Appendix to Lecture 26: Simulation Maps of Kripke Structures
and Proofs of Theorems in Lecture 26

J. Meseguer

1 Simulation Maps between Kripke Structures

We can derive the theorems in Lecture 26 from considerably more general theorems about
simulation maps between Kripke structures.

Definition 1. Given Kripke structures K = (K, —x, k) and Q = (Q, —¢, -@) over state pred-
icate symbols II, a Kripke structure homomorphism, also called a simulation map of Kripke
structures, (resp. strong homomorphism, also called a strong simulation map of Kripke struc-
tures) from K to Q, denoted h : K — Q, is a function h : K — @ such that Vk, k' € K: (i)
k -k k' = h(k) -9 h(k"), and (ii) Vp € I, k € px = h(k) € po (resp. (i) as above, and
(ii)’ Vp € I, k € px < h(k) € pg). h is called injective, resp.surjective, resp. bijective, resp
and isomorphism iff it is an injective, resp. surjective, resp. bijective function, resp. iff it is
bijective and h~! is also a simulation map. Note that h is an isomorphism iff it is bijective
and Vk, k' € K: (i) k > k' < h(k) —>g h(k"), and (ii) Vp € I, k € px < h(k) € pg. The
expression simulation map is well-chosen, since Q can “simulate” any behaviors that K may
perform and can do so in such a way that any predicate p satisfied by a state k& of K is also
satisfied by the state h(k) simulating it in Q (for the strong case: and vice versa).

Theorem 1. For any simulation map of Kripke structures h : K — Q on II, and state
predicates pi,...,pn, D}, - .-, Py € II the following implication holds:

R,(p1v...vp) Fsa O v ..o vp) = Q(piv...vps) Fsa Oy v ... v )

Proof: R,(p1 v ... Vv pn)k Esa O] v ... v pl,)k exactly means that there exist k, k' € K,
and 4,j with 1 <i < n, 1 < j < m, such that k € p;., k' € p;-,c, and k —§ k. But since h
is a simulation map of Kripke structures, this forces h(k) € pi, k' € p);, and h(k) =& h(k'),
which exactly means that Q, (p1 v ... Vv pp)o FEsa O(Py v ... v pl,)o, as desired. []

The notion of simulation map can be generalized to relate Kripke structures over different sets
IT and II" of state predicates by relating them by means of a fuction H : IT — Pg,, (II'), since H
associates to each IT'-Kripke structure Q = (Q, — g, -¢) the II-Kripke structure Q| = (Q, —¢

,-Q|)» Where for each p € IT with H(p) = {p},...,0,}, Pol,, = Pio V.- U Do

Definition 2. Given Kripke structures K over II and Q over II', an H-simulation map of K
by Q is by, definition, a simulation map h : K — Q|gy. Note that a simulation map is the
special case where of an H-simulation map where IT = II' and H : II 3 p — {p} € Pg,(II). As
an immediate corollary from Theorem 1 and Definition 2, we obtain the following theorem
for H-simulation maps:



Theorem 2. For any H-simulation map of Kripke structures h : K — K’ on II and IT,

and state predicates pi,...,pn, P, ..., P, € Il with H(p;) = {¢ijys--- i} 1 <@ < m,

1 <j <r(i), and H(p)) = {q2’j{"“’qz/"j’ Lh1<i<m,1<j<7r(), the following
b b2 Tl('L/)

implication holds:

K,(piv...vpn) Esa O v...vp,,) = K, \/ (G Ve Vi) Fsa O \/ (q;/yjiv...vqg,yj;% ).

. 7/I)
1<isn 1<i’'sm

The theorems in Lecture 26 either have a relatively easy proof, or follow as easy corollaries
from the above two theorems.

2 Modal Logic Properties and Equational Abstractions

For ease of reference, the theorem in pg. 4 of Lecture 26 is here relabeled as Proposition 1.

Proposition 1. For R/G an equational abstraction of R and any state predicates uy, ..., up,
U1y .y Um € T5(X) state the following holds:

Tr,(u1 v ... vu,) Fsa Q1 v ... vog) = Trig (urv...vuy) Fss Ovr v ... v o)

Proof: By Theorem 1, all we need to prove is that the unique X-homomorphism

[eoBuc : Tr — Tr/a

defines a simulation map of Kripke structures [ |gzopuc : Tr = (Ts/E0B,states > R/EUB) -Tr) —
Tr/c = (Ts/EuBUG,States — R/ELBUG: -Tg,g)- Lhis is trivially the case, since: (i) for any v, w
ground terms of sort State, u —p/p,p v = u —gr/EoBLG v, and (ii) for any uTs(X)state,

ury, = [u]poB =def {[W0]pon |0 € [X - Tx]} S {[uf]lpupoc | 0 € [X — Ts]} =aer [ulpoBoc = Uty - O

For ease of reference, the theorem in pg. 10 of Lecture 26 is here relabeled as Proposition 2.

Proposition 2. Let ¢} and call u} | ¢} v ... v u} | ¢} be the G-abstraction of u | ¢ in R/G.
The image of the set [u | go]]!E/B under the unique surjective Y-homomorphism:

]:C —C

[ . -
[*'EUE'W/BL;B;)+ >/E.B %/E,E' o+ /BUBL

is contained in the set [(u] | ¢} v ... v u | (p%)H!EUE’Q+/BuB;Z+‘

Proof: We need to show that if [v] € [u | go]]!E/B, then

1. . !/ / / /
[V 50 mo 1€ L LGV vl 6] R

But [v] € [u | SOH!E/B exactly means that 3p € [X — Tq] s.t. v =p up A EuU B ¢p. Abbrevi-

ate u! = to 7. We then have [v

EUE_‘/Q‘*'/BUB;Zﬁ— Q+/BUB£]+ !EUE‘/Q+/BUB;2+]
and since F U B - @p and ¢ is a conjunction of equalities, by the Church-Rosser Theorem

a fortiori E U E'q+ U B U By, = @r. But since u | ¢ has vy | ¢} v ... v uy | ¢, as its

/ o
tou', and plz 5, = [u/T],



G-abstraction, this exactly means that there exists 1 < ¢ < k and g such that 7 =g, B, Yip

and [v! [(UIT)!EUE,Q+/BUB£2+] = [w}p]. But since we have

EUE,Q+/BUB£Z+] =
EUE’Q+ U B U Bg. F@T@Euﬁ’sﬁ U B U B, b piu

we then have [”!Euﬁfm/BuBgﬁ] e [(uh [y v vy [ )l , as desired. [J

uE-’Q+/BuB;2+
For ease of reference, the theorem in pg. 12 of Lecture 26 is here relabeled as Proposition 3.

Proposition 3. If all rules in the topmost theory R are G-abstractable, 75/2? is admissible.

Proof: By the assumptions on R and G, all we need to prove to show that 7?/?? is ad-

missible is that the rules R in 7?/27’ are ground coherent with the oriented equations E U

E'q+ modulo B U Bi,.. Let t be a ground term such that ¢t — t'.  Since any

E/BUB;2+
rule in R is of the form I, — 7/ if ¢} in some G-abstraction {I! — r/ if ¢\ i<ick
of some rule [ — r if ¢ in R, there exists a rule I — 7, if ¢! of this form and
a ground substitution 6 such that ¢ =BUB/,, le, t =BUB, rif, and E U E,, U B U

B, F ¢jf. But since Ij =gef if ¥ = wvars(lv;)\vars(l;) we can choose

(lvi)!EuE_"Q+/BuBg2+ )
any ground substitution 7 of the variables i so that £ U E,, u B u B, — ¢vi(0 w 7).

Let v = t!E_'uE’Q+/BuB;)+' We will be done if we show a rewrite step u _’ﬁ{/BuB;ﬁ o
t' But v = t!3

such that u,!EuE’Q+/BuB§2+ =BUB,, /'EUE’Q+/BUB§2+' BUB' g, /BUBl,, ~BuBj,
(lie)!EuE’Q+/BuB;2+ =BUB!, (1(:(0 w T)))!EUE’Q+/BUB£2+' Therefore, there exists a rule
% if ¢} in the abstraction of I — r if ¢ and a E U Eqgi/B U By, -normalized
substitution p such that u =BUB!, Uip, with v;p =BUB!, (7i(0 w 7)) Let

l; —r '
"EUE' oy /BUBL .,
u' = rjp. Since, furthermore, E'u By, U Bu By, - ¢;u holds. because Eu E,, uBuU By,
©vi(0 w ) does and ;1 =BUB!,, (7i(0 w T))!EUE/Q+/BUB§2+7 we indeed have a rewrite step

'

! : ! ! :
U — a5 v that satisfies u'! = = as desired, be-
EuE’Q+/BuB;2+ )

R/BUBL,

cause UI!EUE'm/BuB’m = (Tj“)!EuE’QJr/BuBs’ﬁ =BuB! , (7"(%‘(9wT)))!E~UE,Q+/BWB;2+ =BuUB,,

S .
EuE’Q+/BuB;Z+ O

EUE/Q+ /BuBgzJr :BUB;T;_

<ri9)!ﬁuﬁ’9+/3u3§]+
Proposition 3 has the following important corollary:

Corollary 1. Under the assumptions of Proposition 3, If [u] — [v] in Cg, then
[U!E‘uﬁ’n+/BuB£}+] _R [U!EUE’Q+/BUB;2+] in C7€/\G
Proof: By definition, [u] —g [v] means that there is a rule | — r if ¢ in R and a

ground substitution p such that [u] = lp, [v] = [rp!E/B], and F U B + ¢p. But then
U!EUE’Q+/BUB§Z+ =BUB/,, (lp)!E'uE'm/BuB;ﬁ' Therefore, there is a rule I, — 7} if ¢} in the
G-abstraction of | — r if ¢ and a ground substitution 7 such that (lp)!EUE,QJr/BuB£2+ =BUB/,,

r;7, and Furthermore,

liT, (Tp)!EuE’Q+/BuB£]+ TBuUB[, (p)!Euﬁ’Q+/BuB§)+ TBuUB, ViT-
EUE,, UBUB, - @7 holds because this is equivalent to Eu Ef,, UBUBg, + @7, which is
forced by Eu B  @p since (p)!E'uE'QJr/BuB;H =puBl, NiT- Therefore, [u!EuE"Q+/BuB§Z+] —R

vl 5 as desired.
[ EuE’Q+/BuB;2+]’ 0



For ease of reference, the Main Theorem for explicit-state model checking in pg. 17 of Lecture
26 is here relabeled as Proposition 4.

Proposition 4. (Explicit-State Model Checking with Equational Abstractions). For R top-
most and admissible with all its rules G-abstractable and (vi | ¢1 Vv ... V Uy | @) such that
each v; | ; is abstractable as v; | ¢}, v ... v vj,. | ¢, . The following holds for any initial

states [u] € Cg, [u!] = [U!EUE,Q+/BUB;2+] € Crja:

Cr, [u] Fsa O(vr [ @1V vum | om) = Crrg[ull Fsa O \/ (wix | @hav. v, | ¢ix)

1<i<m

Proof: The proof follows as an immediate corollary of Theorem 2 as follows. Cx is a Kripke
structure on state predicates II = {u,v1 | ©1,...,Um | ©m}- C@ is a Kripke structure on
state predicates Il = {u!} U, ;<,nf{Vin | @515 Vig, | ¥ig,}- The function H : IT — Pg, (IT')
maps u to u! and each v; [ ¢; to {v]; | ¢ 1,...,vi, | ¥4}, 1 <7< m. The unique surjective
Y.-homomorphism

: CE/E,B — C

[ -
[*‘EUE'W/BUB;H] S/E,E oy [BUBL,

and H define an H-homomorphism of Kripke structures from Cg to Cﬁ/\(; because condition

(i) is guaranteed by Corollary 1, and condition (ii) is guaranteed by Proposition 2. []

3 LTL Properties and Strong Simulation Maps

Given a Kripke structure K = (K, —x, k) any subset A € K defined a Kripke structure
Reachy(A) = (Reachic(A), = Reachic(A)> ~Reachic(A)), Where, by definition, (i) Reachi(A4) =
{ e K |3k e K st k—% K}, (i) =geachea) = —k NReachi(A)?, and (iii) Vp €
I, Preachyc(a) = Pk N Reachic(A). That is, Reachx(A) is just the restiction of K to the states
reachable from the set of initial states A. The main theorem about LTL properties of strong
H-simulation maps is the following:

Theorem 3. For any H-simulation map of Kripke structures h :  — K’ on II and II’, such
that i : K — K'|g is a strong simulation map, Il = {p1,...,pn}, H(pi) = {¢ijis - ij,o)}
I, 1<i<mn, h: K- K'|g a strong simulation map, and sets of initial states A < K and
A" € K’ such that h[A] € A" and the Kripke structure Reachi(A) is deadlock-free, then the
following implication holds for any LTL formula ¢ € LT L(II):

K' A" =rr Hp) = K,AkELrL ¢

where H (i) is inductively defined as follows: (i) H(pi) = (gijs V -+ V Gijj,))s (1) H(—¢) =
—H(y), (iii) H(y1 v h2) = H(W1) v H(), (iv) H(Oy) = OH(¥), and (iv) H(1ldrhz) =
H (1)U H (ih2).

Proof. First of all, an easy structural induction on ¢ € LT L(IT) proves that X', A" =1, H(p)
iff '\, A" E=rrr ¢. The second observation is that K, A prr ¢ iff Reachic(A), A ErrL ¢
So, we just need to prove that

IC/H,A/ ):LTL Y = Reach;c(A),A ):LTL @Y.

The proof is by contradiction. Suppose Reachi(A), A B=rrr . This exactly means that there
is a state a € A and an infinite path 7 € Paths(Reachi(A)®), such that m; preds b=rrr ¢. But



since Reachi(A) is deadlock-free, 7w € Paths(Reachy(A))q, and therefore 7; h € Paths(Kiy)p(a),
and, a fortiori, m; h € Paths(Kg)p(q). But since h : K — K| is a strong simulation map, for
each a’ € A we must have preds(a’) = preds(h(a’)), which forces the trace equality 7; h; preds =
m; preds and therefore that m;h; preds H=rrr ¢ with h(a) € A’, contradicting the hypothesis
Ky, A" Errr . O

Remark. Note that in general the above theorem will not hold if Reachi(A) isn’t deadlock-
free. For example, we may have K with states a, b, c,d and transitions a — b, a — ¢, ¢ — d
and d — ¢, A = {a,b,c,d}, K' with states a, {b, ¢}, d and transitions a — {b,c}, {b,c} — d and
d — {b,c} and A" = {a,{b,c},d}. Let h be the identity on a and d and map b and ¢ to {c, d}.
Then, the infinite path 7 = a - b — b — b... in K* = Reachi(A)*® has no corresponding
infinite path of the form 7;h in K'* = K’, so the above proof’s argument falls apart.

4 Using Equational Abstractions in LTL Model Checking

The above requirements and results in §3 on the use of Kripke H-simulation maps to prove
LTL properties have a direct bearing on how to do so using equational abstractions, both for
symbolic and for explicit-state model checking. Since symbolic LTL model checking will be
discussed in Lecture 27, I will focus in what follows on the explicit-state case supported by
Maude’s LTL model checker.

First of all, the assumptions and results about model checking of modal logic properties that

culminated in Proposition 4 above remain a basic requirement: in R/G both state predicates
and rules in the topmost and admissible R should be G-abstractable. But there are three
additional issues to be discussed:

1. In hindsight, the abstraction of a state predicate u | ¢ in R by is G-abstraction u} |
Oy v ... vl | ¢, defines what in §3 has been called an H-simulation map between

the Kripke structures Cg and CR ek However, in LTL we must explictly choose state

predicate names II. The easiest and most natural choice it to use the same II for both
Cgr and (CR e in such a way that if p € II is interpreted as u | ¢ in R, it is instead

intepreted as u} | @] v ... v u, | ¢, in C5~. In practical terms what this means is that

RIG"
the definion of p in Cr by the conditional equation u = p = true if ¢ is instead done

in C@ by the equations {u] = p = true if ¢,}1<i<n. In the notation of §3 sharing

the same II just means that C—-—, is implicitly of the form C—-— G| H, since we could have

R/G
defined each v} | ¢} as a separate predicate p; € II' and could have then related II and IT

by an explicit H mapping each p to its G-abstraction {p,...,p}} to get CR/G|H

2. A second issue is that we want the surjective simulation map of Kripke structures

) Il
[’!EUE’Q+/BUB§Z+] : (CR CR/G
to be strong, which is a non-trivial matter. A practical method to achieve this property

is explained in detail below and is illustrated by an example in Lecture 26.

3. A third important issue, clearly highlighted in §3, is that if we want to use C5+, to prove

R/G
LTL properties about Cx from an initial state [u] € Cx and Cg itself is not deadlock-
free, we need to either: (i) prove that the set of states reachable from [u] is deadlock



free, or (ii) make Cg itself deadlock free, which is quite easy to do. Suppose that f is
the only constructor of the topmost sort State. We just add to R the rule:

flxy, ... xn) = f(x1,...,2n) if enabled(f(z1,...,x,)) £ true

where enabled is defined in the usual way using the lefthand sides of the rules in R.
The only pending issue is how to ensure that the map of Kripke structures [_! BB /Bo B;ﬁ] :
(C% — (C%/\G is strong. The method embodied in the following proposition gives us a way to
do that.

Proposition 5. Assume that all rules in the admissible topmost theory R = (3, Eu B, R) are

G-abstractable, 7% = (5, EUEL, uBuU ng,é) is admissible, R has an FVP constructor
subtheory Eq+ U Bo+, G = Ej. U Bg., and Ej,, U E{,, U Bg+ U By, is also FVP. Let
II = {p1,...,pn} be state predicate symbols and let R extend R and BOOL by adding: (1) a
new sort Prop with constants pi1,...,pn, (2) an operator _ = _ : State Prop — Bool, and (3)
equations Epy of either the form u = p; = true if ¢, or v = p; = false if ¥ for 1 < i < n
(there can be more than one equation defining p; in this way for the positive and/or the the
negative cases). Furthermore, for all equations in Eyy their associated u | ¢ (resp. v | ¢) are
constrained constructor terms, and: (i) the equations F U Ey u B are ground convergent and
protect BOOL, and (ii) all u | ¢ (resp. v | ¢) associated to positive (resp. negative) equations

in Er are G-abstractable by u} | ¢} v ... v u} | ¢} (resp. by v} |1 v ... vl | )).

Let @H extend 75/\6Y and BOOL by adding (1) and (2) as above, and (3) add to the
equations abs(Er) obtained by adding to Er: for each equation u = p; = true if ¢ in FEip,
the equations {u; = p; = true if ¢)}1<j<k (vesp. for each equation v = p; = false if ¢ in En,
the equations {v] = p; = false if Y¥;}1<i<r). Then, if the equations £ u G U abs(Er) u B are

ground convergent and protect BOOL, then the map of Kripke structures [_! BOB' s /By B;ﬁ] :

(C% — C%]E is strong.

Proof: By Corollary 1, condition (i) in the definition of simulation map of Kripke structures
holds. We just need to prove that for each state [u] € CI and p € II, (u |= p)!EuEH/B =

(u k= p)!Euﬁ/Q+uabst)H/BuB;7+' But since the equations E U Efj U B are ground convergent

and protect BOOL, either: (i) (u = p)!EuEH/B = true, or (ii) (u = p)!EuEH/B = false. And
since the equations £ U G U abs(Er) u B are ground convergent and protect BOOL, by the
ground Church-Rosser property in case (i) we must have (u = p)

[ =
‘EUE ¢+ ua,bs(E)H/BuBg2Jr

Vo ) _ o . . :
truel Broy abs(B)y /BUBL,. true, and likewise for case (ii), proving strongness, as desired.
U]

For ease of reference, the Main Theorem on LTL model checking using equational abstractions
in pg. 18 of Lecture 26 is here relabeled as Proposition 6.

Proposition 6. Let R be topmost admissible, and R is deadlock-free (or at least the states
1
v/E,B
satisfy all the assumptions in Proposition 5. Then, for each state [u] € C} and ¢ € LT L(II)
the following implication holds:

reachable from [u] € C are so0), have an admissible equational abstraction 73/?}, and

Crier [ Frre ¢ = Cr,[u] Frre ¢

6



where [u!] abbreviates [U!Euﬁ/m/BuBgﬁ]'

= = ;] Cl - clo

EUE/Q+/BUBQ+ R R/G
is strong. The theorem now follows as a corollary of Theorem 3 by choosing A = {[u]},
A" ={[u!]}, and H : I 3 p — {p} € Pg,(II). O

Proof: By Proposition 5, the map of Kripke structures |



