) \Rightarrow \mathbb{T}_{\mathcal{R} / G},\left(u_{1} \vee \ldots \vee u_{n}\right) \models{ }_{s 4} \diamond\left(v_{1} \vee \ldots \vee v_{m}\right)$ and therefore the dual, contrapositive implication also holds:
$\mathbb{T}_{\mathcal{R} / G},\left(u_{1} \vee \ldots \vee u_{n}\right) \models s 4 \square\left(v_{1} \vee \ldots \vee v_{m}\right)^{c} \Rightarrow \mathbb{T}_{\mathcal{R}},\left(u_{1} \vee \ldots \vee u_{n}\right) \models{ }_{s 4} \square\left(v_{1} \vee \ldots \vee v_{m}\right)^{c}$
where, by definition,
$\llbracket\left(v_{1} \vee \ldots \vee v_{m}\right)^{c} \rrbracket_{E \cup B}={ }_{\operatorname{def}} T_{\Sigma / E \cup B, S t a t e} \backslash \llbracket\left(v_{1} \vee \ldots \vee v_{m}\right) \rrbracket_{E \cup B}$

Main Theorem About Equational Abstractions

Theorem. For \mathcal{R} / G an equational abstraction of \mathcal{R} and any state predicates $u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{m} \in T_{\Sigma}(X)_{\text {State }}$ the following holds:
$\mathbb{T}_{\mathcal{R}},\left(u_{1} \vee \ldots \vee u_{n}\right) \models s 4 \diamond\left(v_{1} \vee \ldots \vee v_{m}\right) \Rightarrow \mathbb{T}_{\mathcal{R} / G},\left(u_{1} \vee \ldots \vee u_{n}\right) \models{ }_{s 4} \diamond\left(v_{1} \vee \ldots \vee v_{m}\right)$ and therefore the dual, contrapositive implication also holds:
$\mathbb{T}_{\mathcal{R} / G},\left(u_{1} \vee \ldots \vee u_{n}\right) \models s 4 \square\left(v_{1} \vee \ldots \vee v_{m}\right)^{c} \Rightarrow \mathbb{T}_{\mathcal{R}},\left(u_{1} \vee \ldots \vee u_{n}\right) \models{ }_{s 4} \square\left(v_{1} \vee \ldots \vee v_{m}\right)^{c}$
where, by definition,
$\llbracket\left(v_{1} \vee \ldots \vee v_{m}\right)^{c} \rrbracket_{E \cup B}=\operatorname{def} T_{\Sigma / E \cup B, \text { State }} \backslash \llbracket\left(v_{1} \vee \ldots \vee v_{m}\right) \rrbracket_{E \cup B}$ resp.
$\llbracket\left(v_{1} \vee \ldots \vee v_{m}\right)^{c} \rrbracket_{E \cup B \cup G}={ }_{\operatorname{def}} T_{\Sigma / E \cup B \cup G, S \text { State }} \backslash \llbracket\left(v_{1} \vee \ldots \vee v_{m}\right) \rrbracket_{E \cup B \cup G}$.

Main Theorem About Equational Abstractions

Theorem. For \mathcal{R} / G an equational abstraction of \mathcal{R} and any state predicates $u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{m} \in T_{\Sigma}(X)_{\text {State }}$ the following holds:
$\mathbb{T}_{\mathcal{R}},\left(u_{1} \vee \ldots \vee u_{n}\right) \models \models_{4} \diamond\left(v_{1} \vee \ldots \vee v_{m}\right) \Rightarrow \mathbb{T}_{\mathcal{R} / G},\left(u_{1} \vee \ldots \vee u_{n}\right) \models s_{4} \diamond\left(v_{1} \vee \ldots \vee v_{m}\right)$ and therefore the dual, contrapositive implication also holds:
$\mathbb{T}_{\mathcal{R} / G},\left(u_{1} \vee \ldots \vee u_{n}\right) \models{ }_{s 4} \square\left(v_{1} \vee \ldots \vee v_{m}\right)^{c} \Rightarrow \mathbb{T}_{\mathcal{R}},\left(u_{1} \vee \ldots \vee u_{n}\right) \models{ }_{s 4} \square\left(v_{1} \vee \ldots \vee v_{m}\right)^{c}$
where, by definition,
$\llbracket\left(v_{1} \vee \ldots \vee v_{m}\right)^{c} \rrbracket_{E \cup B}=\operatorname{def} T_{\Sigma / E \cup B, \text { State }} \backslash \llbracket\left(v_{1} \vee \ldots \vee v_{m}\right) \rrbracket_{E \cup B}$ resp.
$\llbracket\left(v_{1} \vee \ldots \vee v_{m}\right)^{c} \rrbracket_{E \cup B \cup G}={ }_{\operatorname{def}} T_{\Sigma / E \cup B \cup G, S \text { State }} \backslash \llbracket\left(v_{1} \vee \ldots \vee v_{m}\right) \rrbracket_{E \cup B \cup G}$.
Therefore, $\mathbb{T}_{\mathcal{R} / G},\left(u_{1} \vee \ldots \vee u_{n}\right) \not \vDash S 4 \diamond\left(v_{1} \vee \ldots \vee v_{m}\right)$ proves that $\left(v_{1} \vee \ldots \vee v_{m}\right)^{c}$ is an invariant from $\left(u_{1} \vee \ldots \vee u_{n}\right)$ in $\mathbb{T}_{\mathcal{R}}$.

Using Equational Abstractions in Symbolic Model Checking

As a Corollary of the above theorem and the Completeness of Folding Narrowing Search in Lecture 25 we get:

Using Equational Abstractions in Symbolic Model Checking

As a Corollary of the above theorem and the Completeness of Folding Narrowing Search in Lecture 25 we get:

Theorem. For $\mathcal{R}=(\Sigma, E \cup B, R)$ topmost with $E \cup B$ FVP and $G=E^{\prime} \cup B^{\prime}$ such that $E \cup E^{\prime} \cup B \cup B^{\prime}$ is also FVP, $\left(v_{1} \vee \ldots \vee v_{m}\right)^{c}$ is an invariant from $\left(u_{1} \vee \ldots \vee u_{n}\right)$ in $\mathbb{T}_{\mathcal{R}}$ if $\mathbb{T}_{\mathcal{R} / G},\left(u_{1} \vee \ldots \vee u_{n}\right) \not \vDash \xi_{4} \diamond\left(v_{1} \vee \ldots \vee v_{m}\right)$,

Using Equational Abstractions in Symbolic Model Checking

As a Corollary of the above theorem and the Completeness of Folding Narrowing Search in Lecture 25 we get:

Theorem. For $\mathcal{R}=(\Sigma, E \cup B, R)$ topmost with $E \cup B$ FVP and $G=E^{\prime} \cup B^{\prime}$ such that $E \cup E^{\prime} \cup B \cup B^{\prime}$ is also FVP, $\left(v_{1} \vee \ldots \vee v_{m}\right)^{c}$ is an invariant from ($u_{1} \vee \ldots \vee u_{n}$) in $\mathbb{T}_{\mathcal{R}}$ if $\mathbb{T}_{\mathcal{R} / G},\left(u_{1} \vee \ldots \vee u_{n}\right) \not \vDash s 4 \diamond\left(v_{1} \vee \ldots \vee v_{m}\right)$, i.e., if there doesn't exists $w \in F N F_{\mathcal{R} / G}\left(u_{1} \vee \ldots \vee u_{n}\right)$ having a $E \cup E^{\prime} \cup B \cup B^{\prime}$-unifier $\gamma \in \operatorname{Unif}_{E \cup E^{\prime} \cup B \cup B^{\prime}}\left(w=v_{j}\right)$ for some $j, 1 \leq j \leq m$.

Using Equational Abstractions in Symbolic Model Checking

As a Corollary of the above theorem and the Completeness of Folding Narrowing Search in Lecture 25 we get:

Theorem. For $\mathcal{R}=(\Sigma, E \cup B, R)$ topmost with $E \cup B$ FVP and $G=E^{\prime} \cup B^{\prime}$ such that $E \cup E^{\prime} \cup B \cup B^{\prime}$ is also FVP, $\left(v_{1} \vee \ldots \vee v_{m}\right)^{c}$ is an invariant from $\left(u_{1} \vee \ldots \vee u_{n}\right)$ in $\mathbb{T}_{\mathcal{R}}$ if $\mathbb{T}_{\mathcal{R} / G},\left(u_{1} \vee \ldots \vee u_{n}\right) \not \vDash s_{4} \diamond\left(v_{1} \vee \ldots \vee v_{m}\right)$, i.e., if there doesn't exists $w \in F N F_{\mathcal{R} / G}\left(u_{1} \vee \ldots \vee u_{n}\right)$ having a $E \cup E^{\prime} \cup B \cup B^{\prime}$-unifier $\gamma \in \operatorname{Unif}_{E \cup E^{\prime} \cup B \cup B^{\prime}}\left(w=v_{j}\right)$ for some $j, 1 \leq j \leq m$.

Let us see a simple example illustrating the power of this Theorem.

An Equational Abstraction for BAKERY

Recall that it was impossible to verify the mutual exclusion and one-writer invariants for BAKERY from < 0, 0 > by narrowing in a forwards direction: one had to narrow backwards.

An Equational Abstraction for BAKERY

Recall that it was impossible to verify the mutual exclusion and one-writer invariants for BAKERY from < 0, 0 > by narrowing in a forwards direction: one had to narrow backwards. But we can verify both invariants by forwards narrowing in an equational abstraction of BAKERY.

An Equational Abstraction for BAKERY

Recall that it was impossible to verify the mutual exclusion and one-writer invariants for BAKERY from < 0, 0 > by narrowing in a forwards direction: one had to narrow backwards. But we can verify both invariants by forwards narrowing in an equational abstraction of BAKERY. Can you guess the G ?

An Equational Abstraction for BAKERY

Recall that it was impossible to verify the mutual exclusion and one-writer invariants for BAKERY from < 0, 0 > by narrowing in a forwards direction: one had to narrow backwards. But we can verify both invariants by forwards narrowing in an equational abstraction of BAKERY. Can you guess the G ?

```
mod R&W is
    sorts Nat Config .
    op <_,_> : Nat Nat -> Config [ctor] .
    op 0 : -> Nat [ctor] .
    op s : Nat -> Nat [ctor] .
    vars R W : Nat .
    rl < 0, 0 > => < 0, s(0) > [narrowing]
    rl < R, s(W) > => < R, W > [narrowing]
    rl < R, O > => < s(R), O > [narrowing] .
    rl < s(R), W > => < R, W > [narrowing] .
endm
```


An Equational Abstraction for BAKERY

Recall that it was impossible to verify the mutual exclusion and one-writer invariants for BAKERY from < 0, 0 > by narrowing in a forwards direction: one had to narrow backwards. But we can verify both invariants by forwards narrowing in an equational abstraction of BAKERY. Can you guess the G ?
$\bmod R \& W$ is
sorts Nat Config .
op <_, _> : Nat Nat -> Config [ctor] .
op 0 : -> Nat [ctor] .
op s : Nat -> Nat [ctor] .
vars R W : Nat .
rl < 0, 0 > => < 0, s(0) > [narrowing]
rl < R, s(W) > => < R, W > [narrowing]
rl < R, O > => < s(R), 0 > [narrowing] .
rl < s(R), W > => < R, W > [narrowing] .
endm

The equation $\langle s(s(N)), 0\rangle=<s(0), 0\rangle$ is confluent, terminating and FVP and provides the desired abstraction:

An Equational Abstraction for BAKERY (II)

```
mod R&W-ABS is including R&W . eq < s(s(N:Nat)),0 > = < s(0),0 > [variant] .
endm
get variants < R:Nat, W:Nat > .
Variant 1
Config: < #1:Nat,#2:Nat >
R --> #1:Nat
W --> #2:Nat
Variant 2
Config: < s(0),0 >
R --> s(s(%1:Nat))
W --> 0
No more variants.
fvu-narrow < 0, O > =>* < s(N:Nat), s(M:Nat) > . *** mutual exclusion
No solution.
fvu-narrow < O , O > =>* < N:Nat , s(s(M:Nat)) > . *** one writer
```

No solution.

Equational Abstractions for Explicit-State Model Checking

The application of equational abstraction to symbolic model checking is particularly simple.

Equational Abstractions for Explicit-State Model Checking

The application of equational abstraction to symbolic model checking is particularly simple. This is because executability conditions do not matter, since for narrowing (i.e., for symbolic execution), variant unification is enough, even when the rules R are not coherent in \mathcal{R} / G.

Equational Abstractions for Explicit-State Model Checking

The application of equational abstraction to symbolic model checking is particularly simple. This is because executability conditions do not matter, since for narrowing (i.e., for symbolic execution), variant unification is enough, even when the rules R are not coherent in \mathcal{R} / G. In fact, the rules in R\&W-ABS are not coherent, but it did not matter at all for symbolic execution.

Equational Abstractions for Explicit-State Model Checking

The application of equational abstraction to symbolic model checking is particularly simple. This is because executability conditions do not matter, since for narrowing (i.e., for symbolic execution), variant unification is enough, even when the rules R are not coherent in \mathcal{R} / G. In fact, the rules in R\&W-ABS are not coherent, but it did not matter at all for symbolic execution.

For explicit state model checking of modal logic or LTL properties, the admissibility of \mathcal{R} / G is crucial.

Equational Abstractions for Explicit-State Model Checking

The application of equational abstraction to symbolic model checking is particularly simple. This is because executability conditions do not matter, since for narrowing (i.e., for symbolic execution), variant unification is enough, even when the rules R are not coherent in \mathcal{R} / G. In fact, the rules in R\&W-ABS are not coherent, but it did not matter at all for symbolic execution.

For explicit state model checking of modal logic or LTL properties, the admissibility of \mathcal{R} / G is crucial. Likewise, decidability by matching modulo B of state predicates u, or $u \mid \varphi$ is also crucial.

Equational Abstractions for Explicit-State Model Checking

The application of equational abstraction to symbolic model checking is particularly simple. This is because executability conditions do not matter, since for narrowing (i.e., for symbolic execution), variant unification is enough, even when the rules R are not coherent in \mathcal{R} / G. In fact, the rules in R\&W-ABS are not coherent, but it did not matter at all for symbolic execution.

For explicit state model checking of modal logic or LTL properties, the admissibility of \mathcal{R} / G is crucial. Likewise, decidability by matching modulo B of state predicates u, or $u \mid \varphi$ is also crucial.

For symbolic model checking the meaning of u was a subset $\llbracket u \rrbracket_{E \cup B} \subseteq T_{\Sigma / E \cup B, \text { State }}$.

Equational Abstractions for Explicit-State Model Checking

The application of equational abstraction to symbolic model checking is particularly simple. This is because executability conditions do not matter, since for narrowing (i.e., for symbolic execution), variant unification is enough, even when the rules R are not coherent in \mathcal{R} / G. In fact, the rules in R\&W-ABS are not coherent, but it did not matter at all for symbolic execution.

For explicit state model checking of modal logic or LTL properties, the admissibility of \mathcal{R} / G is crucial. Likewise, decidability by matching modulo B of state predicates u, or $u \mid \varphi$ is also crucial.

For symbolic model checking the meaning of u was a subset $\llbracket u \rrbracket_{E \cup B} \subseteq T_{\Sigma / E \cup B, \text { State }}$. Instead, for explicit-state model checking we need a subset $\llbracket u \rrbracket_{!_{\vec{E} / B}} \subseteq C_{\Sigma / \vec{E}, B, \text { State }}$.

Equational Abstractions for Explicit-State Model Checking

The application of equational abstraction to symbolic model checking is particularly simple. This is because executability conditions do not matter, since for narrowing (i.e., for symbolic execution), variant unification is enough, even when the rules R are not coherent in \mathcal{R} / G. In fact, the rules in R\&W-ABS are not coherent, but it did not matter at all for symbolic execution.

For explicit state model checking of modal logic or LTL properties, the admissibility of \mathcal{R} / G is crucial. Likewise, decidability by matching modulo B of state predicates u, or $u \mid \varphi$ is also crucial.

For symbolic model checking the meaning of u was a subset $\llbracket u \rrbracket_{E \cup B} \subseteq T_{\Sigma / E \cup B, S t a t e}$. Instead, for explicit-state model checking we need a subset $\llbracket u \rrbracket_{!_{\vec{E} / B}} \subseteq C_{\Sigma / \vec{E}, B, S \text { tate }}$. More generally, we can define $\llbracket u \mid \varphi \rrbracket_{!_{\vec{k} / B}}$ as follows:

State Predicates for Admissible Rewrite Theories

For $\mathcal{R}=(\Sigma, E \cup B, R)$ admissible with constructors Ω we require $u \in T_{\Omega}(X)_{\text {State }}$ s.t. $u=u!_{\vec{E} / B}$, and that the conjunction of Σ-equalities φ is s.t. $\operatorname{vars}(\varphi) \subseteq \operatorname{vars}(u)$.

State Predicates for Admissible Rewrite Theories

For $\mathcal{R}=(\Sigma, E \cup B, R)$ admissible with constructors Ω we require $u \in T_{\Omega}(X)_{\text {State }}$ s.t. $u=u!_{\vec{E} / B}$, and that the conjunction of \sum-equalities φ is s.t. $\operatorname{vars}(\varphi) \subseteq \operatorname{vars}(u)$. Then $\llbracket u \mid \varphi \rrbracket_{!_{\vec{E} / B}}=\{[v] \in$ $C_{\Sigma / \vec{E}, B, S \text { State }} \mid \exists \rho \in\left[X \rightarrow T_{\Omega}\right]$ s.t. $\left.v=B u \rho \wedge E \cup B \vdash \varphi \rho\right\}$.

State Predicates for Admissible Rewrite Theories

For $\mathcal{R}=(\Sigma, E \cup B, R)$ admissible with constructors Ω we require $u \in T_{\Omega}(X)_{\text {State }}$ s.t. $u=u!_{\vec{E} / B}$, and that the conjunction of Σ-equalities φ is s.t. $\operatorname{vars}(\varphi) \subseteq \operatorname{vars}(u)$. Then $\llbracket u \mid \varphi \rrbracket_{!_{\vec{E} / B}}=\{[v] \in$ $C_{\Sigma / \vec{E}, B, \text { State }} \mid \exists \rho \in\left[X \rightarrow T_{\Omega}\right]$ s.t. $v==_{B}$ u $\left.\rho \wedge E \cup B \vdash \varphi \rho\right\}$. Since $[v] \in C_{\Sigma / \vec{E}, B, S \text { tate }}$, this forces ρ to be a normalized substitution on $\operatorname{vars}(u)$.

State Predicates for Admissible Rewrite Theories

For $\mathcal{R}=(\Sigma, E \cup B, R)$ admissible with constructors Ω we require $u \in T_{\Omega}(X)_{\text {State }}$ s.t. $u=u!_{\vec{E} / B}$, and that the conjunction of \sum-equalities φ is s.t. $\operatorname{vars}(\varphi) \subseteq \operatorname{vars}(u)$. Then $\llbracket u \mid \varphi \rrbracket_{!_{\vec{E} / B}}=\{[v] \in$ $C_{\Sigma / \vec{E}, B, \text { State }} \mid \exists \rho \in\left[X \rightarrow T_{\Omega}\right]$ s.t. $v==_{B}$ u $\left.\rho \wedge E \cup B \vdash \varphi \rho\right\}$. Since $[v] \in C_{\Sigma / \vec{E}, B, \text { State }}$, this forces ρ to be a normalized substitution on $\operatorname{vars}(u)$. Note that, under these assumptions, the membership $[v] \in \llbracket u \mid \varphi \rrbracket_{!_{\vec{E} / B}}$ is decidable by B-matching and evaluation of $\varphi \rho$.

State Predicates for Admissible Rewrite Theories

For $\mathcal{R}=(\Sigma, E \cup B, R)$ admissible with constructors Ω we require $u \in T_{\Omega}(X)_{\text {State }}$ s.t. $u=u!_{\vec{E} / B}$, and that the conjunction of \sum-equalities φ is s.t. $\operatorname{vars}(\varphi) \subseteq \operatorname{vars}(u)$. Then $\llbracket u \mid \varphi \rrbracket_{!_{\vec{E} / B}}=\{[v] \in$ $C_{\Sigma / \vec{E}, B, \text { State }} \mid \exists \rho \in\left[X \rightarrow T_{\Omega}\right]$ s.t. $v==_{B}$ u $\left.\wedge \wedge E \cup B \vdash \varphi \rho\right\}$. Since $[v] \in C_{\Sigma / \vec{E}, B, \text { State }}$, this forces ρ to be a normalized substitution on $\operatorname{vars}(u)$. Note that, under these assumptions, the membership $[v] \in \llbracket u \mid \varphi \rrbracket_{!_{\vec{E} / B}}$ is decidable by B-matching and evaluation of $\varphi \rho$.

Although $(\Sigma, E \cup B)$ need not be FVP, we require that its constructor subtheory $\left(\Omega^{+}, E_{\Omega^{+}} \cup B_{\Omega^{+}}\right)$is FVP.

State Predicates for Admissible Rewrite Theories

For $\mathcal{R}=(\Sigma, E \cup B, R)$ admissible with constructors Ω we require $u \in T_{\Omega}(X)_{\text {State }}$ s.t. $u=u!_{\vec{E} / B}$, and that the conjunction of \sum-equalities φ is s.t. $\operatorname{vars}(\varphi) \subseteq \operatorname{vars}(u)$. Then $\llbracket u \mid \varphi \rrbracket_{!_{\vec{E} / B}}=\{[v] \in$ $C_{\Sigma / \vec{E}, B, \text { State }} \mid \exists \rho \in\left[X \rightarrow T_{\Omega}\right]$ s.t. $v==_{B}$ u $\left.\wedge \wedge E \cup B \vdash \varphi \rho\right\}$. Since $[v] \in C_{\Sigma / \vec{E}, B, S \text { tate }}$, this forces ρ to be a normalized substitution on $\operatorname{vars}(u)$. Note that, under these assumptions, the membership $[v] \in \llbracket u \mid \varphi \rrbracket_{!_{\vec{E} / B}}$ is decidable by B-matching and evaluation of $\varphi \rho$.
Although $(\Sigma, E \cup B)$ need not be FVP, we require that its constructor subtheory $\left(\Omega^{+}, E_{\Omega^{+}} \cup B_{\Omega^{+}}\right)$is FVP. We will the only consider equational abstractions \mathcal{R} / G where $E \cup B \cup G$ is ground convergent, $G=E_{\Omega^{+}}^{\prime} \cup B_{\Omega^{+}}^{\prime}$ are Ω^{+}equations and axioms, and $E_{\Omega^{+}} \cup E_{\Omega^{+}}^{\prime} \cup B_{\Omega^{+}} \cup B_{\Omega^{+}}^{\prime}$ is also FVP.

State Predicates for Admissible Rewrite Theories

For $\mathcal{R}=(\Sigma, E \cup B, R)$ admissible with constructors Ω we require $u \in T_{\Omega}(X)_{\text {State }}$ s.t. $u=u!_{\vec{E} / B}$, and that the conjunction of Σ-equalities φ is s.t. $\operatorname{vars}(\varphi) \subseteq \operatorname{vars}(u)$. Then $\llbracket u \mid \varphi \rrbracket!_{\vec{E}_{/ B}}=\{[v] \in$ $C_{\Sigma / E, B, \text { State }} \mid \exists \rho \in\left[X \rightarrow T_{\Omega}\right]$ s.t. $v==_{B}$ u $\left.\rho \wedge E \cup B \vdash \varphi \rho\right\}$. Since $[v] \in C_{\Sigma / \vec{E}, B, \text { State }}$, this forces ρ to be a normalized substitution on $\operatorname{vars}(u)$. Note that, under these assumptions, the membership $[v] \in \llbracket u \mid \varphi \rrbracket_{!_{\vec{E} / B}}$ is decidable by B-matching and evaluation of $\varphi \rho$.
Although $(\Sigma, E \cup B)$ need not be FVP, we require that its constructor subtheory $\left(\Omega^{+}, E_{\Omega^{+}} \cup B_{\Omega^{+}}\right)$is FVP. We will the only consider equational abstractions \mathcal{R} / G where $E \cup B \cup G$ is ground convergent, $G=E_{\Omega^{+}}^{\prime} \cup B_{\Omega^{+}}^{\prime}$ are Ω^{+}equations and axioms, and $E_{\Omega^{+}} \cup E_{\Omega^{+}}^{\prime} \cup B_{\Omega^{+}} \cup B_{\Omega^{+}}^{\prime}$ is also FVP.
How are state predicates $\llbracket u \mid \varphi \rrbracket_{!_{\vec{E} / B}}$ in \mathcal{R} and $\llbracket u^{\prime} \mid \varphi^{\prime} \rrbracket_{!_{\vec{E} \cup \vec{E}^{\prime}}} /\left\langle B \cup B_{\Omega}^{\prime}\right.$ in \mathcal{R} / G related?

State Predicates for Admissible Rewrite Theories

For $\mathcal{R}=(\Sigma, E \cup B, R)$ admissible with constructors Ω we require $u \in T_{\Omega}(X)_{\text {State }}$ s.t. $u=u!_{\vec{E} / B}$, and that the conjunction of Σ-equalities φ is s.t. $\operatorname{vars}(\varphi) \subseteq \operatorname{vars}(u)$. Then $\llbracket u \mid \varphi \rrbracket_{!_{\vec{E} / B}}=\{[v] \in$ $C_{\Sigma / E, B, \text { State }} \mid \exists \rho \in\left[X \rightarrow T_{\Omega}\right]$ s.t. $v==_{B}$ u $\left.\rho \wedge E \cup B \vdash \varphi \rho\right\}$. Since $[v] \in C_{\Sigma / \vec{E}, B, \text { State }}$, this forces ρ to be a normalized substitution on $\operatorname{vars}(u)$. Note that, under these assumptions, the membership $[v] \in \llbracket u \mid \varphi \rrbracket_{!_{\vec{E} / B}}$ is decidable by B-matching and evaluation of $\varphi \rho$.
Although $(\Sigma, E \cup B)$ need not be FVP, we require that its constructor subtheory $\left(\Omega^{+}, E_{\Omega^{+}} \cup B_{\Omega^{+}}\right)$is FVP. We will the only consider equational abstractions \mathcal{R} / G where $E \cup B \cup G$ is ground convergent, $G=E_{\Omega^{+}}^{\prime} \cup B_{\Omega^{+}}^{\prime}$ are Ω^{+}equations and axioms, and $E_{\Omega^{+}} \cup E_{\Omega^{+}}^{\prime} \cup B_{\Omega^{+}} \cup B_{\Omega^{+}}^{\prime}$ is also FVP.
How are state predicates $\llbracket u \mid \varphi \rrbracket_{!_{\vec{E} / B}}$ in \mathcal{R} and $\llbracket u^{\prime} \mid \varphi^{\prime} \rrbracket_{!_{\vec{E} \cup \vec{E}^{\prime}}} /\left\langle B \cup B_{\Omega}^{\prime}\right.$ in \mathcal{R} / G related? This can be answered as follows:

G-Abstractable State Predicates

Call a state predicate $u \mid \varphi$ in $\mathcal{R} G$-abstractable

G-Abstractable State Predicates

Call a state predicate $u \mid \varphi$ in $\mathcal{R} G$-abstractable if for $\left(u_{1}^{\prime}, \gamma_{1}\right), \ldots,\left(u_{k}^{\prime}, \gamma_{k}\right)$ the $E_{\Omega^{+}} \cup B_{\Omega^{+}}$-variants of u, we have $\operatorname{vars}\left(\left(\varphi \gamma_{i}\right)!\vec{E} \cup \vec{E}_{\Omega^{+}} / B \cup B_{\Omega^{+}}^{\prime}\right) \subseteq \operatorname{vars}\left(u_{i}\right) 1 \leq i \leq k$.

G-Abstractable State Predicates

Call a state predicate $u \mid \varphi$ in $\mathcal{R} G$-abstractable if for $\left(u_{1}^{\prime}, \gamma_{1}\right), \ldots,\left(u_{k}^{\prime}, \gamma_{k}\right)$ the $E_{\Omega^{+}} \cup B_{\Omega^{+}}$-variants of u, we have $\operatorname{vars}\left(\left(\varphi \gamma_{i}\right)!_{\vec{E} \cup \vec{E}_{\Omega^{+}}^{\prime} / B \cup B_{\Omega^{+}}^{\prime}}\right) \subseteq \operatorname{vars}\left(u_{i}\right) 1 \leq i \leq k$. Abbreviate $\left(\varphi \gamma_{i}\right)!_{\vec{E} \cup \vec{E}_{\Omega^{+}}^{\prime}} / B \cup B_{\Omega^{+}}^{\prime}$ to φ_{i}^{\prime} and call $u_{1}^{\prime}\left|\varphi_{1}^{\prime} \vee \ldots \vee u_{k}^{\prime}\right| \varphi_{k}^{\prime}$ the G-abstraction of $u \mid \varphi$ in \mathcal{R} / G.

G-Abstractable State Predicates

Call a state predicate $u \mid \varphi$ in $\mathcal{R} G$-abstractable if for $\left(u_{1}^{\prime}, \gamma_{1}\right), \ldots,\left(u_{k}^{\prime}, \gamma_{k}\right)$ the $E_{\Omega^{+}} \cup B_{\Omega^{+}}$-variants of u, we have $\operatorname{vars}\left(\left(\varphi \gamma_{i}\right)!_{\vec{E} \cup \vec{E}_{\Omega^{+}}^{\prime} / B \cup B_{\Omega^{+}}^{\prime}}\right) \subseteq \operatorname{vars}\left(u_{i}\right) 1 \leq i \leq k$. Abbreviate $\left(\varphi \gamma_{i}\right)!_{\vec{E} \cup \vec{E}_{\Omega^{+}}^{\prime}} / B \cup B_{\Omega^{+}}^{\prime}$ to φ_{i}^{\prime} and call $u_{1}^{\prime}\left|\varphi_{1}^{\prime} \vee \ldots \vee u_{k}^{\prime}\right| \varphi_{k}^{\prime}$ the G-abstraction of $u \mid \varphi$ in \mathcal{R} / G.

Consider now the unique surjective Σ-homomorphism:

$$
\left[-!{\vec{E} \cup \vec{E}_{\Omega^{+}}^{\prime} / B \cup B_{\Omega^{+}}^{\prime}}\right]: \mathbb{C}_{\Sigma / \vec{E}, B} \rightarrow \mathbb{C}_{\Sigma / \vec{E}, \vec{E}_{\Omega^{+}}^{\prime} / B \cup B_{\Omega^{+}}^{\prime}}
$$

G-Abstractable State Predicates

Call a state predicate $u \mid \varphi$ in $\mathcal{R} G$-abstractable if for $\left(u_{1}^{\prime}, \gamma_{1}\right), \ldots,\left(u_{k}^{\prime}, \gamma_{k}\right)$ the $E_{\Omega^{+}} \cup B_{\Omega^{+}}$-variants of u, we have $\operatorname{vars}\left(\left(\varphi \gamma_{i}\right)!_{\vec{E} \cup \vec{E}_{\Omega^{+}}^{\prime} / B \cup B_{\Omega^{+}}^{\prime}}\right) \subseteq \operatorname{vars}\left(u_{i}\right) 1 \leq i \leq k$. Abbreviate $\left(\varphi \gamma_{i}\right)!_{\vec{E} \cup \vec{E}_{\Omega^{+}}^{\prime}} / B \cup B_{\Omega^{+}}^{\prime}$ to φ_{i}^{\prime} and call $u_{1}^{\prime}\left|\varphi_{1}^{\prime} \vee \ldots \vee u_{k}^{\prime}\right| \varphi_{k}^{\prime}$ the G-abstraction of $u \mid \varphi$ in \mathcal{R} / G.

Consider now the unique surjective Σ-homomorphism:

$$
\left[!!{\vec{E} \cup \vec{E}_{\Omega^{+}}^{\prime} / B \cup B_{\Omega^{+}}^{\prime}}_{\prime}\right]: \mathbb{C}_{\Sigma / \vec{E}, B} \rightarrow \mathbb{C}_{\Sigma / \vec{E}, \vec{E}_{\Omega^{+}}^{\prime} / B \cup B_{\Omega^{+}}^{\prime}}
$$

A key theorem, proved in the Appendix, is:

G-Abstractable State Predicates

Call a state predicate $u \mid \varphi$ in $\mathcal{R} G$-abstractable if for $\left(u_{1}^{\prime}, \gamma_{1}\right), \ldots,\left(u_{k}^{\prime}, \gamma_{k}\right)$ the $E_{\Omega^{+}} \cup B_{\Omega^{+}}$-variants of u, we have $\operatorname{vars}\left(\left(\varphi \gamma_{i}\right)!_{\vec{E} \cup \vec{E}_{\Omega^{+}}^{\prime} / B \cup B_{\Omega^{+}}^{\prime}}\right) \subseteq \operatorname{vars}\left(u_{i}\right) 1 \leq i \leq k$. Abbreviate $\left(\varphi \gamma_{i}\right)!_{\vec{E} \cup \vec{E}_{\Omega^{+}}^{\prime}} / B \cup B_{\Omega^{+}}^{\prime}$ to φ_{i}^{\prime} and call $u_{1}^{\prime}\left|\varphi_{1}^{\prime} \vee \ldots \vee u_{k}^{\prime}\right| \varphi_{k}^{\prime}$ the G-abstraction of $u \mid \varphi$ in \mathcal{R} / G.

Consider now the unique surjective Σ-homomorphism:

$$
\left[!\vec{E} \cup \vec{E}_{\Omega^{+}}^{\prime} / B \cup B_{\Omega^{+}}^{\prime}\right]: \mathbb{C}_{\Sigma / \vec{E}, B} \rightarrow \mathbb{C}_{\Sigma / \vec{E}, \vec{E}_{\Omega^{+}}^{\prime} / B \cup B_{\Omega^{+}}^{\prime}}
$$

A key theorem, proved in the Appendix, is:
Theorem. The image of the set $\llbracket u \mid \varphi \rrbracket_{!_{\vec{E} / B}}$ under the above homomorphism is contained in the set

$$
\llbracket\left(u_{1}^{\prime}\left|\varphi_{1}^{\prime} \vee \ldots \vee u_{k}^{\prime}\right| \varphi_{k}^{\prime}\right) \rrbracket_{\mathbb{E}_{\mathrm{E} \cup \mathrm{E}_{\Omega^{+}}+B \cup B_{\Omega^{+}}^{\prime}}}
$$

G-Abstractable State Predicates

Call a state predicate $u \mid \varphi$ in $\mathcal{R} G$-abstractable if for $\left(u_{1}^{\prime}, \gamma_{1}\right), \ldots,\left(u_{k}^{\prime}, \gamma_{k}\right)$ the $E_{\Omega^{+}} \cup B_{\Omega^{+}}$-variants of u, we have $\operatorname{vars}\left(\left(\varphi \gamma_{i}\right)!_{\vec{E} \cup \vec{E}_{\Omega^{+}}^{\prime} / B \cup B_{\Omega^{+}}^{\prime}}\right) \subseteq \operatorname{vars}\left(u_{i}\right) 1 \leq i \leq k$. Abbreviate $\left(\varphi \gamma_{i}\right)!_{\vec{E} \cup \vec{E}_{\Omega^{+}}^{\prime}} / B \cup B_{\Omega^{+}}^{\prime}$ to φ_{i}^{\prime} and call $u_{1}^{\prime}\left|\varphi_{1}^{\prime} \vee \ldots \vee u_{k}^{\prime}\right| \varphi_{k}^{\prime}$ the G-abstraction of $u \mid \varphi$ in \mathcal{R} / G.

Consider now the unique surjective Σ-homomorphism:

$$
\left[!{\vec{E} \cup \vec{E}_{\Omega^{+}}^{\prime} / B \cup B_{\Omega^{+}}^{\prime}}\right]: \mathbb{C}_{\Sigma / \vec{E}, B} \rightarrow \mathbb{C}_{\Sigma / \vec{E}, \vec{E}_{\Omega^{+}}^{\prime} / B \cup B_{\Omega^{+}}^{\prime}}
$$

A key theorem, proved in the Appendix, is:
Theorem. The image of the set $\llbracket u \mid \varphi \rrbracket_{!_{\vec{E} / B}}$ under the above homomorphism is contained in the set

$$
\llbracket\left(u_{1}^{\prime}\left|\varphi_{1}^{\prime} \vee \ldots \vee u_{k}^{\prime}\right| \varphi_{k}^{\prime}\right) \rrbracket_{!_{\mathbb{E} \cup \vec{E}_{\Omega^{+}}^{\prime}} / B \cup B_{\Omega^{+}}^{\prime}}
$$

Abstractable State Predicates for R\&W

In R\&W, state predicates for the complements of the mutual exclusion and one writer invariants are, respectively, < s(N:Nat), s(M:Nat) > and < N:Nat , s(s(M:Nat)) >. What are their corresponding G-abstractions in R\&W-ABS?

Abstractable State Predicates for R\&W

In R\&W, state predicates for the complements of the mutual exclusion and one writer invariants are, respectively, < s(N:Nat), s(M:Nat) > and < N:Nat , s(s(M:Nat)) >.
What are their corresponding G-abstractions in R\&W-ABS?

```
get variants < s(N:Nat), s(M:Nat) > .
Variant 1
Config: < s(#1:Nat),s(#2:Nat) >
N --> #1:Nat
M --> #2:Nat
No more variants.
get variants < N:Nat , s(s(M:Nat)) > .
Variant 1
Config: < #1:Nat,s(s(#2:Nat)) >
N --> #1:Nat
M --> #2:Nat
```

No more variants.

Abstractable State Predicates for R\&W

In R\&W, state predicates for the complements of the mutual exclusion and one writer invariants are, respectively, < s(N:Nat), s(M:Nat) > and < N:Nat , s(s(M:Nat)) >.
What are their corresponding G-abstractions in R\&W-ABS?

```
get variants < s(N:Nat), s(M:Nat) > .
Variant 1
Config: < s(#1:Nat),s(#2:Nat) >
N --> #1:Nat
M --> #2:Nat
No more variants.
get variants < N:Nat , s(s(M:Nat)) > .
Variant 1
Config: < #1:Nat,s(s(#2:Nat)) >
N --> #1:Nat
M --> #2:Nat
```

No more variants.
Up to renaming of variables, they are the same.

G-Abstractable Rewrite Rules

Even though equational abstraction can be used for any admissible rewrite theory \mathcal{R}, executability of \mathcal{R} / G is easier to achieve when \mathcal{R} is topmost, for which making \mathcal{R} / G executable is closely connected with the notion of a rule in \mathcal{R} being G-abstractable.

G-Abstractable Rewrite Rules

Even though equational abstraction can be used for any admissible rewrite theory \mathcal{R}, executability of \mathcal{R} / G is easier to achieve when \mathcal{R} is topmost, for which making \mathcal{R} / G executable is closely connected with the notion of a rule in \mathcal{R} being G-abstractable.

Under the same assumptions on G, call a rule $I \rightarrow r$ if φ in \mathcal{R} (where we assume $\operatorname{vars}(r) \cup \operatorname{vars}(\varphi) \subseteq \operatorname{vars}(I)) G$-abstractable iff

G-Abstractable Rewrite Rules

Even though equational abstraction can be used for any admissible rewrite theory \mathcal{R}, executability of \mathcal{R} / G is easier to achieve when \mathcal{R} is topmost, for which making \mathcal{R} / G executable is closely connected with the notion of a rule in \mathcal{R} being G-abstractable.

Under the same assumptions on G, call a rule $I \rightarrow r$ if φ in \mathcal{R} (where we assume $\operatorname{vars}(r) \cup \operatorname{vars}(\varphi) \subseteq \operatorname{vars}(I)) G$-abstractable iff for $\left(I_{1}^{\prime}, \gamma_{1}\right), \ldots,\left(I_{k}^{\prime}, \gamma_{k}\right)$ the $E_{\Omega^{+}} \cup B_{\Omega^{+}}$-variants of I, we have $\operatorname{vars}\left(\left(r \gamma_{i}\right)!\vec{E} \cup \vec{E}_{\Omega^{+}}^{\prime} / B \cup B_{\Omega^{+}}^{\prime}\right) \cup \operatorname{vars}\left(\left(\varphi \gamma_{i}\right)!\vec{E} \cup \vec{E}_{\Omega^{+}}^{\prime} / B \cup B_{\Omega^{+}}^{\prime}\right) \subseteq \operatorname{vars}\left(l_{i}^{\prime}\right)$ $1 \leq i \leq k$.

G-Abstractable Rewrite Rules

Even though equational abstraction can be used for any admissible rewrite theory \mathcal{R}, executability of \mathcal{R} / G is easier to achieve when \mathcal{R} is topmost, for which making \mathcal{R} / G executable is closely connected with the notion of a rule in \mathcal{R} being G-abstractable.

Under the same assumptions on G, call a rule $I \rightarrow r$ if φ in \mathcal{R} (where we assume $\operatorname{vars}(r) \cup \operatorname{vars}(\varphi) \subseteq \operatorname{vars}(I)) G$-abstractable iff for $\left(I_{1}^{\prime}, \gamma_{1}\right), \ldots,\left(I_{k}^{\prime}, \gamma_{k}\right)$ the $E_{\Omega^{+}} \cup B_{\Omega^{+}}$-variants of I, we have $\operatorname{vars}\left(\left(r \gamma_{i}\right)!\vec{E} \cup \vec{E}_{\Omega^{+}}^{\prime} / B \cup B_{\Omega^{+}}^{\prime}\right) \cup \operatorname{vars}\left(\left(\varphi \gamma_{i}\right)!_{\vec{E} \cup \vec{E}_{\Omega^{+}}^{\prime} / B \cup B_{\Omega^{+}}^{\prime}}\right) \subseteq \operatorname{vars}\left(l_{i}^{\prime}\right)$
$1 \leq i \leq k$. Call $\left\{l_{i}^{\prime} \rightarrow r_{i}^{\prime} \text { if } \varphi_{i}^{\prime}\right\}_{1 \leq i \leq k}$ the G-abstraction of $I \rightarrow r$ if φ, where $r_{i}^{\prime}=\operatorname{def}\left(r \gamma_{i}\right)!\vec{E} \cup \vec{E}_{\Omega^{+}}^{\prime} / B \cup B_{\Omega^{+}}^{\prime}$, and
$\varphi_{i}^{\prime}=\operatorname{def}\left(\varphi \gamma_{i}\right)!_{\vec{E} \cup \vec{E}_{\Omega^{+}}^{\prime}} / B \cup B_{\Omega^{+}}^{\prime}$.

G-Abstractable Rewrite Rules

Even though equational abstraction can be used for any admissible rewrite theory \mathcal{R}, executability of \mathcal{R} / G is easier to achieve when \mathcal{R} is topmost, for which making \mathcal{R} / G executable is closely connected with the notion of a rule in \mathcal{R} being G-abstractable.

Under the same assumptions on G, call a rule $I \rightarrow r$ if φ in \mathcal{R} (where we assume vars $(r) \cup \operatorname{vars}(\varphi) \subseteq \operatorname{vars}(I)) G$-abstractable iff for $\left(I_{1}^{\prime}, \gamma_{1}\right), \ldots,\left(I_{k}^{\prime}, \gamma_{k}\right)$ the $E_{\Omega^{+}} \cup B_{\Omega^{+}}$-variants of I, we have $\operatorname{vars}\left(\left(r \gamma_{i}\right)!\vec{E} \cup \vec{E}_{\Omega^{+}}^{\prime} / B \cup B_{\Omega^{+}}^{\prime}\right) \cup \operatorname{vars}\left(\left(\varphi \gamma_{i}\right)!_{\vec{E} \cup \vec{E}_{\Omega^{+}}^{\prime} / B \cup B_{\Omega^{+}}^{\prime}}\right) \subseteq \operatorname{vars}\left(l_{i}^{\prime}\right)$ $1 \leq i \leq k$. Call $\left\{l_{i}^{\prime} \rightarrow r_{i}^{\prime} \text { if } \varphi_{i}^{\prime}\right\}_{1 \leq i \leq k}$ the G-abstraction of $I \rightarrow r$ if φ, where $r_{i}^{\prime}=\operatorname{def}\left(r \gamma_{i}\right)!{\vec{E} \cup \vec{E}_{\Omega^{+}}^{\prime}} / B \cup B_{\Omega^{+}}^{\prime}$, and $\varphi_{i}^{\prime}={ }_{\operatorname{def}}\left(\varphi \gamma_{i}\right)!_{\vec{E} \cup \vec{E}_{\Omega^{+}}^{\prime} / B \cup B_{\Omega^{+}}^{\prime}}$. Let $\widehat{\mathcal{R} / G}$ have rules \widehat{R} replacing each $I \rightarrow r$ if φ in \mathcal{R} / G by its G-abstraction.

G-Abstractable Rewrite Rules

Even though equational abstraction can be used for any admissible rewrite theory \mathcal{R}, executability of \mathcal{R} / G is easier to achieve when \mathcal{R} is topmost, for which making \mathcal{R} / G executable is closely connected with the notion of a rule in \mathcal{R} being G-abstractable.

Under the same assumptions on G, call a rule $I \rightarrow r$ if φ in \mathcal{R} (where we assume vars $(r) \cup \operatorname{vars}(\varphi) \subseteq \operatorname{vars}(I)) G$-abstractable iff for $\left(I_{1}^{\prime}, \gamma_{1}\right), \ldots,\left(I_{k}^{\prime}, \gamma_{k}\right)$ the $E_{\Omega^{+}} \cup B_{\Omega^{+}}$-variants of I, we have $\operatorname{vars}\left(\left(r \gamma_{i}\right)!\vec{E} \cup \vec{E}_{\Omega^{+}}^{\prime} / B \cup B_{\Omega^{+}}^{\prime}\right) \cup \operatorname{vars}\left(\left(\varphi \gamma_{i}\right)!{\vec{E} \cup \vec{E}_{\Omega^{+}}^{\prime}} \mid B \cup B_{\Omega^{+}}^{\prime}\right) \subseteq \operatorname{vars}\left(l_{i}^{\prime}\right)$ $1 \leq i \leq k$. Call $\left\{l_{i}^{\prime} \rightarrow r_{i}^{\prime} \text { if } \varphi_{i}^{\prime}\right\}_{1 \leq i \leq k}$ the G-abstraction of $I \rightarrow r$ if φ, where $r_{i}^{\prime}=\operatorname{def}\left(r \gamma_{i}\right)!{\vec{E} \cup \vec{E}_{\Omega^{+}}^{\prime}} / B \cup B_{\Omega^{+}}^{\prime}$, and $\varphi_{i}^{\prime}=\operatorname{def}\left(\varphi \gamma_{i}\right)!_{\vec{E} \cup \vec{E}_{\Omega^{+}} / B \cup B_{\Omega^{+}}^{\prime}}$. Let $\widehat{\mathcal{R} / G}$ have rules \widehat{R} replacing each $I \rightarrow r$ if φ in \mathcal{R} / G by its G-abstraction. Then (see Appendix):

Theorem. If all rules in \mathcal{R} are G-abstractable, $\widehat{\mathcal{R} / G}$ is admissible,

G-Abstraction of Rules for R\&W

Let us compute the G-variants of all lefthand sides of rules R\&W in the theory R\&W-ABS:

G-Abstraction of Rules for R\&W

Let us compute the G-variants of all lefthand sides of rules R\&W in the theory R\&W-ABS:

```
get variants < 0, 0 > . *** For rule rl < 0, 0 > => < 0, s(0) > .
```

Variant 1
Config: < 0,0 >
No more variants.
*** Its G-abstraction is itself.
get variants < R, s(W) > . *** For rule rl < R, s(W) > => < R, W > .
Variant 1
Config: < \#1:Nat,s(\#2:Nat) >
R --> \#1:Nat
W --> \#2:Nat
No more variants.
*** Its G-abstraction is itself

G-Abstraction of Rules for R\&\&W (II)

```
Maude> get variants < R, O > . *** For rule rl < R, s(W) > => < R, W > .
Variant 1
Config: < #1:Nat,0 >
R --> #1:Nat
Variant 2
Config: < s(0),0 >
R --> s(s(%1:Nat))
No more variants.
*** G-abstraction: itself and < s(0) , 0 > => < s(s(R)), 0 >! = < s(0) , 0 > .
get variants < s(R),W > . *** For rule rl < s(R), W > => < R, W > .
Variant 1
Config: < s(#1:Nat),#2:Nat >
R --> #1:Nat
W --> #2:Nat
```


G-Abstraction of Rules for R\&W (III)

Variant 2
Config: < s(0), 0 >
R --> s(\%1:Nat)
W --> 0
*** Its G-abstraction includes itself, but rule
*** < s (0), 0 > $=><\mathrm{s}(\mathrm{N}), 0\rangle$.
*** is NOT EXECUTABLE. However, in R\&W-ABS we can prove the inductive theorem:

$* * *\langle\mathrm{~s}(\mathrm{~N}), 0\rangle=\langle\mathrm{s}(0), 0\rangle$ using as generator set $\{0, \mathrm{~s}(\mathrm{x})\}$

*** so we get the semantically equivalent EXECUTABLE rule:

*** $\langle\mathrm{s}(0), 0\rangle=>\langle\mathrm{s}(0), 0\rangle$.
*** making R\&W-ABS ADMISSIBLE.

G-Abstraction of Rules for R\&W (III)

```
Variant 2
Config: < s(0),0 >
R --> s(%1:Nat)
W --> 0
*** Its G-abstraction includes itself, but rule
*** < s(0), 0> >> < s(N), 0>.
*** is NOT EXECUTABLE. However, in R&W-ABS we can prove the inductive theorem:
***
*** < s(N), 0> = < s(0), 0 > using as generator set {0,s(x)}
***
*** so we get the semantically equivalent EXECUTABLE rule:
***
    <s(0),0> >> < s(0), 0>.
*** making R&W-ABS ADMISSIBLE.
```

Since we have made R\&W-ABS admissible as the system module:

G-Abstraction of Rules for R\&W (IV)

mod R\&W-ABS-ADMISSIBLE is
including R\&W .
vars N M R W : Nat .
eq < s(s(N)), 0$\rangle=\langle s(0), 0\rangle$ [variant].
$\mathrm{rl}<\mathrm{s}(0), 0 \gg<\mathrm{s}(0), 0$ > .
endm

G-Abstraction of Rules for R\&W (IV)

mod R\&W-ABS-ADMISSIBLE is
including R\&W .
vars N M R W : Nat .
eq < s(s(N)), 0$\rangle=\langle s(0), 0\rangle$ [variant].
$\mathrm{rl}<\mathrm{s}(0), 0 \gg<\mathrm{s}(0), 0$ > .
endm
we can use it to verify properties of R\&W by search:

G-Abstraction of Rules for R\&W (IV)

```
mod R&W-ABS-ADMISSIBLE is
    including R&W .
    vars N M R W : Nat .
    eq < s(s(N)),0 > = < s(0),0 > [variant] .
    rl < s(0) , 0 > => < s(0) , 0 > .
```

endm
we can use it to verify properties of R\&W by search:
search < 0,0 > =>* < s(N), s(M) > .

No solution.
search < 0,0$\rangle=>*<N, s(s(M))\rangle$.

No solution.
thanks to the following Main Theorem (proof in the Appendix):

Main Theorem on Equational Abstractions

Main Theorem (Explicit-State Model Checking with Equational Abstractions). For \mathcal{R} topmost and admissible with all its rules G-abstractable and $\left(v_{1}\left|\varphi_{1} \vee \ldots \vee v_{m}\right| \varphi_{m}\right)$ such that each $v_{i} \mid \varphi_{i}$ is abstractable as $v_{i, 1}^{\prime}\left|\varphi_{i, 1}^{\prime} \vee \ldots \vee v_{i, k_{i}}^{\prime}\right| \varphi_{i, k_{i}}^{\prime}$. The following holds for any initial states $[u] \in \mathbb{C}_{\mathcal{R}},[u!]=\left[u!\overrightarrow{E \cup \vec{E}_{\Omega^{+}}^{\prime} / B \cup B_{\Omega^{+}}^{\prime}}\right] \in \mathbb{C}_{\mathcal{R} / G}$:

Main Theorem on Equational Abstractions

Main Theorem (Explicit-State Model Checking with Equational Abstractions). For \mathcal{R} topmost and admissible with all its rules G-abstractable and $\left(v_{1}\left|\varphi_{1} \vee \ldots \vee v_{m}\right| \varphi_{m}\right)$ such that each $v_{i} \mid \varphi_{i}$ is abstractable as $v_{i, 1}^{\prime}\left|\varphi_{i, 1}^{\prime} \vee \ldots \vee v_{i, k_{i}}^{\prime}\right| \varphi_{i, k_{i}}^{\prime}$. The following holds for any initial states $[u] \in \mathbb{C}_{\mathcal{R}},[u!]=\left[u!\vec{E} \cup \vec{E}_{\Omega^{+}}^{\prime} / B \cup B_{\Omega^{+}}^{\prime}\right] \in \mathbb{C}_{\mathcal{R} / G}$:
$\mathbb{C}_{\mathcal{R}},[u] \models_{S 4} \diamond\left(v_{1}\left|\varphi_{1} \vee \ldots \vee v_{m}\right| \varphi_{m}\right) \Rightarrow \mathbb{C}_{\widehat{\mathcal{R} / G}},[u!] \models_{S 4} \diamond \bigvee_{1 \leq i \leq m}\left(v_{i, 1}^{\prime}\left|\varphi_{i, 1}^{\prime} \vee \ldots \vee v_{i, k_{i}}^{\prime}\right| \varphi_{i, k_{i}}^{\prime}\right)$

Main Theorem on Equational Abstractions

Main Theorem (Explicit-State Model Checking with Equational Abstractions). For \mathcal{R} topmost and admissible with all its rules G-abstractable and ($v_{1}\left|\varphi_{1} \vee \ldots \vee v_{m}\right| \varphi_{m}$) such that each $v_{i} \mid \varphi_{i}$ is abstractable as $v_{i, 1}^{\prime}\left|\varphi_{i, 1}^{\prime} \vee \ldots \vee v_{i, k_{i}}^{\prime}\right| \varphi_{i, k_{i}}^{\prime}$. The following holds for any initial states $[u] \in \mathbb{C}_{\mathcal{R}},[u!]=\left[u!\vec{E} \cup \vec{E}_{\Omega^{+}}^{\prime} / B \cup B_{\Omega^{+}}^{\prime}\right] \in \mathbb{C}_{\mathcal{R} / G}$:
$\mathbb{C}_{\mathcal{R}},[u] \vDash \vDash_{4} \diamond\left(v_{1}\left|\varphi_{1} \vee \ldots \vee v_{m}\right| \varphi_{m}\right) \Rightarrow \mathbb{C}_{\widehat{\mathcal{R} / G}},[u!] \models s 4^{>} \bigvee_{1 \leq i \leq m}\left(v_{i, 1}^{\prime}\left|\varphi_{i, 1}^{\prime} \vee \ldots \vee v_{i, k_{i}}^{\prime}\right| \varphi_{i, k_{i}}^{\prime}\right)$
and therefore the dual, contrapositive implication also holds:

Main Theorem on Equational Abstractions

Main Theorem (Explicit-State Model Checking with Equational Abstractions). For \mathcal{R} topmost and admissible with all its rules G-abstractable and ($v_{1}\left|\varphi_{1} \vee \ldots \vee v_{m}\right| \varphi_{m}$) such that each $v_{i} \mid \varphi_{i}$ is abstractable as $v_{i, 1}^{\prime}\left|\varphi_{i, 1}^{\prime} \vee \ldots \vee v_{i, k_{i}}^{\prime}\right| \varphi_{i, k_{i}}^{\prime}$. The following holds for any initial states $[u] \in \mathbb{C}_{\mathcal{R}},[u!]=\left[u!\vec{E} \cup \vec{E}_{\Omega^{+}}^{\prime} / B \cup B_{\Omega^{+}}^{\prime}\right] \in \mathbb{C}_{\mathcal{R} / G}$:
$\mathbb{C}_{\mathcal{R}},[u] \vDash s_{4} \diamond\left(v_{1}\left|\varphi_{1} \vee \ldots \vee v_{m}\right| \varphi_{m}\right) \Rightarrow \mathbb{C}_{\widehat{\mathcal{R} / G}},[u!] \vDash s_{4} \diamond \bigvee_{1 \leq i \leq m}\left(v_{i, 1}^{\prime}\left|\varphi_{i, 1}^{\prime} \vee \ldots \vee v_{i, k_{i}}^{\prime}\right| \varphi_{i, k_{i}}^{\prime}\right)$
and therefore the dual, contrapositive implication also holds:
$\mathbb{C}_{\widehat{\mathcal{R} / G}},[u!] \vDash s 4 \square\left(\underset{1 \leq i \leq m}{\bigvee}\left(v_{i, 1}^{\prime}\left|\varphi_{i, 1}^{\prime} \vee \ldots \vee v_{i, k_{i}}^{\prime}\right| \varphi_{i, k_{i}}^{\prime}\right)\right)^{c} \Rightarrow \mathbb{C}_{\mathcal{R}},[u] \vDash s 4 \square\left(v_{1}\left|\varphi_{1} \vee \ldots \vee v_{m}\right| \varphi_{m}\right)^{c}$

Main Theorem on Equational Abstractions

Main Theorem (Explicit-State Model Checking with Equational Abstractions). For \mathcal{R} topmost and admissible with all its rules G-abstractable and ($v_{1}\left|\varphi_{1} \vee \ldots \vee v_{m}\right| \varphi_{m}$) such that each $v_{i} \mid \varphi_{i}$ is abstractable as $v_{i, 1}^{\prime}\left|\varphi_{i, 1}^{\prime} \vee \ldots \vee v_{i, k_{i}}^{\prime}\right| \varphi_{i, k_{i}}^{\prime}$. The following holds for any initial states $[u] \in \mathbb{C}_{\mathcal{R}},[u!]=\left[u!\vec{E} \cup \vec{E}_{\Omega^{+}}^{\prime} / B \cup B_{\Omega^{+}}^{\prime}\right] \in \mathbb{C}_{\mathcal{R} / G}$:
$\mathbb{C}_{\mathcal{R}},[u] \vDash \vDash_{4} \diamond\left(v_{1}\left|\varphi_{1} \vee \ldots \vee v_{m}\right| \varphi_{m}\right) \Rightarrow \mathbb{C}_{\widehat{\mathcal{R} / G}},[u!] \models s 4^{>} \bigvee_{1 \leq i \leq m}\left(v_{i, 1}^{\prime}\left|\varphi_{i, 1}^{\prime} \vee \ldots \vee v_{i, k_{i}}^{\prime}\right| \varphi_{i, k_{i}}^{\prime}\right)$
and therefore the dual, contrapositive implication also holds:
$\mathbb{C}_{\widehat{\mathcal{R} / G}},[u!] \vDash s 4 \square\left(\underset{1 \leq i \leq m}{\bigvee}\left(v_{i, 1}^{\prime}\left|\varphi_{i, 1}^{\prime} \vee \ldots \vee v_{i, k_{i}}^{\prime}\right| \varphi_{i, k_{i}}^{\prime}\right)\right)^{c} \Rightarrow \mathbb{C}_{\mathcal{R}},[u] \vDash s 4 \square\left(v_{1}\left|\varphi_{1} \vee \ldots \vee v_{m}\right| \varphi_{m}\right)^{c}$
Therefore,

Main Theorem on Equational Abstractions

Main Theorem (Explicit-State Model Checking with Equational Abstractions). For \mathcal{R} topmost and admissible with all its rules G-abstractable and ($v_{1}\left|\varphi_{1} \vee \ldots \vee v_{m}\right| \varphi_{m}$) such that each $v_{i} \mid \varphi_{i}$ is abstractable as $v_{i, 1}^{\prime}\left|\varphi_{i, 1}^{\prime} \vee \ldots \vee v_{i, k_{i}}^{\prime}\right| \varphi_{i, k_{i}}^{\prime}$. The following holds for any initial states $[u] \in \mathbb{C}_{\mathcal{R}},[u!]=\left[u!\vec{E} \cup \vec{E}_{\Omega^{+}}^{\prime} / B \cup B_{\Omega^{+}}^{\prime}\right] \in \mathbb{C}_{\mathcal{R} / G}$:
$\mathbb{C}_{\mathcal{R}},[u] \vDash s_{4} \diamond\left(v_{1}\left|\varphi_{1} \vee \ldots \vee v_{m}\right| \varphi_{m}\right) \Rightarrow \mathbb{C}_{\widehat{\mathcal{R} / G}},[u!] \vDash s_{4} \diamond \bigvee_{1 \leq i \leq m}\left(v_{i, 1}^{\prime}\left|\varphi_{i, 1}^{\prime} \vee \ldots \vee v_{i, k_{i}}^{\prime}\right| \varphi_{i, k_{i}}^{\prime}\right)$
and therefore the dual, contrapositive implication also holds:
$\mathbb{C}_{\widehat{\mathcal{R} / G}},[u!] \vDash s 4 \square\left(\underset{1 \leq i \leq m}{ }{ }\left(v_{i, 1}^{\prime}\left|\varphi_{i, 1}^{\prime} \vee \ldots \vee v_{i, k_{i}}^{\prime}\right| \varphi_{i, k_{i}}^{\prime}\right)\right)^{c} \Rightarrow \mathbb{C}_{\mathcal{R}},[u] \vDash s 4 \square\left(v_{1}\left|\varphi_{1} \vee \ldots \vee v_{m}\right| \varphi_{m}\right)^{c}$
Therefore,

$$
\mathbb{C}_{\widehat{\mathcal{R} / G}},[u!] \not \vDash \mathcal{S 4}^{\diamond} \bigvee_{1 \leq i \leq m}\left(v_{i, 1}^{\prime}\left|\varphi_{i, 1}^{\prime} \vee \ldots \vee v_{i, k_{i}}^{\prime}\right| \varphi_{i, k_{i}}^{\prime}\right)
$$

Main Theorem on Equational Abstractions

Main Theorem (Explicit-State Model Checking with Equational Abstractions). For \mathcal{R} topmost and admissible with all its rules G-abstractable and ($v_{1}\left|\varphi_{1} \vee \ldots \vee v_{m}\right| \varphi_{m}$) such that each $v_{i} \mid \varphi_{i}$ is abstractable as $v_{i, 1}^{\prime}\left|\varphi_{i, 1}^{\prime} \vee \ldots \vee v_{i, k_{i}}^{\prime}\right| \varphi_{i, k_{i}}^{\prime}$. The following holds for any initial states $[u] \in \mathbb{C}_{\mathcal{R}},[u!]=\left[u!\vec{E} \cup \vec{E}_{\Omega^{+}}^{\prime} / B \cup B_{\Omega^{+}}^{\prime}\right] \in \mathbb{C}_{\mathcal{R} / G}$:
$\mathbb{C}_{\mathcal{R}},[u] \vDash s_{4} \diamond\left(v_{1}\left|\varphi_{1} \vee \ldots \vee v_{m}\right| \varphi_{m}\right) \Rightarrow \mathbb{C}_{\widehat{\mathcal{R} / G}},[u!] \vDash s_{4} \diamond \bigvee_{1 \leq i \leq m}\left(v_{i, 1}^{\prime}\left|\varphi_{i, 1}^{\prime} \vee \ldots \vee v_{i, k_{i}}^{\prime}\right| \varphi_{i, k_{i}}^{\prime}\right)$
and therefore the dual, contrapositive implication also holds:
$\mathbb{C}_{\widehat{\mathcal{R} / G}},[u!] \vDash s 4 \square\left(\underset{1 \leq i \leq m}{\bigvee}\left(v_{i, 1}^{\prime}\left|\varphi_{i, 1}^{\prime} \vee \ldots \vee v_{i, k_{i}}^{\prime}\right| \varphi_{i, k_{i}}^{\prime}\right)\right)^{c} \Rightarrow \mathbb{C}_{\mathcal{R}},[u] \vDash s 4 \square\left(v_{1}\left|\varphi_{1} \vee \ldots \vee v_{m}\right| \varphi_{m}\right)^{c}$
Therefore,

$$
\mathbb{C}_{\widehat{\mathcal{R} / G}},[u!] \not \vDash \mathcal{S 4}^{\diamond} \bigvee_{1 \leq i \leq m}\left(v_{i, 1}^{\prime}\left|\varphi_{i, 1}^{\prime} \vee \ldots \vee v_{i, k_{i}}^{\prime}\right| \varphi_{i, k_{i}}^{\prime}\right)
$$

proves that $\left(v_{1}\left|\varphi_{1} \vee \ldots \vee v_{m}\right| \varphi_{m}\right)^{c}$ is an invariant from $[u]$ in $\mathbb{C}_{\mathcal{R}}$.

Equational Abstractions for Explicit-State Model Checking: the LTL Case

Equational abstractions can also be used for explicit-state LTL model checking.

Equational Abstractions for Explicit-State Model Checking: the LTL Case

Equational abstractions can also be used for explicit-state LTL model checking. The requirements are:

Equational Abstractions for Explicit-State Model Checking: the LTL Case

Equational abstractions can also be used for explicit-state LTL model checking. The requirements are:
(1) those for model checking modal logic properties of a topmost \mathcal{R} using $\widehat{\mathcal{R} / G}$ and search, as explained above, plus:

Equational Abstractions for Explicit-State Model Checking: the LTL Case

Equational abstractions can also be used for explicit-state LTL model checking. The requirements are:
(1) those for model checking modal logic properties of a topmost \mathcal{R} using $\widehat{\mathcal{R} / G}$ and search, as explained above, plus:
(2) \mathcal{R} (or at least the set of states reachable from the initial state(s)) must be deadlock-free, or made so by adding an extra, conditional rule to loop on deadlock states (always possible, and easy for topmost rewrite theories), and

Equational Abstractions for Explicit-State Model Checking: the LTL Case

Equational abstractions can also be used for explicit-state LTL model checking. The requirements are:
(1) those for model checking modal logic properties of a topmost \mathcal{R} using $\widehat{\mathcal{R} / G}$ and search, as explained above, plus:
(2) \mathcal{R} (or at least the set of states reachable from the initial state(s)) must be deadlock-free, or made so by adding an extra, conditional rule to loop on deadlock states (always possible, and easy for topmost rewrite theories), and
(3) (i) specifying state predicates in both the true and false cases in \mathcal{R}-PREDS,

Equational Abstractions for Explicit-State Model Checking: the LTL Case

Equational abstractions can also be used for explicit-state LTL model checking. The requirements are:
(1) those for model checking modal logic properties of a topmost \mathcal{R} using $\widehat{\mathcal{R} / G}$ and search, as explained above, plus:
(2) \mathcal{R} (or at least the set of states reachable from the initial state(s)) must be deadlock-free, or made so by adding an extra, conditional rule to loop on deadlock states (always possible, and easy for topmost rewrite theories), and
(3) (i) specifying state predicates in both the true and false cases in \mathcal{R}-PREDS, (ii) using their G-abstractions in \mathcal{R} / G-PREDS, and

Equational Abstractions for Explicit-State Model Checking: the LTL Case

Equational abstractions can also be used for explicit-state LTL model checking. The requirements are:
(1) those for model checking modal logic properties of a topmost \mathcal{R} using $\widehat{\mathcal{R} / G}$ and search, as explained above, plus:
(2) \mathcal{R} (or at least the set of states reachable from the initial state(s)) must be deadlock-free, or made so by adding an extra, conditional rule to loop on deadlock states (always possible, and easy for topmost rewrite theories), and
(3) (i) specifying state predicates in both the true and false cases in \mathcal{R}-PREDS, (ii) using their G-abstractions in \mathcal{R} / G-PREDS, and (iii) \mathcal{R} / G-PREDS must protect BOOL.

Equational Abstractions for Explicit-State Model Checking: the LTL Case

Equational abstractions can also be used for explicit-state LTL model checking. The requirements are:
(1) those for model checking modal logic properties of a topmost \mathcal{R} using $\widehat{\mathcal{R} / G}$ and search, as explained above, plus:
(2) \mathcal{R} (or at least the set of states reachable from the initial state(s)) must be deadlock-free, or made so by adding an extra, conditional rule to loop on deadlock states (always possible, and easy for topmost rewrite theories), and
(3) (i) specifying state predicates in both the true and false cases in \mathcal{R}-PREDS, (ii) using their G-abstractions in \mathcal{R} / G-PREDS, and (iii) \mathcal{R} / G-PREDS must protect BOOL.
Main Theorem. Under requirements (1)-(3), if $\widehat{\mathcal{R} / G},[u!] \models L T L \varphi$, then $\mathcal{R},[u] \models L T L \varphi$ for any $\varphi \in L T L(\Pi)$. (Proof in Appendix).

Explicit-State LTL Model Checking of R\&W

For R\&W requirement (1) is fulfilled by R\&W-ABS-ADMISSIBLE and requirement (2) by R\&W is deadlock free. Consider the predicates:

Explicit-State LTL Model Checking of R\&W

For R\&W requirement (1) is fulfilled by R\&W-ABS-ADMISSIBLE and requirement (2) by R\&W is deadlock free. Consider the predicates:
in model-checker.maude

```
mod R\&W-PREDS is protecting R\&W . extending SATISFACTION .
    subsort Config < State .
    ops mutex one-writer reads writes : -> Prop .
    eq < s(N:Nat),s(M:Nat) > |= mutex = false .
    eq < O,N:Nat > |= mutex = true .
    eq < N:Nat, 0 > |= mutex = true .
    eq < N:Nat,s(s(M:Nat)) > |= one-writer = false .
    eq < N:Nat, 0 > |= one-writer = true .
    eq < N:Nat,s(0) > |= one-writer = true
    eq < s(N:Nat), M:Nat > \(\mid=\) reads = true .
    eq < O, M:Nat > |= reads = false .
    eq < M:Nat, \(s(N: N a t)>\mid=\) writes = true .
    eq < N:Nat, 0 > |= writes = false .
endm
```


Explicit-State LTL Model Checking of R\&W

For R\&W requirement (1) is fulfilled by R\&W-ABS-ADMISSIBLE and requirement (2) by R\&W is deadlock free. Consider the predicates:
in model-checker.maude

```
mod R\&W-PREDS is protecting R\&W . extending SATISFACTION .
    subsort Config < State .
    ops mutex one-writer reads writes : -> Prop .
    eq < s(N:Nat),s(M:Nat) > |= mutex = false .
    eq < O,N:Nat > |= mutex = true .
    eq < N:Nat, 0 > |= mutex = true .
    eq < N:Nat,s(s(M:Nat)) > |= one-writer = false .
    eq < N:Nat, 0 > |= one-writer = true .
    eq < N:Nat,s(0) > |= one-writer = true
    eq < \(s(N: N a t), M: N a t>\mid=\) reads = true .
    eq < O, M:Nat > |= reads = false .
    eq < M:Nat, \(s(N: N a t)>\mid=\) writes = true .
    eq < N:Nat, 0 > \(\mid=\) writes \(=\) false .
```

endm

In the negative cases of mutex and one-writer we checked that their G-abstractions are themselves. For all other cases we gèt:

Explicit-State LTL Model Checking of R\&W (II)

```
get variants < 0,N:Nat > . *** For eq < O,N:Nat > |= mutex = true .
Variant 1
Config: < 0,#1:Nat >
N --> #1:Nat
No more variants.
*** The G-abstraction is itself
get variants < N:Nat,0 > . *** For eq < N:Nat,0 > |= mutex = true .
Variant 1
Config: < #1:Nat,0 >
N --> #1:Nat
Variant 2
Config: < s(0),0 >
N --> s(s(%1:Nat))
No more variants.
*** The G-abstraction adds the equation < s(0),0 > |= mutex = true .
```


Explicit-State LTL Model Checking of R\&W (III)

```
get variants < N:Nat, 0 > . \(\quad * * *\) For eq < N:Nat, 0 > |= one-writer = true .
*** has already been computed for mutex
*** The G-abstraction adds the equation \(\langle s(0), 0\rangle \mid=\) one-writer \(=\) true .
get variants < N:Nat,s(0) > . \(\quad * * *\) For eq < N:Nat,s(0) > |= one-writer \(=\) true
Variant 1
Config: < \#1:Nat,s(0) >
N --> \#1:Nat
No more variants.
*** The G-abstraction is itself
get variants < \(s(N: N a t), M: N a t>. * * *\) For < \(s(N: N a t), M: N a t>\mid=\) reads \(=\) true
Variant 1
Config: < s(\#1:Nat),\#2:Nat >
N --> \#1:Nat
M --> \#2:Nat
```


Explicit-State LTL Model Checking of R\&W (IV)

```
Variant 2
Config: < s(0),0 >
N --> s(%1:Nat)
M --> 0
```

No more variants.
*** The G-abstraction adds $\langle\mathrm{s}(0), 0\rangle$ |= reads = true .
get variants < O, M:Nat > . $\quad * *$ For < O, M:Nat > $\mid=$ reads $=$ false .
Variant 1
Config: < O,\#1:Nat >
M --> \#1:Nat

No more variants.
*** The G-abstraction is itself

Explicit-State LTL Model Checking of R\&W (V)

```
get variants < M:Nat, s(N:Nat) > . *** For < M:Nat, s(N:Nat) > |= writes = true
Variant 1
rewrites: 0 in Oms cpu (Oms real) (O rewrites/second)
Config: < #1:Nat,s(#2:Nat) >
M:Nat --> #1:Nat
N:Nat --> #2:Nat
No more variants.
*** The G-abstraction is itself
    < N:Nat, O > |= writes = false .
get variants < N:Nat, O > *** For < N:Nat, O > |= writes = false .
    *** same variants as for eq mutex(< N:Nat,O >) = true
```

*** The G-abstraction adds the equation $\langle s(0), 0\rangle$ |= writes $=$ false .

Explicit-State LTL Model Checking of R\&W (V)

```
get variants < M:Nat, s(N:Nat) > . *** For < M:Nat, s(N:Nat) > |= writes = true
Variant 1
rewrites: 0 in Oms cpu (Oms real) (O rewrites/second)
Config: < #1:Nat,s(#2:Nat) >
M:Nat --> #1:Nat
N:Nat --> #2:Nat
No more variants.
*** The G-abstraction is itself
    < N:Nat, O > |= writes = false .
get variants < N:Nat, O > *** For < N:Nat, O > |= writes = false .
    *** same variants as for eq mutex(< N:Nat,O >) = true
```

*** The G-abstraction adds the equation $\langle s(0), 0>|=$ writes $=$ false .
Therefore, we get the following modules
R\&W-ABS-ADMISSIBLE-PREDS and R\&W-ABS-ADMISSIBLE-CHECK.

Explicit-State LTL Model Checking of R\&W (VI)

```
mod R&W-ABS-ADMISSIBLE-PREDS is protecting R&W-ABS-ADMISSIBLE .
    including R&W-PREDS .
    eq < s(0),0 > |= mutex = true .
    eq < s(0),0 > |= one-writer = true .
    eq < s(0),0 > |= reads = true .
    eq < s(0),0 > |= writes = false .
```

endm
mod R\&W-ABS-ADMISSIBLE-CHECK is protecting R\&W-ABS-ADMISSIBLE-PREDS .
including MODEL-CHECKER .
endm
red modelCheck(< 0,0 \rangle, [] mutex) .
result Bool: true
red modelCheck(< 0,0 >, [] one-writer) .
result Bool: true

Explicit-State LTL Model Checking of R\&\& (VII)

```
red modelCheck(< 0,0 >,[] <> reads) .
result ModelCheckResult:
counterexample(nil, {< 0,0 >,unlabeled} {< 0,s(0) >,unlabeled})
red modelCheck(< 0,0 >,[] <> writes) .
result ModelCheckResult:
counterexample({< 0,0 >,unlabeled}, {< s(0),0 >,unlabeled})
red modelCheck(< 0,0 >,[] <> (reads \/ writes)) .
result Bool: true
```

