Appendix to Lecture 26: Simulation Maps of Kripke Structures and Proofs of Theorems in Lecture 26

J. Meseguer

1 Simulation Maps between Kripke Structures

We can derive the theorems in Lecture 26 from considerably more general theorems about simulation maps between Kripke structures.

Definition 1. Given Kripke structures $\mathcal{K} = (K, \to_{\mathcal{K}}, _{\mathcal{K}})$ and $\mathcal{Q} = (Q, \to_{\mathcal{Q}}, _{\mathcal{Q}})$ over state predicate symbols Π , a Kripke structure homomorphism, also called a simulation map of Kripke structures) from \mathcal{K} to \mathcal{Q} , denoted $h : \mathcal{K} \to \mathcal{Q}$, is a function $h : \mathcal{K} \to \mathcal{Q}$ such that $\forall k, k' \in \mathcal{K}$: (i) $k \to_{\mathcal{K}} k' \Rightarrow h(k) \to_{\mathcal{Q}} h(k'')$, and (ii) $\forall p \in \Pi, k \in p_{\mathcal{K}} \Rightarrow h(k) \in p_{\mathcal{Q}}$ (resp. (i) as above, and (ii)' $\forall p \in \Pi, k \in p_{\mathcal{K}} \Leftrightarrow h(k) \in p_{\mathcal{Q}}$). h is called injective, resp. surjective, resp. bijective, resp and isomorphism iff it is an injective, resp. surjective, resp. bijective function, resp. iff it is bijective and h^{-1} is also a simulation map. Note that h is an isomorphism iff it is bijective and $\forall k, k' \in \mathcal{K}$: (i) $k \to_{\mathcal{K}} k' \Leftrightarrow h(k) \to_{\mathcal{Q}} h(k'')$, and (ii) $\forall p \in \Pi, k \in p_{\mathcal{K}} \Leftrightarrow h(k) \in p_{\mathcal{Q}}$. The expression simulation map is well-chosen, since \mathcal{Q} can "simulate" any behaviors that \mathcal{K} may perform and can do so in such a way that any predicate p satisfied by a state k of \mathcal{K} is also satisfied by the state h(k) simulating it in \mathcal{Q} (for the strong case: and vice versa).

Theorem 1. For any simulation map of Kripke structures $h : \mathcal{K} \to \mathcal{Q}$ on Π , and state predicates $p_1, \ldots, p_n, p'_1, \ldots, p'_m \in \Pi$ the following implication holds:

$$\mathcal{R}, (p_1 \vee \ldots \vee p_n) \models_{S4} \Diamond (p'_1 \vee \ldots \vee p'_m) \implies \mathcal{Q}, (p_1 \vee \ldots \vee p_n) \models_{S4} \Diamond (p'_1 \vee \ldots \vee p'_m)$$

Proof: $\mathcal{R}, (p_1 \vee \ldots \vee p_n)_{\mathcal{K}} \models_{S4} \Diamond (p'_1 \vee \ldots \vee p'_m)_{\mathcal{K}}$ exactly means that there exist $k, k' \in K$, and i, j with $1 \leq i \leq n, 1 \leq j \leq m$, such that $k \in p_{i_{\mathcal{K}}}, k' \in p'_{j_{\mathcal{K}}}$, and $k \to_{\mathcal{K}}^* k'$. But since his a simulation map of Kripke structures, this forces $h(k) \in p_{i_{\mathcal{K}}}, k' \in p'_{j_{\mathcal{K}}}$, and $h(k) \to_{\mathcal{Q}}^* h(k')$, which exactly means that $\mathcal{Q}, (p_1 \vee \ldots \vee p_n)_{\mathcal{Q}} \models_{S4} \Diamond (p'_1 \vee \ldots \vee p'_m)_{\mathcal{Q}}$, as desired. \Box

The notion of simulation map can be generalized to relate Kripke structures over different sets Π and Π' of state predicates by relating them by means of a function $H: \Pi \to \mathcal{P}_{fin}(\Pi')$, since H associates to each Π' -Kripke structure $\mathcal{Q} = (Q, \to_Q, Q)$ the Π -Kripke structure $\mathcal{Q}|_H = (Q, \to_Q, Q)$, $\mathcal{Q}|_H$, where for each $p \in \Pi$ with $H(p) = \{p'_1, \ldots, p'_n\}, p_{\mathcal{Q}|_H} = p'_1 \mathcal{Q} \cup \ldots \cup p'_n \mathcal{Q}$.

Definition 2. Given Kripke structures \mathcal{K} over Π and \mathcal{Q} over Π' , an *H*-simulation map of \mathcal{K} by \mathcal{Q} is by, definition, a simulation map $h : \mathcal{K} \to \mathcal{Q}|_H$. Note that a simulation map is the special case where of an *H*-simulation map where $\Pi = \Pi'$ and $H : \Pi \ni p \mapsto \{p\} \in \mathcal{P}_{fin}(\Pi)$. As an immediate corollary from **Theorem 1** and **Definition 2**, we obtain the following theorem for *H*-simulation maps:

Theorem 2. For any *H*-simulation map of Kripke structures $h : \mathcal{K} \to \mathcal{K}'$ on Π and Π' , and state predicates $p_1, \ldots, p_n, p'_1, \ldots, p'_m \in \Pi$ with $H(p_i) = \{q_{i,j_1}, \ldots, q_{i,j_{r(i)}}\}, 1 \leq i \leq n,$ $1 \leq j \leq r(i)$, and $H(p'_{i'}) = \{q'_{i',j'_1}, \ldots, q'_{i',j'_{r'(i')}}\}, 1 \leq i \leq m, 1 \leq j \leq r'(i')$, the following implication holds:

$$\mathcal{K}, (p_1 \vee \ldots \vee p_n) \models_{S4} \Diamond (p'_1 \vee \ldots \vee p'_m) \implies \mathcal{K}', \bigvee_{1 \leq i \leq n} (q_{i,j_1} \vee \ldots \vee q_{i,j_{r(i)}}) \models_{S4} \Diamond \bigvee_{1 \leq i' \leq m} (q'_{i',j'_1} \vee \ldots \vee q'_{i',j'_{r'(i')}}).$$

The theorems in Lecture 26 either have a relatively easy proof, or follow as easy corollaries from the above two theorems.

2 Modal Logic Properties and Equational Abstractions

For ease of reference, the theorem in pg. 4 of Lecture 26 is here relabeled as **Proposition 1**.

Proposition 1. For \mathcal{R}/G an equational abstraction of \mathcal{R} and any state predicates u_1, \ldots, u_n , $v_1, \ldots, v_m \in T_{\Sigma}(X)_{State}$ the following holds:

 $\mathbb{T}_{\mathcal{R}}, (u_1 \vee \ldots \vee u_n) \models_{S4} \Diamond (v_1 \vee \ldots \vee v_m) \implies \mathbb{T}_{\mathcal{R}/G}, (u_1 \vee \ldots \vee u_n) \models_{S4} \Diamond (v_1 \vee \ldots \vee v_m)$

Proof: By **Theorem 1**, all we need to prove is that the unique Σ -homomorphism

$$[_]_{E\cup B\cup G}: \mathbb{T}_{\mathcal{R}} \to \mathbb{T}_{\mathcal{R}/G}$$

defines a simulation map of Kripke structures $[-]_{E \cup B \cup G} : \mathbb{T}_{\mathcal{R}} = (T_{\Sigma/E \cup B,State}, \rightarrow_{R/E \cup B}, -\mathbb{T}_{\mathcal{R}}) \rightarrow \mathbb{T}_{\mathcal{R}/G} = (T_{\Sigma/E \cup B \cup G,State}, \rightarrow_{R/E \cup B \cup G}, -\mathbb{T}_{\mathcal{R}/G})$. This is trivially the case, since: (i) for any v, w ground terms of sort *State*, $u \rightarrow_{R/E \cup B} v \Rightarrow u \rightarrow_{R/E \cup B \cup G} v$, and (ii) for any $uT_{\Sigma}(X)_{State}$,

 $u_{\mathbb{T}_{\mathcal{R}}} = \llbracket u \rrbracket_{E \cup B} =_{def} \{ [u\theta]_{E \cup B} \mid \theta \in [X \to T_{\Sigma}] \} \subseteq \{ [u\theta]_{E \cup B \cup G} \mid \theta \in [X \to T_{\Sigma}] \} =_{def} \llbracket u \rrbracket_{E \cup B \cup G} = u_{\mathbb{T}_{\mathcal{R}/G}}. \square$

For ease of reference, the theorem in pg. 10 of Lecture 26 is here relabeled as Proposition 2.

Proposition 2. Let φ'_i and call $u'_1 | \varphi'_1 \vee \ldots \vee u'_k | \varphi'_k$ be the *G*-abstraction of $u | \varphi$ in \mathcal{R}/G . The image of the set $\llbracket u | \varphi \rrbracket_{!_{\vec{E}/B}}$ under the unique surjective Σ -homomorphism:

$$\left[\exists \vec{E} \cup \vec{E'}_{\Omega^+} / B \cup B'_{\Omega^+} \right] : \mathbb{C}_{\Sigma/\vec{E},B} \to \mathbb{C}_{\Sigma/\vec{E},\vec{E'}_{\Omega^+} / B \cup B'_{\Omega^+}}$$

is contained in the set $\llbracket (u'_1 \mid \varphi'_1 \lor \ldots \lor u'_k \mid \varphi'_k) \rrbracket_{\stackrel{l}{E} \cup \stackrel{l}{E'}_{\Omega^+} / B \cup B'_{\Omega^+}}$.

Proof: We need to show that if $[v] \in \llbracket u \mid \varphi \rrbracket_{!\vec{E}/B}$, then

$$[v!_{\vec{E}\cup\vec{E'}_{\Omega^+}/B\cup B'_{\Omega^+}}] \in \llbracket (u'_1 \mid \varphi'_1 \vee \ldots \vee u'_k \mid \varphi'_k) \rrbracket_{\vec{E}\cup\vec{E'}_{\Omega^+}/B\cup B'_{\Omega^+}}$$

But $[v] \in \llbracket u \mid \varphi \rrbracket_{\stackrel{!}{E/B}}$ exactly means that $\exists \rho \in [X \to T_{\Omega}] \ s.t. \ v =_{B} u\rho \land E \cup B \vdash \varphi\rho$. Abbreviate $u!_{\vec{E} \cup \vec{E'}_{\Omega^+}/B \cup B'_{\Omega^+}}$ to u', and $\rho!_{\vec{E} \cup \vec{E'}_{\Omega^+}/B \cup B'_{\Omega^+}}$ to τ . We then have $[v!_{\vec{E} \cup \vec{E'}_{\Omega^+}/B \cup B'_{\Omega^+}}] = [u'\tau]$, and since $E \cup B \vdash \varphi\rho$ and φ is a conjunction of equalities, by the Church-Rosser Theorem a fortiori $E \cup \vec{E'}_{\Omega^+} \cup B \cup B'_{\Omega^+} \vdash \varphi\tau$. But since $u \mid \varphi$ has $u'_1 \mid \varphi'_1 \lor \ldots \lor u'_k \mid \varphi'_k$ as its

G-abstraction, this exactly means that there exists $1 \leq i \leq k$ and μ such that $\tau =_{B \cup B'_{\Omega^+}} \gamma'_i \mu$ and $[v!_{\vec{E} \cup \vec{E'}_{\Omega^+}/B \cup B'_{\Omega^+}}] = [(u'\tau)!_{\vec{E} \cup \vec{E'}_{\Omega^+}/B \cup B'_{\Omega^+}}] = [u'_i \mu]$. But since we have

 $E \cup \vec{E'}_{\Omega^+} \cup B \cup B'_{\Omega^+} \vdash \varphi \tau \Leftrightarrow E \cup \vec{E'}_{\Omega^+} \cup B \cup B'_{\Omega^+} \vdash \varphi'_i \mu$

we then have $[v!_{\vec{E}\cup\vec{E'}_{\Omega^+}/B\cup B'_{\Omega^+}}] \in [(u'_1 \mid \varphi'_1 \vee \ldots \vee u'_k \mid \varphi'_k)]_{\vec{E}\cup\vec{E'}_{\Omega^+}/B\cup B'_{\Omega^+}}$, as desired. \Box

For ease of reference, the theorem in pg. 12 of Lecture 26 is here relabeled as **Proposition 3**.

Proposition 3. If all rules in the topmost theory \mathcal{R} are *G*-abstractable, \mathcal{R}/G is admissible.

Proof: By the assumptions on \mathcal{R} and G, all we need to prove to show that \mathcal{R}/\overline{G} is admissible is that the rules \widehat{R} in $\widehat{\mathcal{R}/G}$ are ground coherent with the oriented equations $\vec{E} \cup \vec{E'}_{\Omega^+}$ modulo $B \cup B'_{\Omega^+}$. Let t be a ground term such that $t \to_{\widehat{R}/B \cup B'_{\Omega^+}} t'$. Since any rule in \widehat{R} is of the form $l'_i \to r'_i$ if φ'_i in some G-abstraction $\{l'_i \to r'_i \quad if \quad \varphi'_i\}_{1 \leq i \leq k}$ of some rule $l \to r$ if φ in \mathcal{R} , there exists a rule $l'_i \to r'_i$ if φ'_i of this form and a ground substitution θ such that $t =_{B \cup B'_{\Omega^+}} l'_i \theta$, $t' =_{B \cup B'_{\Omega^+}} r'_i \theta$, and $E \cup E'_{\Omega^+} \cup B \cup B'_{\Omega^+} \to \varphi'_i (\theta \oplus \tau)$. Let $u = t!_{\vec{E} \cup \vec{E'}_{\Omega^+} / B \cup B'_{\Omega^+}}$. We will be done if we show a rewrite step $u \to_{\widehat{R}/B \cup B'_{\Omega^+}} u'$ such that $u'!_{\vec{E} \cup \vec{E'}_{\Omega^+} / B \cup B'_{\Omega^+}} =_{B \cup B'_{\Omega^+}} t'!_{\vec{E} \cup \vec{E'}_{\Omega^+} / B \cup B'_{\Omega^+}}$. But $u = t!_{\vec{E} \cup \vec{E'}_{\Omega^+} / B \cup B'_{\Omega^+}} =_{B \cup B'_{\Omega^+}} (l_i \theta) \oplus d_{\Omega^+} = B_{D B'_{\Omega^+}} (l_i (\theta \oplus \tau)))!_{\vec{E} \cup \vec{E'}_{\Omega^+} / B \cup B'_{\Omega^+}}$. Therefore, there exists a rule $l'_j \to r'_j$ if φ'_j in the abstraction of $l \to r$ if φ and a $\vec{E} \cup \vec{E'}_{\Omega^+} / B \cup B'_{\Omega^+}$ normalized substitution μ such that $u =_{B \cup B'_{\Omega^+}} (l_i (\theta \oplus \tau))!_{\vec{E} \cup \vec{E'}_{\Omega^+} / B \cup B'_{\Omega^+}}$. Let $u' = r_j \mu$. Since, furthermore, $E \cup E'_{\Omega^+} \cup B \cup B'_{\Omega^+} \mapsto \varphi_{\Omega^+} (\varphi_i (\theta \oplus \tau))!_{\vec{E} \cup \vec{E'}_{\Omega^+} / B \cup B'_{\Omega^+}} = B_{U'_{\Omega^+}} \oplus U \to B'_{\Omega^+} \oplus U \to B'_{$

Proposition 3 has the following important corollary:

Corollary 1. Under the assumptions of **Proposition 3**, If $[u] \to_{\mathcal{R}} [v]$ in $\mathbb{C}_{\mathcal{R}}$, then $[u!_{\vec{E}\cup\vec{E'}_{\Omega^+}/B\cup B'_{\Omega^+}}] \to_{\mathcal{R}} [v!_{\vec{E}\cup\vec{E'}_{\Omega^+}/B\cup B'_{\Omega^+}}]$ in $\mathbb{C}_{\widehat{\mathcal{R}/G}}$.

Proof: By definition, $[u] \to_{\mathcal{R}} [v]$ means that there is a rule $l \to r$ if φ in \mathcal{R} and a ground substitution ρ such that $[u] = l\rho$, $[v] = [r\rho!_{\vec{E}/B}]$, and $E \cup B \vdash \varphi\rho$. But then $u!_{\vec{E}\cup\vec{E'}_{\Omega^+}/B\cup B'_{\Omega^+}} =_{B\cup B'_{\Omega^+}} (l\rho)!_{\vec{E}\cup\vec{E'}_{\Omega^+}/B\cup B'_{\Omega^+}}$. Therefore, there is a rule $l'_i \to r'_i$ if φ'_i in the G-abstraction of $l \to r$ if φ and a ground substitution τ such that $(l\rho)!_{\vec{E}\cup\vec{E'}_{\Omega^+}/B\cup B'_{\Omega^+}} =_{B\cup B'_{\Omega^+}} r_i\tau$, and $(\rho)!_{\vec{E}\cup\vec{E'}_{\Omega^+}/B\cup B'_{\Omega^+}} =_{B\cup B'_{\Omega^+}} \gamma_i\tau$. Furthermore, $E\cup E'_{\Omega^+}\cup B\cup B'_{\Omega^+} \vdash \varphi'_i\tau$ holds because this is equivalent to $E\cup E'_{\Omega^+}\cup B\cup B'_{\Omega^+} \vdash \varphi\gamma_i\tau$, which is forced by $E\cup B \vdash \varphi\rho$ since $(\rho)!_{\vec{E}\cup\vec{E'}_{\Omega^+}/B\cup B'_{\Omega^+}} =_{B\cup B'_{\Omega^+}} \gamma_i\tau$. Therefore, $[u!_{\vec{E}\cup\vec{E'}_{\Omega^+}/B\cup B'_{\Omega^+}}] \to_{\mathcal{R}} [v!_{\vec{E}\cup\vec{E'}_{\Omega^+}/B\cup B'_{\Omega^+}}]$, as desired. \Box

For ease of reference, the Main Theorem for explicit-state model checking in pg. 17 of Lecture 26 is here relabeled as **Proposition 4**.

Proposition 4. (Explicit-State Model Checking with Equational Abstractions). For \mathcal{R} topmost and admissible with all its rules *G*-abstractable and $(v_1 | \varphi_1 \vee \ldots \vee v_m | \varphi_m)$ such that each $v_i | \varphi_i$ is abstractable as $v'_{i,1} | \varphi'_{i,1} \vee \ldots \vee v'_{i,k_i} | \varphi'_{i,k_i}$. The following holds for any initial states $[u] \in \mathbb{C}_{\mathcal{R}}, [u!] = [u!_{\vec{E} \cup \vec{E'}_{\Omega^+}/B \cup B'_{\Omega^+}}] \in \mathbb{C}_{\mathcal{R}/G}$:

$$\mathbb{C}_{\mathcal{R}}, [u] \models_{S4} \Diamond (v_1 \mid \varphi_1 \lor \ldots \lor v_m \mid \varphi_m) \implies \mathbb{C}_{\widehat{\mathcal{R}/G}}, [u!] \models_{S4} \Diamond \bigvee_{1 \leqslant i \leqslant m} (v'_{i,1} \mid \varphi'_{i,1} \lor \ldots \lor v'_{i,k_i} \mid \varphi'_{i,k_i})$$

Proof: The proof follows as an immediate corollary of **Theorem 2** as follows. $\mathbb{C}_{\mathcal{R}}$ is a Kripke structure on state predicates $\Pi = \{u, v_1 \mid \varphi_1, \ldots, v_m \mid \varphi_m\}$. $\mathbb{C}_{\widehat{\mathcal{R}/G}}$ is a Kripke structure on state predicates $\Pi' = \{u!\} \cup \bigcup_{1 \leq i \leq m} \{v'_{i,1} \mid \varphi'_{i,1}, \ldots, v'_{i,k_i} \mid \varphi'_{i,k_i}\}$. The function $H : \Pi \to \mathcal{P}_{fin}(\Pi')$ maps u to u! and each $v_i \mid \varphi_i$ to $\{v'_{i,1} \mid \varphi'_{i,1}, \ldots, v'_{i,k_i} \mid \varphi'_{i,k_i}\}$, $1 \leq i \leq m$. The unique surjective Σ -homomorphism

$$\left[_!_{\vec{E}\cup\vec{E'}_{\Omega^+}/B\cup B'_{\Omega^+}}\right] : \mathbb{C}_{\Sigma/\vec{E},B} \to \mathbb{C}_{\Sigma/\vec{E},\vec{E'}_{\Omega^+}/B\cup B'_{\Omega^+}}$$

and *H* define an *H*-homomorphism of Kripke structures from $\mathbb{C}_{\mathcal{R}}$ to $\mathbb{C}_{\widehat{\mathcal{R}/G}}$ because condition (i) is guaranteed by **Corollary 1**, and condition (ii) is guaranteed by **Proposition 2**.

3 LTL Properties and Strong Simulation Maps

Given a Kripke structure $\mathcal{K} = (K, \to_{\mathcal{K}}, _{\mathcal{K}})$ any subset $A \subseteq K$ defined a Kripke structure $Reach_{\mathcal{K}}(A) = (Reach_{\mathcal{K}}(A), \to_{Reach_{\mathcal{K}}(A)}, _{-Reach_{\mathcal{K}}(A)})$, where, by definition, (i) $Reach_{\mathcal{K}}(A) = \{k' \in K \mid \exists k \in K \quad s.t. \quad k \to_{\mathcal{K}}^* k'\}$, (ii) $\to_{Reach_{\mathcal{K}}(A)} = \to_{\mathcal{K}} \cap Reach_{\mathcal{K}}(A)^2$, and (iii) $\forall p \in \Pi$, $p_{Reach_{\mathcal{K}}(A)} = p_{\mathcal{K}} \cap Reach_{\mathcal{K}}(A)$. That is, $Reach_{\mathcal{K}}(A)$ is just the restiction of \mathcal{K} to the states reachable from the set of initial states A. The main theorem about LTL properties of strong H-simulation maps is the following:

Theorem 3. For any *H*-simulation map of Kripke structures $h : \mathcal{K} \to \mathcal{K}'$ on Π and Π' , such that $h : \mathcal{K} \to \mathcal{K}'|_H$ is a strong simulation map, $\Pi = \{p_1, \ldots, p_n\}, H(p_i) = \{q_{i,j_1}, \ldots, q_{i,j_{r(i)}}\} \subseteq \Pi', 1 \leq i \leq n, h : \mathcal{K} \to \mathcal{K}'|_H$ a strong simulation map, and sets of initial states $A \subseteq K$ and $A' \subseteq K'$ such that $h[A] \subseteq A'$ and the Kripke structure $Reach_{\mathcal{K}}(A)$ is deadlock-free, then the following implication holds for any LTL formula $\varphi \in LTL(\Pi)$:

$$\mathcal{K}', A' \models_{LTL} H(\varphi) \Rightarrow \mathcal{K}, A \models_{LTL} \varphi.$$

where $H(\varphi)$ is inductively defined as follows: (i) $H(p_i) = (q_{i,j_1} \vee \ldots \vee q_{i,j_{r(i)}})$, (ii) $H(\neg \psi) = \neg H(\psi)$, (iii) $H(\psi_1 \vee \psi_2) = H(\psi_1) \vee H(\psi_2)$, (iv) $H(\bigcirc \psi) = \bigcirc H(\psi)$, and (iv) $H(\psi_1 \mathcal{U}\psi_2) = H(\psi_1)\mathcal{U}H(\psi_2)$.

Proof. First of all, an easy structural induction on $\varphi \in LTL(\Pi)$ proves that $\mathcal{K}', A' \models_{LTL} H(\varphi)$ iff $\mathcal{K}'|_H, A' \models_{LTL} \varphi$. The second observation is that $\mathcal{K}, A \models_{LTL} \varphi$ iff $Reach_{\mathcal{K}}(A), A \models_{LTL} \varphi$. So, we just need to prove that

$$\mathcal{K}'_H, A' \models_{LTL} \varphi \Rightarrow Reach_{\mathcal{K}}(A), A \models_{LTL} \varphi.$$

The proof is by contradiction. Suppose $Reach_{\mathcal{K}}(A)$, $A \models_{LTL} \varphi$. This exactly means that there is a state $a \in A$ and an infinite path $\pi \in Paths(Reach_{\mathcal{K}}(A)^{\bullet})_a$ such that π ; preds $\models_{LTL} \varphi$. But

since $Reach_{\mathcal{K}}(A)$ is deadlock-free, $\pi \in Paths(Reach_{\mathcal{K}}(A))_a$, and therefore $\pi; h \in Paths(\mathcal{K}'_H)_{h(a)}$, and, a fortiori, $\pi; h \in Paths(\mathcal{K}'_H)_{h(a)}$. But since $h: \mathcal{K} \to \mathcal{K}'|_H$ is a strong simulation map, for each $a' \in A$ we must have preds(a') = preds(h(a')), which forces the trace equality $\pi; h; preds = \pi; preds$ and therefore that $\pi; h; preds \models_{LTL} \varphi$ with $h(a) \in A'$, contradicting the hypothesis $\mathcal{K}'_H, A' \models_{LTL} \varphi$. \Box

Remark. Note that in general the above theorem will not hold if $Reach_{\mathcal{K}}(A)$ isn't deadlockfree. For example, we may have \mathcal{K} with states a, b, c, d and transitions $a \to b, a \to c, c \to d$ and $d \to c, A = \{a, b, c, d\}, \mathcal{K}'$ with states $a, \{b, c\}, d$ and transitions $a \to \{b, c\}, \{b, c\} \to d$ and $d \to \{b, c\}$ and $A' = \{a, \{b, c\}, d\}$. Let h be the identity on a and d and map b and c to $\{c, d\}$. Then, the infinite path $\pi = a \to b \to b \to b \dots$ in $\mathcal{K}^{\bullet} = Reach_{\mathcal{K}}(A)^{\bullet}$ has no corresponding infinite path of the form $\pi; h$ in $\mathcal{K}'^{\bullet} = \mathcal{K}'$, so the above proof's argument falls apart.

4 Using Equational Abstractions in LTL Model Checking

The above requirements and results in §3 on the use of Kripke *H*-simulation maps to prove LTL properties have a direct bearing on how to do so using equational abstractions, both for symbolic and for explicit-state model checking. Since symbolic LTL model checking will be discussed in Lecture 27, I will focus in what follows on the explicit-state case supported by Maude's LTL model checker.

First of all, the assumptions and results about model checking of modal logic properties that culminated in **Proposition 4** above remain a basic requirement: in $\widehat{\mathcal{R}/G}$ both state predicates and rules in the topmost and admissible \mathcal{R} should be *G*-abstractable. But there are three additional issues to be discussed:

- 1. In hindsight, the abstraction of a state predicate u | φ in R by is G-abstraction u'₁ | φ'₁ ∨ ... ∨ u'_n | φ'_n defines what in §3 has been called an H-simulation map between the Kripke structures C_R and C_{R/G}. However, in LTL we must explicitly choose state predicate names Π. The easiest and most natural choice it to use the same Π for both C_R and C_{R/G} in such a way that if p ∈ Π is interpreted as u | φ in R, it is instead intepreted as u'₁ | φ'₁ ∨ ... ∨ u'_n | φ'_n in C_{R/G}. In practical terms what this means is that the definion of p in C_R by the conditional equation u ⊨ p = true if φ is instead done in C_{R/G} by the equations {u'_i ⊨ p = true if φ'_i}_{1≤i≤n}. In the notation of §3 sharing the same Π just means that C_{R/G} is implicitly of the form C_{R/G}|_H, since we could have defined each u'_i | φ'_i as a separate predicate p'_i ∈ Π' and could have then related Π and Π' by an explicit H mapping each p to its G-abstraction {p'₁,...,p'_n} to get C_{R/G}|_H.
- 2. A second issue is that we want the surjective simulation map of Kripke structures

$$\left[_!_{\vec{E}\cup\vec{E'}_{\Omega^+}/B\cup B'_{\Omega^+}}\right] : \mathbb{C}_{\mathcal{R}}^{\Pi} \to \mathbb{C}_{\widehat{\mathcal{R}/G}}^{\Pi}$$

to be *strong*, which is a non-trivial matter. A practical method to achieve this property is explained in detail below and is illustrated by an example in Lecture 26.

3. A third important issue, clearly highlighted in §3, is that if we want to use $\mathbb{C}_{\widehat{\mathcal{R}/G}}$ to prove LTL properties about $\mathbb{C}_{\mathcal{R}}$ from an initial state $[u] \in \mathbb{C}_{\mathcal{R}}$ and $\mathbb{C}_{\mathcal{R}}$ itself is not deadlockfree, we need to either: (i) prove that the set of states reachable from [u] is deadlock free, or (ii) make $\mathbb{C}_{\mathcal{R}}$ itself deadlock free, which is quite easy to do. Suppose that f is the only constructor of the topmost sort *State*. We just add to \mathcal{R} the rule:

 $f(x_1,\ldots,x_n) \to f(x_1,\ldots,x_n)$ if $enabled(f(x_1,\ldots,x_n)) \neq true$

where *enabled* is defined in the usual way using the lefthand sides of the rules in \mathcal{R} .

The only pending issue is how to ensure that the map of Kripke structures $[_!_{\vec{E}\cup\vec{E'}_{\Omega^+}/B\cup B'_{\Omega^+}}]$: $\mathbb{C}^{\Pi}_{\mathcal{R}} \to \mathbb{C}^{\Pi}_{\widehat{\mathcal{R}}/\widehat{G}}$ is *strong*. The method embodied in the following proposition gives us a way to do that.

Proposition 5. Assume that all rules in the admissible topmost theory $\mathcal{R} = (\Sigma, E \cup B, R)$ are *G*-abstractable, $\widehat{\mathcal{R}/G} = (\Sigma, E \cup E'_{\Omega^+} \cup B \cup B'_{\Omega^+}, \widehat{R})$ is admissible, \mathcal{R} has an FVP constructor subtheory $E_{\Omega^+} \cup B_{\Omega^+}, G = E'_{\Omega^+} \cup B'_{\Omega^+}, \text{ and } E'_{\Omega^+} \cup E'_{\Omega^+} \cup B_{\Omega^+} \cup B'_{\Omega^+}$ is also FVP. Let $\Pi = \{p_1, \ldots, p_n\}$ be state predicate symbols and let \mathcal{R}^{Π} extend \mathcal{R} and BOOL by adding: (1) a new sort *Prop* with constants p_1, \ldots, p_n , (2) an operator $_\models_:$ StateProp \rightarrow Bool, and (3) equations E_{Π} of either the form $u \models p_i = true \ if \ \varphi$, or $v \models p_i = false \ if \ \psi$ for $1 \le i \le n$ (there can be more than one equation defining p_i in this way for the positive and/or the the negative cases). Furthermore, for all equations in E_{Π} their associated $u \mid \varphi$ (resp. $v \mid \psi$) are constrained constructor terms, and: (i) the equations $E \cup E_{\Pi} \cup B$ are ground convergent and protect BOOL, and (ii) all $u \mid \varphi$ (resp. $v \mid \psi$) associated to positive (resp. negative) equations in E_{Π} are *G*-abstractable by $u'_1 \mid \varphi'_1 \lor \ldots \lor u'_k \mid \varphi'_k$ (resp. by $v'_1 \mid \psi'_1 \lor \ldots \lor v'_r \mid \psi'_r$).

Let $\widehat{\mathcal{R}/G}^{\Pi}$ extend $\widehat{\mathcal{R}/G}$ and BOOL by adding (1) and (2) as above, and (3) add to the equations $abs(E_{\Pi})$ obtained by adding to E_{Π} : for each equation $u \models p_i = true \ if \ \varphi$ in E_{Π} , the equations $\{u'_j \models p_i = true \ if \ \varphi'_j\}_{1 \leq j \leq k}$ (resp. for each equation $v \models p_i = false \ if \ \psi$ in E_{Π} , the equations $\{v'_l \models p_i = false \ if \ \psi'_l\}_{1 \leq l \leq r}$). Then, if the equations $E \cup G \cup abs(E_{\Pi}) \cup B$ are ground convergent and protect BOOL, then the map of Kripke structures $[_!_{\vec{E} \cup \vec{E'}_{\Omega^+}/B \cup B'_{\Omega^+}]$: $\mathbb{C}^{\Pi}_{\mathcal{R}/G} \to \mathbb{C}^{\Pi}_{\mathcal{R}/G}$ is strong.

Proof: By **Corollary 1**, condition (i) in the definition of simulation map of Kripke structures holds. We just need to prove that for each state $[u] \in \mathbb{C}^{\Pi}_{\mathcal{R}}$ and $p \in \Pi$, $(u \models p)!_{\vec{E} \cup \vec{E}_{\Pi}/B} =$ $(u \models p)!_{\vec{E} \cup \vec{E}'_{\Omega^+} \cup ab\vec{s}(\vec{E})_{\Pi}/B \cup B'_{\Omega^+}}$. But since the equations $E \cup E_{\Pi} \cup B$ are ground convergent and protect BOOL, either: (i) $(u \models p)!_{\vec{E} \cup \vec{E}_{\Pi}/B} = true$, or (ii) $(u \models p)!_{\vec{E} \cup \vec{E}_{\Pi}/B} = false$. And since the equations $E \cup G \cup abs(E_{\Pi}) \cup B$ are ground convergent and protect BOOL, by the ground Church-Rosser property in case (i) we must have $(u \models p)!_{\vec{E} \cup \vec{E}'_{\Omega^+} \cup ab\vec{s}(\vec{E})_{\Pi}/B \cup B'_{\Omega^+}} =$ $true!_{\vec{E} \cup \vec{E}'_{\Omega^+} \cup ab\vec{s}(\vec{E})_{\Pi}/B \cup B'_{\Omega^+}} = true$, and likewise for case (ii), proving strongness, as desired. \Box

For ease of reference, the Main Theorem on LTL model checking using equational abstractions in pg. 18 of Lecture 26 is here relabeled as **Proposition 6**.

Proposition 6. Let \mathcal{R} be topmost admissible, and \mathcal{R} is deadlock-free (or at least the states reachable from $[u] \in \mathbb{C}_{\Sigma/\vec{E},B}^{\Pi}$ are so), have an admissible equational abstraction $\widehat{\mathcal{R}/G}$, and satisfy all the assumptions in **Proposition 5**. Then, for each state $[u] \in \mathbb{C}_{\mathcal{R}}^{\Pi}$ and $\varphi \in LTL(\Pi)$ the following implication holds:

$$\mathbb{C}_{\widehat{\mathcal{R}/G}}, [u!] \models_{LTL} \varphi \implies \mathbb{C}_{\mathcal{R}}, [u] \models_{LTL} \varphi$$

where [u!] abbreviates $[u!_{\vec{E}\cup\vec{E'}_{\Omega^+}/B\cup B'_{\Omega^+}}]$.

Proof: By **Proposition 5**, the map of Kripke structures $[-!_{\vec{E}\cup\vec{E'}_{\Omega^+}/B\cup B'_{\Omega^+}}]$: $\mathbb{C}^{\Pi}_{\mathcal{R}} \to \mathbb{C}^{\Pi}_{\widehat{\mathcal{R}/G}}$ is strong. The theorem now follows as a corollary of **Theorem 3** by choosing $A = \{[u]\}, A' = \{[u!]\}, \text{ and } H : \Pi \ni p \mapsto \{p\} \in \mathcal{P}_{fin}(\Pi).$