
Appendix to Lecture 26: Simulation Maps of Kripke Structures

and Proofs of Theorems in Lecture 26

J. Meseguer

1 Simulation Maps between Kripke Structures

We can derive the theorems in Lecture 26 from considerably more general theorems about
simulation maps between Kripke structures.

Definition 1. Given Kripke structures K “ pK,ÑK, Kq and Q “ pQ,ÑQ, Qq over state pred-
icate symbols Π, a Kripke structure homomorphism, also called a simulation map of Kripke
structures, (resp. strong homomorphism, also called a strong simulation map of Kripke struc-
tures) from K to Q, denoted h : K Ñ Q, is a function h : K Ñ Q such that @k, k1 P K: (i)
k ÑK k1 ñ hpkq ÑQ hpk2q, and (ii) @p P Π, k P pK ñ hpkq P pQ (resp. (i) as above, and
(ii)’ @p P Π, k P pK ô hpkq P pQ). h is called injective, resp.surjective, resp. bijective, resp
and isomorphism iff it is an injective, resp. surjective, resp. bijective function, resp. iff it is
bijective and h´1 is also a simulation map. Note that h is an isomorphism iff it is bijective
and @k, k1 P K: (i) k ÑK k1 ô hpkq ÑQ hpk2q, and (ii) @p P Π, k P pK ô hpkq P pQ. The
expression simulation map is well-chosen, since Q can “simulate” any behaviors that K may
perform and can do so in such a way that any predicate p satisfied by a state k of K is also
satisfied by the state hpkq simulating it in Q (for the strong case: and vice versa).

Theorem 1. For any simulation map of Kripke structures h : K Ñ Q on Π, and state
predicates p1, . . . , pn, p

1
1, . . . , p

1
m P Π the following implication holds:

R, pp1 _ . . ._ pnq |ùS4 ♢pp
1
1 _ . . ._ p

1
mq ñ Q, pp1 _ . . ._ pnq |ùS4 ♢pp

1
1 _ . . ._ p

1
mq

Proof: R, pp1 _ . . . _ pnqK |ùS4 ♢pp1
1 _ . . . _ p1

mqK exactly means that there exist k, k1 P K,
and i, j with 1 ď i ď n, 1 ď j ď m, such that k P piK , k

1 P p1
jK
, and k Ñ˚

K k1. But since h
is a simulation map of Kripke structures, this forces hpkq P piK , k

1 P p1
jK
, and hpkq Ñ˚

Q hpk1q,
which exactly means that Q, pp1 _ . . ._ pnqQ |ùS4 ♢pp1

1 _ . . ._ p
1
mqQ, as desired. l

The notion of simulation map can be generalized to relate Kripke structures over different sets
Π and Π1 of state predicates by relating them by means of a fuction H : ΠÑ PfinpΠ

1q, since H
associates to each Π1-Kripke structure Q “ pQ,ÑQ, Qq the Π-Kripke structure Q|H “ pQ,ÑQ
, Q|H

q, where for each p P Π with Hppq “ tp1
1, . . . , p

1
nu, pQ|H

“ p1
1Q Y . . .Y p

1
nQ.

Definition 2. Given Kripke structures K over Π and Q over Π1, an H-simulation map of K
by Q is by, definition, a simulation map h : K Ñ Q|H . Note that a simulation map is the
special case where of an H-simulation map where Π “ Π1 and H : Π Q p ÞÑ tpu P PfinpΠq. As
an immediate corollary from Theorem 1 and Definition 2, we obtain the following theorem
for H-simulation maps:
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Theorem 2. For any H-simulation map of Kripke structures h : K Ñ K1 on Π and Π1,
and state predicates p1, . . . , pn, p

1
1, . . . , p

1
m P Π with Hppiq “ tqi,j1 , . . . , qi,jrpiq

u, 1 ď i ď n,

1 ď j ď rpiq, and Hpp1
i1q “ tq1

i1,j1
1
, . . . , q1

i1,j1
r1pi1q

u, 1 ď i ď m, 1 ď j ď r1pi1q, the following

implication holds:

K, pp1_. . ._pnq |ùS4 ♢pp1
1_. . ._p

1
mq ñ K1,

ł

1ďiďn

pqi,j1_. . ._qi,jrpiq
q |ùS4 ♢

ł

1ďi1ďm

pq1
i1,j1

1
_. . ._q1

i1,j1
r1pi1q

q.

The theorems in Lecture 26 either have a relatively easy proof, or follow as easy corollaries
from the above two theorems.

2 Modal Logic Properties and Equational Abstractions

For ease of reference, the theorem in pg. 4 of Lecture 26 is here relabeled as Proposition 1.

Proposition 1. For R{G an equational abstraction of R and any state predicates u1, . . . , un,
v1, . . . , vm P TΣpXqState the following holds:

TR, pu1 _ . . ._ unq |ùS4 ♢pv1 _ . . ._ vmq ñ TR{G, pu1 _ . . ._ unq |ùS4 ♢pv1 _ . . ._ vmq

Proof: By Theorem 1, all we need to prove is that the unique Σ-homomorphism

r sEYBYG : TR Ñ TR{G

defines a simulation map of Kripke structures r sEYBYG : TR “ pTΣ{EYB,State ,ÑR{EYB, TRq Ñ

TR{G “ pTΣ{EYBYG,State ,ÑR{EYBYG, TR{G
q. This is trivially the case, since: (i) for any v, w

ground terms of sort State, uÑR{EYB v ñ uÑR{EYBYG v, and (ii) for any uTΣpXqState ,

uTR “ JuKEYB “def truθsEYB | θ P rX Ñ TΣsu Ď truθsEYBYG | θ P rX Ñ TΣsu “def JuKEYBYG “ uTR{G
. l

For ease of reference, the theorem in pg. 10 of Lecture 26 is here relabeled as Proposition 2.

Proposition 2. Let φ1
i and call u1

1 | φ
1
1 _ . . ._ u

1
k | φ

1
k be the G-abstraction of u | φ in R{G.

The image of the set Ju | φK!
E⃗{B

under the unique surjective Σ-homomorphism:

r !
E⃗YE⃗1

Ω` {BYB1

Ω`

s : CΣ{E⃗,B Ñ C
Σ{E⃗,E⃗1

Ω` {BYB1

Ω`

is contained in the set Jpu1
1 | φ

1
1 _ . . ._ u

1
k | φ

1
kqK!E⃗YE⃗1

Ω` {BYB1

Ω`

.

Proof: We need to show that if rvs P Ju | φK!
E⃗{B

, then

rv!
E⃗YE⃗1

Ω` {BYB1

Ω`

s P Jpu1
1 | φ

1
1 _ . . ._ u

1
k | φ

1
kqK!

E⃗YE⃗1
Ω` {BYB1

Ω`

But rvs P Ju | φK!
E⃗{B

exactly means that Dρ P rX Ñ TΩs s.t. v “B uρ ^ EYB $ φρ. Abbrevi-

ate u!
E⃗YE⃗1

Ω` {BYB1

Ω`

to u1, and ρ!
E⃗YE⃗1

Ω` {BYB1

Ω`

to τ . We then have rv!
E⃗YE⃗1

Ω` {BYB1

Ω`

s “ ru1τ s,

and since E Y B $ φρ and φ is a conjunction of equalities, by the Church-Rosser Theorem
a fortiori E Y E⃗1

Ω` Y B Y B1
Ω` $ φτ . But since u | φ has u1

1 | φ
1
1 _ . . . _ u1

k | φ
1
k as its
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G-abstraction, this exactly means that there exists 1 ď i ď k and µ such that τ “BYB1

Ω`
γ1
iµ

and rv!
E⃗YE⃗1

Ω` {BYB1

Ω`

s “ rpu1τq!
E⃗YE⃗1

Ω` {BYB1

Ω`

s “ ru1
iµs. But since we have

E Y E⃗1
Ω` YB YB1

Ω` $ φτ ô E Y E⃗1
Ω` YB YB1

Ω` $ φ1
iµ

we then have rv!
E⃗YE⃗1

Ω` {BYB1

Ω`

s P Jpu1
1 | φ

1
1 _ . . ._ u

1
k | φ

1
kqK!E⃗YE⃗1

Ω` {BYB1

Ω`

, as desired. l

For ease of reference, the theorem in pg. 12 of Lecture 26 is here relabeled as Proposition 3.

Proposition 3. If all rules in the topmost theory R are G-abstractable, zR{G is admissible.

Proof: By the assumptions on R and G, all we need to prove to show that zR{G is ad-

missible is that the rules pR in zR{G are ground coherent with the oriented equations E⃗ Y
E⃗1

Ω` modulo B Y B1
Ω` . Let t be a ground term such that t Ñ

pR{BYB1

Ω`
t1. Since any

rule in pR is of the form l1i Ñ r1
i if φ1

i in some G-abstraction tl1i Ñ r1
i if φ1

iu1ďiďk

of some rule l Ñ r if φ in R, there exists a rule l1i Ñ r1
i if φ1

i of this form and
a ground substitution θ such that t “BYB1

Ω`
l1iθ, t

1 “BYB1

Ω`
r1
iθ, and E Y E1

Ω` Y B Y

B1
Ω` $ φ1

iθ. But since l1i “def plγiq!E⃗YE⃗1
Ω` {BYB1

Ω`

, if y⃗ “ varsplγiqzvarspl
1
iq we can choose

any ground substitution τ of the variables y⃗ so that E Y E1
Ω` Y B Y B1

Ω` $ φγipθ Z τq.
Let u “ t!

E⃗YE⃗1
Ω` {BYB1

Ω`

. We will be done if we show a rewrite step u Ñ
pR{BYB1

Ω`
u1

such that u1!
E⃗YE⃗1

Ω` {BYB1

Ω`

“BYB1

Ω`
t1!

E⃗YE⃗1
Ω` {BYB1

Ω`

. But u “ t!
E⃗YE⃗1

Ω` {BYB1

Ω`

“BYB1

Ω`

pliθq!E⃗YE⃗1
Ω` {BYB1

Ω`

“BYB1

Ω`
plpγipθ Z τqqq!

E⃗YE⃗1
Ω` {BYB1

Ω`

. Therefore, there exists a rule

l1j Ñ r1
j if φ1

j in the abstraction of l Ñ r if φ and a E⃗ Y E⃗1
Ω`{B Y B1

Ω`-normalized
substitution µ such that u “BYB1

Ω`
l1jµ, with γjµ “BYB1

Ω`
pγipθ Z τqq!

E⃗YE⃗1
Ω` {BYB1

Ω`

. Let

u1 “ rjµ. Since, furthermore, EYE1
Ω`YBYB

1
Ω` $ φ1

iµ holds. because EYE1
Ω`YBYB

1
Ω` $

φγipθ Z τq does and γjµ “BYB1

Ω`
pγipθ Z τqq!

E⃗YE⃗1
Ω` {BYB1

Ω`

, we indeed have a rewrite step

u Ñ
pR{BYB1

Ω`
u1 that satisfies u1!

E⃗YE⃗1
Ω` {BYB1

Ω`

“BYB1

Ω`
t1!

E⃗YE⃗1
Ω` {BYB1

Ω`

as desired, be-

cause u1!
E⃗YE⃗1

Ω` {BYB1

Ω`

“ prjµq!E⃗YE⃗1
Ω` {BYB1

Ω`

“BYB1

Ω`
prpγipθZτqqq!E⃗YE⃗1

Ω` {BYB1

Ω`

“BYB1

Ω`

priθq!E⃗YE⃗1
Ω` {BYB1

Ω`

“ t1!
E⃗YE⃗1

Ω` {BYB1

Ω`

. l

Proposition 3 has the following important corollary:

Corollary 1. Under the assumptions of Proposition 3, If rus ÑR rvs in CR, then
ru!

E⃗YE⃗1
Ω` {BYB1

Ω`

s ÑR rv!E⃗YE⃗1
Ω` {BYB1

Ω`

s in C
zR{G

.

Proof: By definition, rus ÑR rvs means that there is a rule l Ñ r if φ in R and a
ground substitution ρ such that rus “ lρ, rvs “ rrρ!E⃗{Bs, and E Y B $ φρ. But then

u!
E⃗YE⃗1

Ω` {BYB1

Ω`

“BYB1

Ω`
plρq!

E⃗YE⃗1
Ω` {BYB1

Ω`

. Therefore, there is a rule l1i Ñ r1
i if φ1

i in the

G-abstraction of lÑ r if φ and a ground substitution τ such that plρq!
E⃗YE⃗1

Ω` {BYB1

Ω`

“BYB1

Ω`

liτ , prρq!E⃗YE⃗1
Ω` {BYB1

Ω`

“BYB1

Ω`
riτ , and pρq!

E⃗YE⃗1
Ω` {BYB1

Ω`

“BYB1

Ω`
γiτ . Furthermore,

EYE1
Ω`YBYB

1
Ω` $ φ1

iτ holds because this is equivalent to EYE
1
Ω`YBYB

1
Ω` $ φγiτ , which is

forced by EYB $ φρ since pρq!
E⃗YE⃗1

Ω` {BYB1

Ω`

“BYB1

Ω`
γiτ . Therefore, ru!E⃗YE⃗1

Ω` {BYB1

Ω`

s ÑR

rv!
E⃗YE⃗1

Ω` {BYB1

Ω`

s, as desired. l
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For ease of reference, the Main Theorem for explicit-state model checking in pg. 17 of Lecture
26 is here relabeled as Proposition 4.

Proposition 4. (Explicit-State Model Checking with Equational Abstractions). For R top-
most and admissible with all its rules G-abstractable and pv1 | φ1 _ . . . _ vm | φmq such that
each vi | φi is abstractable as v1

i,1 | φ
1
i,1 _ . . . _ v1

i,ki
| φ1

i,ki
. The following holds for any initial

states rus P CR, ru!s “ ru!E⃗YE⃗1
Ω` {BYB1

Ω`

s P CR{G:

CR, rus |ùS4 ♢pv1 | φ1_. . ._vm | φmq ñ C
zR{G

, ru!s |ùS4 ♢
ł

1ďiďm

pv1
i,1 | φ

1
i,1_. . ._v

1
i,ki
| φ1

i,ki
q

Proof: The proof follows as an immediate corollary of Theorem 2 as follows. CR is a Kripke
structure on state predicates Π “ tu, v1 | φ1, . . . , vm | φmu. C

zR{G
is a Kripke structure on

state predicates Π1 “ tu!uY
Ť

1ďiďmtv
1
i,1 | φ

1
i,1, . . . , v

1
i,ki
| φ1

i,ki
u. The function H : ΠÑ PfinpΠ

1q

maps u to u! and each vi | φi to tv
1
i,1 | φ

1
i,1, . . . , v

1
i,ki
| φ1

i,ki
u, 1 ď i ď m. The unique surjective

Σ-homomorphism
r !

E⃗YE⃗1
Ω` {BYB1

Ω`

s : CΣ{E⃗,B Ñ C
Σ{E⃗,E⃗1

Ω` {BYB1

Ω`

and H define an H-homomorphism of Kripke structures from CR to C
zR{G

because condition

(i) is guaranteed by Corollary 1, and condition (ii) is guaranteed by Proposition 2. l

3 LTL Properties and Strong Simulation Maps

Given a Kripke structure K “ pK,ÑK, Kq any subset A Ď K defined a Kripke structure
ReachKpAq “ pReachKpAq,ÑReachKpAq, ReachKpAqq, where, by definition, (i) ReachKpAq “
tk1 P K | Dk P K s.t. k Ñ˚

K k1u, (ii) ÑReachKpAq “ ÑK XReachKpAq
2, and (iii) @p P

Π, pReachKpAq “ pK XReachKpAq. That is, ReachKpAq is just the restiction of K to the states
reachable from the set of initial states A. The main theorem about LTL properties of strong
H-simulation maps is the following:

Theorem 3. For any H-simulation map of Kripke structures h : K Ñ K1 on Π and Π1, such
that h : K Ñ K1|H is a strong simulation map, Π “ tp1, . . . , pnu, Hppiq “ tqi,j1 , . . . , qi,jrpiq

u Ď

Π1, 1 ď i ď n, h : K Ñ K1|H a strong simulation map, and sets of initial states A Ď K and
A1 Ď K 1 such that hrAs Ď A1 and the Kripke structure ReachKpAq is deadlock-free, then the
following implication holds for any LTL formula φ P LTLpΠq:

K1, A1 |ùLTL Hpφq ñ K, A |ùLTL φ.

where Hpφq is inductively defined as follows: (i) Hppiq “ pqi,j1 _ . . . _ qi,jrpiq
q, (ii) Hp␣ψq “

␣Hpψq, (iii) Hpψ1 _ ψ2q “ Hpψ1q _ Hpψ2q, (iv) Hp⃝ψq “ ⃝Hpψq, and (iv) Hpψ1Uψ2q “

Hpψ1qUHpψ2q.

Proof. First of all, an easy structural induction on φ P LTLpΠq proves that K1, A1 |ùLTL Hpφq
iff K1|H , A

1 |ùLTL φ. The second observation is that K, A |ùLTL φ iff ReachKpAq, A |ùLTL φ.
So, we just need to prove that

K1
H , A

1 |ùLTL φ ñ ReachKpAq, A |ùLTL φ.

The proof is by contradiction. Suppose ReachKpAq, A ­|ùLTL φ. This exactly means that there
is a state a P A and an infinite path π P PathspReachKpAq

‚qa such that π; preds ­|ùLTL φ. But
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since ReachKpAq is deadlock-free, π P PathspReachKpAqqa, and therefore π;h P PathspK1
Hqhpaq,

and, a fortiori, π;h P PathspK1‚
Hqhpaq. But since h : K Ñ K1|H is a strong simulation map, for

each a1 P A we must have predspa1q “ predsphpa1qq, which forces the trace equality π;h; preds “
π; preds and therefore that π;h; preds ­|ùLTL φ with hpaq P A1, contradicting the hypothesis
K1

H , A
1 |ùLTL φ. l

Remark. Note that in general the above theorem will not hold if ReachKpAq isn’t deadlock-
free. For example, we may have K with states a, b, c, d and transitions a Ñ b, a Ñ c, c Ñ d
and dÑ c, A “ ta, b, c, du, K1 with states a, tb, cu, d and transitions aÑ tb, cu, tb, cu Ñ d and
dÑ tb, cu and A1 “ ta, tb, cu, du. Let h be the identity on a and d and map b and c to tc, du.
Then, the infinite path π “ a Ñ b Ñ b Ñ b . . . in K‚ “ ReachKpAq

‚ has no corresponding
infinite path of the form π;h in K1‚ “ K1, so the above proof’s argument falls apart.

4 Using Equational Abstractions in LTL Model Checking

The above requirements and results in §3 on the use of Kripke H-simulation maps to prove
LTL properties have a direct bearing on how to do so using equational abstractions, both for
symbolic and for explicit-state model checking. Since symbolic LTL model checking will be
discussed in Lecture 27, I will focus in what follows on the explicit-state case supported by
Maude’s LTL model checker.

First of all, the assumptions and results about model checking of modal logic properties that

culminated in Proposition 4 above remain a basic requirement: in zR{G both state predicates
and rules in the topmost and admissible R should be G-abstractable. But there are three
additional issues to be discussed:

1. In hindsight, the abstraction of a state predicate u | φ in R by is G-abstraction u1
1 |

φ1
1 _ . . . _ u1

n | φ
1
n defines what in §3 has been called an H-simulation map between

the Kripke structures CR and C
zR{G

. However, in LTL we must explictly choose state

predicate names Π. The easiest and most natural choice it to use the same Π for both
CR and C

zR{G
in such a way that if p P Π is interpreted as u | φ in R, it is instead

intepreted as u1
1 | φ

1
1 _ . . ._ u

1
n | φ

1
n in C

zR{G
. In practical terms what this means is that

the definion of p in CR by the conditional equation u |ù p “ true if φ is instead done
in C

zR{G
by the equations tu1

i |ù p “ true if φ1
iu1ďiďn. In the notation of §3 sharing

the same Π just means that C
zR{G

is implicitly of the form C
zR{G
|H , since we could have

defined each u1
i | φ

1
i as a separate predicate p1

i P Π
1 and could have then related Π and Π1

by an explicit H mapping each p to its G-abstraction tp1
1, . . . , p

1
nu to get C

zR{G
|H .

2. A second issue is that we want the surjective simulation map of Kripke structures

r !
E⃗YE⃗1

Ω` {BYB1

Ω`

s : CΠ
R Ñ CΠ

zR{G

to be strong, which is a non-trivial matter. A practical method to achieve this property
is explained in detail below and is illustrated by an example in Lecture 26.

3. A third important issue, clearly highlighted in §3, is that if we want to use C
zR{G

to prove

LTL properties about CR from an initial state rus P CR and CR itself is not deadlock-
free, we need to either: (i) prove that the set of states reachable from rus is deadlock
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free, or (ii) make CR itself deadlock free, which is quite easy to do. Suppose that f is
the only constructor of the topmost sort State. We just add to R the rule:

fpx1, . . . , xnq Ñ fpx1, . . . , xnq if enabledpfpx1, . . . , xnqq ­“ true

where enabled is defined in the usual way using the lefthand sides of the rules in R.

The only pending issue is how to ensure that the map of Kripke structures r !
E⃗YE⃗1

Ω` {BYB1

Ω`

s :

CΠ
R Ñ CΠ

zR{G
is strong. The method embodied in the following proposition gives us a way to

do that.

Proposition 5. Assume that all rules in the admissible topmost theory R “ pΣ, EYB,Rq are

G-abstractable, zR{G “ pΣ, E Y E1
Ω` YB YB

1
Ω` , pRq is admissible, R has an FVP constructor

subtheory EΩ` Y BΩ` , G “ E1
Ω` Y B1

Ω` , and E1
Ω` Y E1

Ω` Y BΩ` Y B1
Ω` is also FVP. Let

Π “ tp1, . . . , pnu be state predicate symbols and let RΠ extend R and BOOL by adding: (1) a
new sort Prop with constants p1, . . . , pn, (2) an operator |ù : StateProp Ñ Bool , and (3)
equations EΠ of either the form u |ù pi “ true if φ, or v |ù pi “ false if ψ for 1 ď i ď n
(there can be more than one equation defining pi in this way for the positive and/or the the
negative cases). Furthermore, for all equations in EΠ their associated u | φ (resp. v | ψ) are
constrained constructor terms, and: (i) the equations E YEΠ YB are ground convergent and
protect BOOL, and (ii) all u | φ (resp. v | ψ) associated to positive (resp. negative) equations
in EΠ are G-abstractable by u1

1 | φ
1
1 _ . . ._ u

1
k | φ

1
k (resp. by v1

1 | ψ
1
1 _ . . ._ v

1
r | ψ

1
r).

Let zR{G
Π

extend zR{G and BOOL by adding (1) and (2) as above, and (3) add to the
equations abspEΠq obtained by adding to EΠ: for each equation u |ù pi “ true if φ in EΠ,
the equations tu1

j |ù pi “ true if φ1
ju1ďjďk (resp. for each equation v |ù pi “ false if ψ in EΠ,

the equations tv1
l |ù pi “ false if ψ1

lu1ďlďr). Then, if the equations E YG Y abspEΠq Y B are
ground convergent and protect BOOL, then the map of Kripke structures r !

E⃗YE⃗1
Ω` {BYB1

Ω`

s :

CΠ
R Ñ CΠ

zR{G
is strong.

Proof: By Corollary 1, condition (i) in the definition of simulation map of Kripke structures
holds. We just need to prove that for each state rus P CΠ

R and p P Π, pu |ù pq!E⃗YE⃗Π{B “

pu |ù pq!
E⃗YE⃗1

Ω` Y ⃗abspEqΠ{BYB1

Ω`

. But since the equations E Y EΠ Y B are ground convergent

and protect BOOL, either: (i) pu |ù pq!E⃗YE⃗Π{B “ true, or (ii) pu |ù pq!E⃗YE⃗Π{B “ false. And

since the equations E Y G Y abspEΠq Y B are ground convergent and protect BOOL, by the
ground Church-Rosser property in case (i) we must have pu |ù pq!

E⃗YE⃗1
Ω` Y ⃗abspEqΠ{BYB1

Ω`

“

true!
E⃗YE⃗1

Ω` Y ⃗abspEqΠ{BYB1

Ω`

“ true, and likewise for case (ii), proving strongness, as desired.

l

For ease of reference, the Main Theorem on LTL model checking using equational abstractions
in pg. 18 of Lecture 26 is here relabeled as Proposition 6.

Proposition 6. Let R be topmost admissible, and R is deadlock-free (or at least the states

reachable from rus P CΠ
Σ{E⃗,B

are so), have an admissible equational abstraction zR{G, and

satisfy all the assumptions in Proposition 5. Then, for each state rus P CΠ
R and φ P LTLpΠq

the following implication holds:

C
zR{G

, ru!s |ùLTL φ ñ CR, rus |ùLTL φ.
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where ru!s abbreviates ru!
E⃗YE⃗1

Ω` {BYB1

Ω`

s.

Proof: By Proposition 5, the map of Kripke structures r !
E⃗YE⃗1

Ω` {BYB1

Ω`

s : CΠ
R Ñ CΠ

zR{G

is strong. The theorem now follows as a corollary of Theorem 3 by choosing A “ trusu,
A1 “ tru!su, and H : Π Q p ÞÑ tpu P PfinpΠq. l
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