
Program Verification: Lecture 25

Program Verification: Lecture 25

José Meseguer

University of Illinois at Urbana-Champaign

1/19

Program Verification: Lecture 25

Extending Narrowing-Based Symbolic Model Checking

So far, the narrowing-based symbolic model checking of
infinite-state systems applies to topmost theories of the form
R = (Σ,B,R), where B is a set of equational axioms.

This leaves out topmost theories of the form, R = (Σ,E ∪ B,R).
But it is quite common for concurrent systems to update their
states by means of auxiliary functions defined by equations E
modulo B. Can we extend narrowing to richer topmost theories?

Besides symbolic verification of invariants by narrowing, since LTL
allows verification of richer properties than just invariants, this
raises the question: Could symbolic model checking of invariants be
extended to symbolic LTL model checking of infinite-state systems?

Before answering these two questions (in the positive), this lecture
first introduces some symbolic techniques needed for this purpose.

2/19

Program Verification: Lecture 25

Extending Narrowing-Based Symbolic Model Checking

So far, the narrowing-based symbolic model checking of
infinite-state systems applies to topmost theories of the form
R = (Σ,B,R), where B is a set of equational axioms.

This leaves out topmost theories of the form, R = (Σ,E ∪ B,R).

But it is quite common for concurrent systems to update their
states by means of auxiliary functions defined by equations E
modulo B. Can we extend narrowing to richer topmost theories?

Besides symbolic verification of invariants by narrowing, since LTL
allows verification of richer properties than just invariants, this
raises the question: Could symbolic model checking of invariants be
extended to symbolic LTL model checking of infinite-state systems?

Before answering these two questions (in the positive), this lecture
first introduces some symbolic techniques needed for this purpose.

2/19

Program Verification: Lecture 25

Extending Narrowing-Based Symbolic Model Checking

So far, the narrowing-based symbolic model checking of
infinite-state systems applies to topmost theories of the form
R = (Σ,B,R), where B is a set of equational axioms.

This leaves out topmost theories of the form, R = (Σ,E ∪ B,R).
But it is quite common for concurrent systems to update their
states by means of auxiliary functions defined by equations E
modulo B.

Can we extend narrowing to richer topmost theories?

Besides symbolic verification of invariants by narrowing, since LTL
allows verification of richer properties than just invariants, this
raises the question: Could symbolic model checking of invariants be
extended to symbolic LTL model checking of infinite-state systems?

Before answering these two questions (in the positive), this lecture
first introduces some symbolic techniques needed for this purpose.

2/19

Program Verification: Lecture 25

Extending Narrowing-Based Symbolic Model Checking

So far, the narrowing-based symbolic model checking of
infinite-state systems applies to topmost theories of the form
R = (Σ,B,R), where B is a set of equational axioms.

This leaves out topmost theories of the form, R = (Σ,E ∪ B,R).
But it is quite common for concurrent systems to update their
states by means of auxiliary functions defined by equations E
modulo B. Can we extend narrowing to richer topmost theories?

Besides symbolic verification of invariants by narrowing, since LTL
allows verification of richer properties than just invariants, this
raises the question: Could symbolic model checking of invariants be
extended to symbolic LTL model checking of infinite-state systems?

Before answering these two questions (in the positive), this lecture
first introduces some symbolic techniques needed for this purpose.

2/19

Program Verification: Lecture 25

Extending Narrowing-Based Symbolic Model Checking

So far, the narrowing-based symbolic model checking of
infinite-state systems applies to topmost theories of the form
R = (Σ,B,R), where B is a set of equational axioms.

This leaves out topmost theories of the form, R = (Σ,E ∪ B,R).
But it is quite common for concurrent systems to update their
states by means of auxiliary functions defined by equations E
modulo B. Can we extend narrowing to richer topmost theories?

Besides symbolic verification of invariants by narrowing, since LTL
allows verification of richer properties than just invariants, this
raises the question:

Could symbolic model checking of invariants be
extended to symbolic LTL model checking of infinite-state systems?

Before answering these two questions (in the positive), this lecture
first introduces some symbolic techniques needed for this purpose.

2/19

Program Verification: Lecture 25

Extending Narrowing-Based Symbolic Model Checking

So far, the narrowing-based symbolic model checking of
infinite-state systems applies to topmost theories of the form
R = (Σ,B,R), where B is a set of equational axioms.

This leaves out topmost theories of the form, R = (Σ,E ∪ B,R).
But it is quite common for concurrent systems to update their
states by means of auxiliary functions defined by equations E
modulo B. Can we extend narrowing to richer topmost theories?

Besides symbolic verification of invariants by narrowing, since LTL
allows verification of richer properties than just invariants, this
raises the question: Could symbolic model checking of invariants be
extended to symbolic LTL model checking of infinite-state systems?

Before answering these two questions (in the positive), this lecture
first introduces some symbolic techniques needed for this purpose.

2/19

Program Verification: Lecture 25

Extending Narrowing-Based Symbolic Model Checking

So far, the narrowing-based symbolic model checking of
infinite-state systems applies to topmost theories of the form
R = (Σ,B,R), where B is a set of equational axioms.

This leaves out topmost theories of the form, R = (Σ,E ∪ B,R).
But it is quite common for concurrent systems to update their
states by means of auxiliary functions defined by equations E
modulo B. Can we extend narrowing to richer topmost theories?

Besides symbolic verification of invariants by narrowing, since LTL
allows verification of richer properties than just invariants, this
raises the question: Could symbolic model checking of invariants be
extended to symbolic LTL model checking of infinite-state systems?

Before answering these two questions (in the positive), this lecture
first introduces some symbolic techniques needed for this purpose.

2/19

Program Verification: Lecture 25

The Need for E ∪ B-Unification

Symbolic model checking of a topmost rewrite theory
R = (Σ,B,R) is based on the modulo B narrowing relation ;R,B .

To extend this kind of symbolic model checking to admissible
topmost rewrite theories of the form R = (Σ,E ∪ B,R), we need
to perform narrowing modulo E ∪ B with a relation ;R,E∪B . The
definition of narrowing modulo in Lecture 21 remains the same,
just changing B by E ∪ B:

Given a rewrite theory R = (Σ,E ∪ B,R), and a term t ∈ TΣ(X),

an R-narrowing step modulo E ∪ B, denoted t
θ

;R,E∪B v holds iff
there exists a non-variable position p in t, a rule l → r in R, and a
E ∪ B-unifier θ ∈ Unif E∪B(t|p = l) such that v = t[r]pθ.

But the million-dolar question is: How do we compute a complete
set Unif E∪B(t|p = l) of E ∪ B-unifiers?

3/19

Program Verification: Lecture 25

The Need for E ∪ B-Unification

Symbolic model checking of a topmost rewrite theory
R = (Σ,B,R) is based on the modulo B narrowing relation ;R,B .

To extend this kind of symbolic model checking to admissible
topmost rewrite theories of the form R = (Σ,E ∪ B,R), we need
to perform narrowing modulo E ∪ B with a relation ;R,E∪B .

The
definition of narrowing modulo in Lecture 21 remains the same,
just changing B by E ∪ B:

Given a rewrite theory R = (Σ,E ∪ B,R), and a term t ∈ TΣ(X),

an R-narrowing step modulo E ∪ B, denoted t
θ

;R,E∪B v holds iff
there exists a non-variable position p in t, a rule l → r in R, and a
E ∪ B-unifier θ ∈ Unif E∪B(t|p = l) such that v = t[r]pθ.

But the million-dolar question is: How do we compute a complete
set Unif E∪B(t|p = l) of E ∪ B-unifiers?

3/19

Program Verification: Lecture 25

The Need for E ∪ B-Unification

Symbolic model checking of a topmost rewrite theory
R = (Σ,B,R) is based on the modulo B narrowing relation ;R,B .

To extend this kind of symbolic model checking to admissible
topmost rewrite theories of the form R = (Σ,E ∪ B,R), we need
to perform narrowing modulo E ∪ B with a relation ;R,E∪B . The
definition of narrowing modulo in Lecture 21 remains the same,
just changing B by E ∪ B:

Given a rewrite theory R = (Σ,E ∪ B,R), and a term t ∈ TΣ(X),

an R-narrowing step modulo E ∪ B, denoted t
θ

;R,E∪B v holds iff
there exists a non-variable position p in t, a rule l → r in R, and a
E ∪ B-unifier θ ∈ Unif E∪B(t|p = l) such that v = t[r]pθ.

But the million-dolar question is: How do we compute a complete
set Unif E∪B(t|p = l) of E ∪ B-unifiers?

3/19

Program Verification: Lecture 25

The Need for E ∪ B-Unification

Symbolic model checking of a topmost rewrite theory
R = (Σ,B,R) is based on the modulo B narrowing relation ;R,B .

To extend this kind of symbolic model checking to admissible
topmost rewrite theories of the form R = (Σ,E ∪ B,R), we need
to perform narrowing modulo E ∪ B with a relation ;R,E∪B . The
definition of narrowing modulo in Lecture 21 remains the same,
just changing B by E ∪ B:

Given a rewrite theory R = (Σ,E ∪ B,R), and a term t ∈ TΣ(X),

an R-narrowing step modulo E ∪ B, denoted t
θ

;R,E∪B v holds iff
there exists a non-variable position p in t, a rule l → r in R, and a
E ∪ B-unifier θ ∈ Unif E∪B(t|p = l) such that v = t[r]pθ.

But the million-dolar question is: How do we compute a complete
set Unif E∪B(t|p = l) of E ∪ B-unifiers?

3/19

Program Verification: Lecture 25

The Need for E ∪ B-Unification

Symbolic model checking of a topmost rewrite theory
R = (Σ,B,R) is based on the modulo B narrowing relation ;R,B .

To extend this kind of symbolic model checking to admissible
topmost rewrite theories of the form R = (Σ,E ∪ B,R), we need
to perform narrowing modulo E ∪ B with a relation ;R,E∪B . The
definition of narrowing modulo in Lecture 21 remains the same,
just changing B by E ∪ B:

Given a rewrite theory R = (Σ,E ∪ B,R), and a term t ∈ TΣ(X),

an R-narrowing step modulo E ∪ B, denoted t
θ

;R,E∪B v holds iff
there exists a non-variable position p in t, a rule l → r in R, and a
E ∪ B-unifier θ ∈ Unif E∪B(t|p = l) such that v = t[r]pθ.

But the million-dolar question is: How do we compute a complete
set Unif E∪B(t|p = l) of E ∪ B-unifiers?

3/19

Program Verification: Lecture 25

E ∪ B-Unification

The notion of a E ∪ B-unifier of a Σ-equation u = v is as
expected: it is a substitution θ such that uθ =E∪B vθ.

The notion of a complete set Unif E∪B(u = v) of E ∪ B-unifiers is
also as expected: Unif E∪B(u = v) is a set of E ∪ B-unifiers of
u = v such that for any E ∪ B-unifier α of u = v there exists a
unifier γ ∈ Unif E∪B(u = v) of which α is an “instance modulo
E ∪ B.” That is, there is a substitution δ such that α =E∪B γδ,
where, by definition, given substitutions µ, ν
µ =E∪B ν ⇔def (∀x ∈ dom(µ) ∪ dom(ν)) µ(x) =E∪B ν(x).

For E ∪ B an arbitrary set of equations E ∪ B, computing such a
set Unif E∪B(u = v) is a very complex matter. But for our
purposes we may assume that the oriented equations E⃗ are
convergent modulo B, which makes the task much easier.

4/19

Program Verification: Lecture 25

E ∪ B-Unification

The notion of a E ∪ B-unifier of a Σ-equation u = v is as
expected: it is a substitution θ such that uθ =E∪B vθ.

The notion of a complete set Unif E∪B(u = v) of E ∪ B-unifiers is
also as expected: Unif E∪B(u = v) is a set of E ∪ B-unifiers of
u = v such that for any E ∪ B-unifier α of u = v there exists a
unifier γ ∈ Unif E∪B(u = v) of which α is an “instance modulo
E ∪ B.” That is, there is a substitution δ such that α =E∪B γδ,
where, by definition, given substitutions µ, ν
µ =E∪B ν ⇔def (∀x ∈ dom(µ) ∪ dom(ν)) µ(x) =E∪B ν(x).

For E ∪ B an arbitrary set of equations E ∪ B, computing such a
set Unif E∪B(u = v) is a very complex matter. But for our
purposes we may assume that the oriented equations E⃗ are
convergent modulo B, which makes the task much easier.

4/19

Program Verification: Lecture 25

E ∪ B-Unification

The notion of a E ∪ B-unifier of a Σ-equation u = v is as
expected: it is a substitution θ such that uθ =E∪B vθ.

The notion of a complete set Unif E∪B(u = v) of E ∪ B-unifiers is
also as expected: Unif E∪B(u = v) is a set of E ∪ B-unifiers of
u = v such that for any E ∪ B-unifier α of u = v there exists a
unifier γ ∈ Unif E∪B(u = v) of which α is an “instance modulo
E ∪ B.” That is, there is a substitution δ such that α =E∪B γδ,
where, by definition, given substitutions µ, ν
µ =E∪B ν ⇔def (∀x ∈ dom(µ) ∪ dom(ν)) µ(x) =E∪B ν(x).

For E ∪ B an arbitrary set of equations E ∪ B, computing such a
set Unif E∪B(u = v) is a very complex matter.

But for our
purposes we may assume that the oriented equations E⃗ are
convergent modulo B, which makes the task much easier.

4/19

Program Verification: Lecture 25

E ∪ B-Unification

The notion of a E ∪ B-unifier of a Σ-equation u = v is as
expected: it is a substitution θ such that uθ =E∪B vθ.

The notion of a complete set Unif E∪B(u = v) of E ∪ B-unifiers is
also as expected: Unif E∪B(u = v) is a set of E ∪ B-unifiers of
u = v such that for any E ∪ B-unifier α of u = v there exists a
unifier γ ∈ Unif E∪B(u = v) of which α is an “instance modulo
E ∪ B.” That is, there is a substitution δ such that α =E∪B γδ,
where, by definition, given substitutions µ, ν
µ =E∪B ν ⇔def (∀x ∈ dom(µ) ∪ dom(ν)) µ(x) =E∪B ν(x).

For E ∪ B an arbitrary set of equations E ∪ B, computing such a
set Unif E∪B(u = v) is a very complex matter. But for our
purposes we may assume that the oriented equations E⃗ are
convergent modulo B, which makes the task much easier.

4/19

Program Verification: Lecture 25

E ∪ B-Unification for E⃗ Convergent Modulo B

For E⃗ convergent modulo B, by the Church-Rosser Theorem, for
any Σ-equation u = v and substitution θ we have the equivalence:

(†) uθ =E∪B vθ ⇔ (uθ)!
E⃗/B

=B (vθ)!
E⃗/B

This suggest the idea of computing E ∪ B-unifiers by narrowing!
using a theory transformation (Σ,E ∪ B) 7→ (Σ≡,E≡ ∪ B), where:

1. Σ≡ extends Σ by adding: (a) for each connected component [s]
in Σ not having a top sort ⊤[s], such a new top sort ⊤[s]; (b) a
new sort Pred with a constant tt; and (c) for each connected
component [s] in Σ a binary equality predicate
≡ : ⊤[s] ⊤[s] → Pred .

2. E≡ extends E by adding for each connected component [s] in Σ
an equation x :⊤[s] ≡ x :⊤[s] = tt.

5/19

Program Verification: Lecture 25

E ∪ B-Unification for E⃗ Convergent Modulo B

For E⃗ convergent modulo B, by the Church-Rosser Theorem, for
any Σ-equation u = v and substitution θ we have the equivalence:

(†) uθ =E∪B vθ ⇔ (uθ)!
E⃗/B

=B (vθ)!
E⃗/B

This suggest the idea of computing E ∪ B-unifiers by narrowing!
using a theory transformation (Σ,E ∪ B) 7→ (Σ≡,E≡ ∪ B), where:

1. Σ≡ extends Σ by adding: (a) for each connected component [s]
in Σ not having a top sort ⊤[s], such a new top sort ⊤[s]; (b) a
new sort Pred with a constant tt; and (c) for each connected
component [s] in Σ a binary equality predicate
≡ : ⊤[s] ⊤[s] → Pred .

2. E≡ extends E by adding for each connected component [s] in Σ
an equation x :⊤[s] ≡ x :⊤[s] = tt.

5/19

Program Verification: Lecture 25

E ∪ B-Unification for E⃗ Convergent Modulo B

For E⃗ convergent modulo B, by the Church-Rosser Theorem, for
any Σ-equation u = v and substitution θ we have the equivalence:

(†) uθ =E∪B vθ ⇔ (uθ)!
E⃗/B

=B (vθ)!
E⃗/B

This suggest the idea of computing E ∪ B-unifiers by narrowing!
using a theory transformation (Σ,E ∪ B) 7→ (Σ≡,E≡ ∪ B), where:

1. Σ≡ extends Σ by adding: (a) for each connected component [s]
in Σ not having a top sort ⊤[s], such a new top sort ⊤[s]; (b) a
new sort Pred with a constant tt; and (c) for each connected
component [s] in Σ a binary equality predicate
≡ : ⊤[s] ⊤[s] → Pred .

2. E≡ extends E by adding for each connected component [s] in Σ
an equation x :⊤[s] ≡ x :⊤[s] = tt.

5/19

Program Verification: Lecture 25

E ∪ B-Unification for E⃗ Convergent Modulo B

For E⃗ convergent modulo B, by the Church-Rosser Theorem, for
any Σ-equation u = v and substitution θ we have the equivalence:

(†) uθ =E∪B vθ ⇔ (uθ)!
E⃗/B

=B (vθ)!
E⃗/B

This suggest the idea of computing E ∪ B-unifiers by narrowing!
using a theory transformation (Σ,E ∪ B) 7→ (Σ≡,E≡ ∪ B), where:

1. Σ≡ extends Σ by adding: (a) for each connected component [s]
in Σ not having a top sort ⊤[s], such a new top sort ⊤[s]; (b) a
new sort Pred with a constant tt; and (c) for each connected
component [s] in Σ a binary equality predicate
≡ : ⊤[s] ⊤[s] → Pred .

2. E≡ extends E by adding for each connected component [s] in Σ
an equation x :⊤[s] ≡ x :⊤[s] = tt.

5/19

Program Verification: Lecture 25

E ∪ B-Unification for E⃗ Convergent Modulo B

For E⃗ convergent modulo B, by the Church-Rosser Theorem, for
any Σ-equation u = v and substitution θ we have the equivalence:

(†) uθ =E∪B vθ ⇔ (uθ)!
E⃗/B

=B (vθ)!
E⃗/B

This suggest the idea of computing E ∪ B-unifiers by narrowing!
using a theory transformation (Σ,E ∪ B) 7→ (Σ≡,E≡ ∪ B), where:

1. Σ≡ extends Σ by adding: (a) for each connected component [s]
in Σ not having a top sort ⊤[s], such a new top sort ⊤[s]; (b) a
new sort Pred with a constant tt; and (c) for each connected
component [s] in Σ a binary equality predicate
≡ : ⊤[s] ⊤[s] → Pred .

2. E≡ extends E by adding for each connected component [s] in Σ
an equation x :⊤[s] ≡ x :⊤[s] = tt.

5/19

Program Verification: Lecture 25

E ∪ B-Unification for E⃗ Convergent Modulo B (II)

It is easy to check (exercise!) that if E⃗ is convergent modulo B,
then E⃗≡ is convergent modulo B. But then (†) becomes:

uθ =E∪B vθ ⇔ (uθ ≡ vθ)!
E⃗≡/B

= tt.

Indeed, by convergence, (uθ ≡ vθ)!
E⃗≡/B

= tt iff we have:

(‡) uθ ≡ vθ →∗
E⃗/B

(uθ)!
E⃗/B

≡ (vθ)!
E⃗/B

→
E⃗≡/B

tt

with a rule x :⊤[s] ≡ x :⊤[s] → tt in E⃗≡ \ E⃗ used only in the last
step to check (uθ)!

E⃗/B
=B (vθ)!

E⃗/B
. Thus, by (†) we get:

Theorem. θ is a E ∪ B-unifier of u = v iff (uθ ≡ vθ)!
E⃗≡/B

= tt.

6/19

Program Verification: Lecture 25

E ∪ B-Unification for E⃗ Convergent Modulo B (II)

It is easy to check (exercise!) that if E⃗ is convergent modulo B,
then E⃗≡ is convergent modulo B. But then (†) becomes:

uθ =E∪B vθ ⇔ (uθ ≡ vθ)!
E⃗≡/B

= tt.

Indeed, by convergence, (uθ ≡ vθ)!
E⃗≡/B

= tt iff we have:

(‡) uθ ≡ vθ →∗
E⃗/B

(uθ)!
E⃗/B

≡ (vθ)!
E⃗/B

→
E⃗≡/B

tt

with a rule x :⊤[s] ≡ x :⊤[s] → tt in E⃗≡ \ E⃗ used only in the last
step to check (uθ)!

E⃗/B
=B (vθ)!

E⃗/B
. Thus, by (†) we get:

Theorem. θ is a E ∪ B-unifier of u = v iff (uθ ≡ vθ)!
E⃗≡/B

= tt.

6/19

Program Verification: Lecture 25

E ∪ B-Unification for E⃗ Convergent Modulo B (II)

It is easy to check (exercise!) that if E⃗ is convergent modulo B,
then E⃗≡ is convergent modulo B. But then (†) becomes:

uθ =E∪B vθ ⇔ (uθ ≡ vθ)!
E⃗≡/B

= tt.

Indeed, by convergence, (uθ ≡ vθ)!
E⃗≡/B

= tt iff we have:

(‡) uθ ≡ vθ →∗
E⃗/B

(uθ)!
E⃗/B

≡ (vθ)!
E⃗/B

→
E⃗≡/B

tt

with a rule x :⊤[s] ≡ x :⊤[s] → tt in E⃗≡ \ E⃗ used only in the last
step to check (uθ)!

E⃗/B
=B (vθ)!

E⃗/B
. Thus, by (†) we get:

Theorem. θ is a E ∪ B-unifier of u = v iff (uθ ≡ vθ)!
E⃗≡/B

= tt.

6/19

Program Verification: Lecture 25

E ∪ B-Unification for E⃗ Convergent Modulo B (II)

It is easy to check (exercise!) that if E⃗ is convergent modulo B,
then E⃗≡ is convergent modulo B. But then (†) becomes:

uθ =E∪B vθ ⇔ (uθ ≡ vθ)!
E⃗≡/B

= tt.

Indeed, by convergence, (uθ ≡ vθ)!
E⃗≡/B

= tt iff we have:

(‡) uθ ≡ vθ →∗
E⃗/B

(uθ)!
E⃗/B

≡ (vθ)!
E⃗/B

→
E⃗≡/B

tt

with a rule x :⊤[s] ≡ x :⊤[s] → tt in E⃗≡ \ E⃗ used only in the last
step to check (uθ)!

E⃗/B
=B (vθ)!

E⃗/B
. Thus, by (†) we get:

Theorem. θ is a E ∪ B-unifier of u = v iff (uθ ≡ vθ)!
E⃗≡/B

= tt.

6/19

Program Verification: Lecture 25

E ∪ B-Unification for E⃗ Convergent Modulo B (II)

It is easy to check (exercise!) that if E⃗ is convergent modulo B,
then E⃗≡ is convergent modulo B. But then (†) becomes:

uθ =E∪B vθ ⇔ (uθ ≡ vθ)!
E⃗≡/B

= tt.

Indeed, by convergence, (uθ ≡ vθ)!
E⃗≡/B

= tt iff we have:

(‡) uθ ≡ vθ →∗
E⃗/B

(uθ)!
E⃗/B

≡ (vθ)!
E⃗/B

→
E⃗≡/B

tt

with a rule x :⊤[s] ≡ x :⊤[s] → tt in E⃗≡ \ E⃗ used only in the last
step to check (uθ)!

E⃗/B
=B (vθ)!

E⃗/B
.

Thus, by (†) we get:

Theorem. θ is a E ∪ B-unifier of u = v iff (uθ ≡ vθ)!
E⃗≡/B

= tt.

6/19

Program Verification: Lecture 25

E ∪ B-Unification for E⃗ Convergent Modulo B (II)

It is easy to check (exercise!) that if E⃗ is convergent modulo B,
then E⃗≡ is convergent modulo B. But then (†) becomes:

uθ =E∪B vθ ⇔ (uθ ≡ vθ)!
E⃗≡/B

= tt.

Indeed, by convergence, (uθ ≡ vθ)!
E⃗≡/B

= tt iff we have:

(‡) uθ ≡ vθ →∗
E⃗/B

(uθ)!
E⃗/B

≡ (vθ)!
E⃗/B

→
E⃗≡/B

tt

with a rule x :⊤[s] ≡ x :⊤[s] → tt in E⃗≡ \ E⃗ used only in the last
step to check (uθ)!

E⃗/B
=B (vθ)!

E⃗/B
. Thus, by (†) we get:

Theorem. θ is a E ∪ B-unifier of u = v iff (uθ ≡ vθ)!
E⃗≡/B

= tt.

6/19

Program Verification: Lecture 25

E ∪ B-Unification for E⃗ Convergent Modulo B (II)

It is easy to check (exercise!) that if E⃗ is convergent modulo B,
then E⃗≡ is convergent modulo B. But then (†) becomes:

uθ =E∪B vθ ⇔ (uθ ≡ vθ)!
E⃗≡/B

= tt.

Indeed, by convergence, (uθ ≡ vθ)!
E⃗≡/B

= tt iff we have:

(‡) uθ ≡ vθ →∗
E⃗/B

(uθ)!
E⃗/B

≡ (vθ)!
E⃗/B

→
E⃗≡/B

tt

with a rule x :⊤[s] ≡ x :⊤[s] → tt in E⃗≡ \ E⃗ used only in the last
step to check (uθ)!

E⃗/B
=B (vθ)!

E⃗/B
. Thus, by (†) we get:

Theorem. θ is a E ∪ B-unifier of u = v iff (uθ ≡ vθ)!
E⃗≡/B

= tt.

6/19

Program Verification: Lecture 25

E ∪ B-Unification for E⃗ Convergent Modulo B (III)

This gives us our desired E ∪ B-unification semi-algorithm, whose
proof of correctness follows easily (exercise!) by repeated
application of the Lifting Lemma for the rewrite theory
(Σ≡,B, E⃗≡), just by observing that θ is a E ∪ B-unifier of u = v
iff its E⃗/B-normalized form θ!

E⃗/B
is so.

Theorem. For E⃗ convergent modulo B and applied with
B-extensions (see pg. 9 of Lecture 21), the set

Unif E∪B(u = v) =def {γ | (u ≡ v)
γ

;∗
E⃗≡,B

tt}

is a complete set of E ∪ B-unifiers of the equation u = v .

For narrowing-based model checking, we obtain as an immediate
corollary the following vast generalization of the Completeness of
Narrowing Search Theorem in Lecture 21 for topmost theories:

7/19

Program Verification: Lecture 25

E ∪ B-Unification for E⃗ Convergent Modulo B (III)

This gives us our desired E ∪ B-unification semi-algorithm, whose
proof of correctness follows easily (exercise!) by repeated
application of the Lifting Lemma for the rewrite theory
(Σ≡,B, E⃗≡), just by observing that θ is a E ∪ B-unifier of u = v
iff its E⃗/B-normalized form θ!

E⃗/B
is so.

Theorem. For E⃗ convergent modulo B and applied with
B-extensions (see pg. 9 of Lecture 21), the set

Unif E∪B(u = v) =def {γ | (u ≡ v)
γ

;∗
E⃗≡,B

tt}

is a complete set of E ∪ B-unifiers of the equation u = v .

For narrowing-based model checking, we obtain as an immediate
corollary the following vast generalization of the Completeness of
Narrowing Search Theorem in Lecture 21 for topmost theories:

7/19

Program Verification: Lecture 25

E ∪ B-Unification for E⃗ Convergent Modulo B (III)

This gives us our desired E ∪ B-unification semi-algorithm, whose
proof of correctness follows easily (exercise!) by repeated
application of the Lifting Lemma for the rewrite theory
(Σ≡,B, E⃗≡), just by observing that θ is a E ∪ B-unifier of u = v
iff its E⃗/B-normalized form θ!

E⃗/B
is so.

Theorem. For E⃗ convergent modulo B and applied with
B-extensions (see pg. 9 of Lecture 21), the set

Unif E∪B(u = v) =def {γ | (u ≡ v)
γ

;∗
E⃗≡,B

tt}

is a complete set of E ∪ B-unifiers of the equation u = v .

For narrowing-based model checking, we obtain as an immediate
corollary the following vast generalization of the Completeness of
Narrowing Search Theorem in Lecture 21 for topmost theories:

7/19

Program Verification: Lecture 25

E ∪ B-Unification for E⃗ Convergent Modulo B (III)

This gives us our desired E ∪ B-unification semi-algorithm, whose
proof of correctness follows easily (exercise!) by repeated
application of the Lifting Lemma for the rewrite theory
(Σ≡,B, E⃗≡), just by observing that θ is a E ∪ B-unifier of u = v
iff its E⃗/B-normalized form θ!

E⃗/B
is so.

Theorem. For E⃗ convergent modulo B and applied with
B-extensions (see pg. 9 of Lecture 21), the set

Unif E∪B(u = v) =def {γ | (u ≡ v)
γ

;∗
E⃗≡,B

tt}

is a complete set of E ∪ B-unifiers of the equation u = v .

For narrowing-based model checking, we obtain as an immediate
corollary the following vast generalization of the Completeness of
Narrowing Search Theorem in Lecture 21 for topmost theories:

7/19

Program Verification: Lecture 25

E ∪ B-Unification for E⃗ Convergent Modulo B (III)

This gives us our desired E ∪ B-unification semi-algorithm, whose
proof of correctness follows easily (exercise!) by repeated
application of the Lifting Lemma for the rewrite theory
(Σ≡,B, E⃗≡), just by observing that θ is a E ∪ B-unifier of u = v
iff its E⃗/B-normalized form θ!

E⃗/B
is so.

Theorem. For E⃗ convergent modulo B and applied with
B-extensions (see pg. 9 of Lecture 21), the set

Unif E∪B(u = v) =def {γ | (u ≡ v)
γ

;∗
E⃗≡,B

tt}

is a complete set of E ∪ B-unifiers of the equation u = v .

For narrowing-based model checking, we obtain as an immediate
corollary the following vast generalization of the Completeness of
Narrowing Search Theorem in Lecture 21 for topmost theories:

7/19

Program Verification: Lecture 25

Symbolic Model Checking of Topmost Rewrite Theories

For R = (Σ,E ∪ B,R) topmost, narrowing with R modulo axioms
E ∪ B supports the following symbolic model checking method:

Theorem (Completeness of Narrowing Search). For a topmost and
admissible R = (Σ,E ∪ B,R) with E⃗ convergent modulo B and
u1 ∨ . . . ∨ un and v1 ∨ . . . ∨ vm non-variable constructor patterns,

R, (u1 ∨ . . . ∨ un) |=S4 3(v1 ∨ . . . ∨ vm)

holds iff exist i , j , 1 ≤ i ≤ n, 1 ≤ j ≤ m, and an

R, (E ∪ B)-narrowing sequence ui
θ

;∗
R,(E∪B) w such that there is a

E ∪ B-unifier γ ∈ Unif E∪B(w = vj).

The proof, by applying the Lifting Lemma, generalizes the similar
proof in Lecture 21 and is left as an exercise.

8/19

Program Verification: Lecture 25

Symbolic Model Checking of Topmost Rewrite Theories

For R = (Σ,E ∪ B,R) topmost, narrowing with R modulo axioms
E ∪ B supports the following symbolic model checking method:

Theorem (Completeness of Narrowing Search). For a topmost and
admissible R = (Σ,E ∪ B,R) with E⃗ convergent modulo B and
u1 ∨ . . . ∨ un and v1 ∨ . . . ∨ vm non-variable constructor patterns,

R, (u1 ∨ . . . ∨ un) |=S4 3(v1 ∨ . . . ∨ vm)

holds iff exist i , j , 1 ≤ i ≤ n, 1 ≤ j ≤ m, and an

R, (E ∪ B)-narrowing sequence ui
θ

;∗
R,(E∪B) w such that there is a

E ∪ B-unifier γ ∈ Unif E∪B(w = vj).

The proof, by applying the Lifting Lemma, generalizes the similar
proof in Lecture 21 and is left as an exercise.

8/19

Program Verification: Lecture 25

Symbolic Model Checking of Topmost Rewrite Theories

For R = (Σ,E ∪ B,R) topmost, narrowing with R modulo axioms
E ∪ B supports the following symbolic model checking method:

Theorem (Completeness of Narrowing Search). For a topmost and
admissible R = (Σ,E ∪ B,R) with E⃗ convergent modulo B and
u1 ∨ . . . ∨ un and v1 ∨ . . . ∨ vm non-variable constructor patterns,

R, (u1 ∨ . . . ∨ un) |=S4 3(v1 ∨ . . . ∨ vm)

holds iff exist i , j , 1 ≤ i ≤ n, 1 ≤ j ≤ m, and an

R, (E ∪ B)-narrowing sequence ui
θ

;∗
R,(E∪B) w such that there is a

E ∪ B-unifier γ ∈ Unif E∪B(w = vj).

The proof, by applying the Lifting Lemma, generalizes the similar
proof in Lecture 21 and is left as an exercise.

8/19

Program Verification: Lecture 25

Symbolic Model Checking of Topmost Rewrite Theories

For R = (Σ,E ∪ B,R) topmost, narrowing with R modulo axioms
E ∪ B supports the following symbolic model checking method:

Theorem (Completeness of Narrowing Search). For a topmost and
admissible R = (Σ,E ∪ B,R) with E⃗ convergent modulo B and
u1 ∨ . . . ∨ un and v1 ∨ . . . ∨ vm non-variable constructor patterns,

R, (u1 ∨ . . . ∨ un) |=S4 3(v1 ∨ . . . ∨ vm)

holds iff

exist i , j , 1 ≤ i ≤ n, 1 ≤ j ≤ m, and an

R, (E ∪ B)-narrowing sequence ui
θ

;∗
R,(E∪B) w such that there is a

E ∪ B-unifier γ ∈ Unif E∪B(w = vj).

The proof, by applying the Lifting Lemma, generalizes the similar
proof in Lecture 21 and is left as an exercise.

8/19

Program Verification: Lecture 25

Symbolic Model Checking of Topmost Rewrite Theories

For R = (Σ,E ∪ B,R) topmost, narrowing with R modulo axioms
E ∪ B supports the following symbolic model checking method:

Theorem (Completeness of Narrowing Search). For a topmost and
admissible R = (Σ,E ∪ B,R) with E⃗ convergent modulo B and
u1 ∨ . . . ∨ un and v1 ∨ . . . ∨ vm non-variable constructor patterns,

R, (u1 ∨ . . . ∨ un) |=S4 3(v1 ∨ . . . ∨ vm)

holds iff exist i , j , 1 ≤ i ≤ n, 1 ≤ j ≤ m, and an

R, (E ∪ B)-narrowing sequence ui
θ

;∗
R,(E∪B) w such that there is a

E ∪ B-unifier γ ∈ Unif E∪B(w = vj).

The proof, by applying the Lifting Lemma, generalizes the similar
proof in Lecture 21 and is left as an exercise.

8/19

Program Verification: Lecture 25

Symbolic Model Checking of Topmost Rewrite Theories

For R = (Σ,E ∪ B,R) topmost, narrowing with R modulo axioms
E ∪ B supports the following symbolic model checking method:

Theorem (Completeness of Narrowing Search). For a topmost and
admissible R = (Σ,E ∪ B,R) with E⃗ convergent modulo B and
u1 ∨ . . . ∨ un and v1 ∨ . . . ∨ vm non-variable constructor patterns,

R, (u1 ∨ . . . ∨ un) |=S4 3(v1 ∨ . . . ∨ vm)

holds iff exist i , j , 1 ≤ i ≤ n, 1 ≤ j ≤ m, and an

R, (E ∪ B)-narrowing sequence ui
θ

;∗
R,(E∪B) w such that there is a

E ∪ B-unifier γ ∈ Unif E∪B(w = vj).

The proof, by applying the Lifting Lemma, generalizes the similar
proof in Lecture 21 and is left as an exercise.

8/19

Program Verification: Lecture 25

Performance Barriers for Symbolic Reachability

In the above, generalized Completeness of Narrowing Search
Theorem, narrowing happens at two levels: (i) with R modulo
E ∪ B for reachability analysis, and (ii) with E⃗≡ modulo B for
computing E ∪ B-unifiers.

From a performance point of view this is very challenging, since
this gives us what we might describe as a “nested narrowing tree,”
wich can by infinite at both of the narrowing levels.

To overcome these performance barriers, the technique of folding
an infinite narrowing tree into a (hopefully finite) narrowing graph
can be applied at both levels. For the symbolic reachability level
with ;∗

R,(E∪B) we have already seen this in Lecture 21. Likewise,

for E⃗ ,B-narrowing with E⃗ convergent modulo B (E⃗≡,B-narrowing
is just a special case), folding variant narrowing delivers the goods:

9/19

Program Verification: Lecture 25

Performance Barriers for Symbolic Reachability

In the above, generalized Completeness of Narrowing Search
Theorem, narrowing happens at two levels: (i) with R modulo
E ∪ B for reachability analysis, and (ii) with E⃗≡ modulo B for
computing E ∪ B-unifiers.

From a performance point of view this is very challenging, since
this gives us what we might describe as a “nested narrowing tree,”
wich can by infinite at both of the narrowing levels.

To overcome these performance barriers, the technique of folding
an infinite narrowing tree into a (hopefully finite) narrowing graph
can be applied at both levels. For the symbolic reachability level
with ;∗

R,(E∪B) we have already seen this in Lecture 21. Likewise,

for E⃗ ,B-narrowing with E⃗ convergent modulo B (E⃗≡,B-narrowing
is just a special case), folding variant narrowing delivers the goods:

9/19

Program Verification: Lecture 25

Performance Barriers for Symbolic Reachability

In the above, generalized Completeness of Narrowing Search
Theorem, narrowing happens at two levels: (i) with R modulo
E ∪ B for reachability analysis, and (ii) with E⃗≡ modulo B for
computing E ∪ B-unifiers.

From a performance point of view this is very challenging, since
this gives us what we might describe as a “nested narrowing tree,”
wich can by infinite at both of the narrowing levels.

To overcome these performance barriers, the technique of folding
an infinite narrowing tree into a (hopefully finite) narrowing graph
can be applied at both levels.

For the symbolic reachability level
with ;∗

R,(E∪B) we have already seen this in Lecture 21. Likewise,

for E⃗ ,B-narrowing with E⃗ convergent modulo B (E⃗≡,B-narrowing
is just a special case), folding variant narrowing delivers the goods:

9/19

Program Verification: Lecture 25

Performance Barriers for Symbolic Reachability

In the above, generalized Completeness of Narrowing Search
Theorem, narrowing happens at two levels: (i) with R modulo
E ∪ B for reachability analysis, and (ii) with E⃗≡ modulo B for
computing E ∪ B-unifiers.

From a performance point of view this is very challenging, since
this gives us what we might describe as a “nested narrowing tree,”
wich can by infinite at both of the narrowing levels.

To overcome these performance barriers, the technique of folding
an infinite narrowing tree into a (hopefully finite) narrowing graph
can be applied at both levels. For the symbolic reachability level
with ;∗

R,(E∪B) we have already seen this in Lecture 21.

Likewise,

for E⃗ ,B-narrowing with E⃗ convergent modulo B (E⃗≡,B-narrowing
is just a special case), folding variant narrowing delivers the goods:

9/19

Program Verification: Lecture 25

Performance Barriers for Symbolic Reachability

In the above, generalized Completeness of Narrowing Search
Theorem, narrowing happens at two levels: (i) with R modulo
E ∪ B for reachability analysis, and (ii) with E⃗≡ modulo B for
computing E ∪ B-unifiers.

From a performance point of view this is very challenging, since
this gives us what we might describe as a “nested narrowing tree,”
wich can by infinite at both of the narrowing levels.

To overcome these performance barriers, the technique of folding
an infinite narrowing tree into a (hopefully finite) narrowing graph
can be applied at both levels. For the symbolic reachability level
with ;∗

R,(E∪B) we have already seen this in Lecture 21. Likewise,

for E⃗ ,B-narrowing with E⃗ convergent modulo B (E⃗≡,B-narrowing
is just a special case), folding variant narrowing delivers the goods:

9/19

Program Verification: Lecture 25

Folding Variant Narrowing

Folding Variant Narrowing, proposed by S. Escobar, R. Sasse and
J. Meseguer1 for theories (Σ,E ∪ B) with E⃗ convergent modulo B,
folds the E⃗ ,B-narrowing tree of t into a graph in a breadth first
manner as follows:

1 It considers only paths t
θ

;n
E⃗ ,B

u in the narrowing tree such

that u and θ are E⃗ ,B-normalized.

2 For any such path t
θ

;n
E⃗ ,B

u, if there is another such different

path t
θ′

;m
E⃗ ,B

u′ with m ≤ n and a B-matching substitution γ

such that: (i) u =B u′γ, and (ii) θ =B θ′γ, then the node u is
folded into the more general node u′.

1“Folding variant narrowing and optimal variant termination”, J. Alg. &
Log. Prog., 81, 898–928, 2012.

10/19

Program Verification: Lecture 25

Folding Variant Narrowing

Folding Variant Narrowing, proposed by S. Escobar, R. Sasse and
J. Meseguer1 for theories (Σ,E ∪ B) with E⃗ convergent modulo B,
folds the E⃗ ,B-narrowing tree of t into a graph in a breadth first
manner as follows:

1 It considers only paths t
θ

;n
E⃗ ,B

u in the narrowing tree such

that u and θ are E⃗ ,B-normalized.

2 For any such path t
θ

;n
E⃗ ,B

u, if there is another such different

path t
θ′

;m
E⃗ ,B

u′ with m ≤ n and a B-matching substitution γ

such that: (i) u =B u′γ, and (ii) θ =B θ′γ, then the node u is
folded into the more general node u′.

1“Folding variant narrowing and optimal variant termination”, J. Alg. &
Log. Prog., 81, 898–928, 2012.

10/19

Program Verification: Lecture 25

Folding Variant Narrowing

Folding Variant Narrowing, proposed by S. Escobar, R. Sasse and
J. Meseguer1 for theories (Σ,E ∪ B) with E⃗ convergent modulo B,
folds the E⃗ ,B-narrowing tree of t into a graph in a breadth first
manner as follows:

1 It considers only paths t
θ

;n
E⃗ ,B

u in the narrowing tree such

that u and θ are E⃗ ,B-normalized.

2 For any such path t
θ

;n
E⃗ ,B

u, if there is another such different

path t
θ′

;m
E⃗ ,B

u′ with m ≤ n and a B-matching substitution γ

such that: (i) u =B u′γ, and (ii) θ =B θ′γ, then the node u is
folded into the more general node u′.

1“Folding variant narrowing and optimal variant termination”, J. Alg. &
Log. Prog., 81, 898–928, 2012.

10/19

Program Verification: Lecture 25

Folding Variant Narrowing (II)

The pairs (u, θ) associated to paths t
θ

;n
E⃗ ,B

u in such a graph are

called the E⃗ ,B-variants of t; and the graph thus obtained is called
the folding variant narrowing graph of t.

Maude supports the enumeration of all variants in the folding
variant narrowing graph of t by the get variants t . command
(§14.4, Maude Manual). It also supports variant-based
E ∪ B-unification when E⃗ is convergent modulo B with the
variant unify command (§14.9, Maude Manual).

(Σ,E ∪ B) enjoys the finite variant property (FVP) iff for any
Σ-term t its folding variant graph is finite. This property holds iff
for each f : s1 . . . sn → s in Σ the folding variant graph of
f (x1 :s1, . . . , xn :sn) is finite, which can be checked in Maude.

11/19

Program Verification: Lecture 25

Folding Variant Narrowing (II)

The pairs (u, θ) associated to paths t
θ

;n
E⃗ ,B

u in such a graph are

called the E⃗ ,B-variants of t; and the graph thus obtained is called
the folding variant narrowing graph of t.

Maude supports the enumeration of all variants in the folding
variant narrowing graph of t by the get variants t . command
(§14.4, Maude Manual). It also supports variant-based
E ∪ B-unification when E⃗ is convergent modulo B with the
variant unify command (§14.9, Maude Manual).

(Σ,E ∪ B) enjoys the finite variant property (FVP) iff for any
Σ-term t its folding variant graph is finite. This property holds iff
for each f : s1 . . . sn → s in Σ the folding variant graph of
f (x1 :s1, . . . , xn :sn) is finite, which can be checked in Maude.

11/19

Program Verification: Lecture 25

Folding Variant Narrowing (II)

The pairs (u, θ) associated to paths t
θ

;n
E⃗ ,B

u in such a graph are

called the E⃗ ,B-variants of t; and the graph thus obtained is called
the folding variant narrowing graph of t.

Maude supports the enumeration of all variants in the folding
variant narrowing graph of t by the get variants t . command
(§14.4, Maude Manual). It also supports variant-based
E ∪ B-unification when E⃗ is convergent modulo B with the
variant unify command (§14.9, Maude Manual).

(Σ,E ∪ B) enjoys the finite variant property (FVP) iff for any
Σ-term t its folding variant graph is finite.

This property holds iff
for each f : s1 . . . sn → s in Σ the folding variant graph of
f (x1 :s1, . . . , xn :sn) is finite, which can be checked in Maude.

11/19

Program Verification: Lecture 25

Folding Variant Narrowing (II)

The pairs (u, θ) associated to paths t
θ

;n
E⃗ ,B

u in such a graph are

called the E⃗ ,B-variants of t; and the graph thus obtained is called
the folding variant narrowing graph of t.

Maude supports the enumeration of all variants in the folding
variant narrowing graph of t by the get variants t . command
(§14.4, Maude Manual). It also supports variant-based
E ∪ B-unification when E⃗ is convergent modulo B with the
variant unify command (§14.9, Maude Manual).

(Σ,E ∪ B) enjoys the finite variant property (FVP) iff for any
Σ-term t its folding variant graph is finite. This property holds iff
for each f : s1 . . . sn → s in Σ the folding variant graph of
f (x1 :s1, . . . , xn :sn) is finite, which can be checked in Maude.

11/19

Program Verification: Lecture 25

An FVP Example: SET

In the theory (Σ,E ∪ AC) SET below we can preform
AC -unification in Maude as follows:

fmod SET is

sort Set .

ops mt a b c d e f g : -> Set [ctor] .

op _U_ : Set Set -> Set [ctor assoc comm] . *** union

vars S S’ : Set .

eq S U mt = S [variant] . *** identity

eq S U S = S [variant] . *** idempotencu

eq S U S U S’ = S U S’ [variant] . *** idempotency extension

endfm

unify a U a U b U S =? a U c U S’ .

Unifier 1

S --> c U #1:Set

S’ --> a U b U #1:Set

Unifier 2

S --> c

S’ --> a U b

12/19

Program Verification: Lecture 25

An FVP Example: SET

In the theory (Σ,E ∪ AC) SET below we can preform
AC -unification in Maude as follows:

fmod SET is

sort Set .

ops mt a b c d e f g : -> Set [ctor] .

op _U_ : Set Set -> Set [ctor assoc comm] . *** union

vars S S’ : Set .

eq S U mt = S [variant] . *** identity

eq S U S = S [variant] . *** idempotencu

eq S U S U S’ = S U S’ [variant] . *** idempotency extension

endfm

unify a U a U b U S =? a U c U S’ .

Unifier 1

S --> c U #1:Set

S’ --> a U b U #1:Set

Unifier 2

S --> c

S’ --> a U b

12/19

Program Verification: Lecture 25

An FVP Example: SET (II)

SET is FVP because S U S’ has a finite number of variants:

get variants S U S’ .

Variant 1

Set: #1:Set U #2:Set

S --> #1:Set

S’ --> #2:Set

Variant 2

Set: %1:Set

S --> mt

S’ --> %1:Set

Variant 3

Set: %1:Set

S --> %1:Set

S’ --> mt

Variant 4

Set: %1:Set

S --> %1:Set

S’ --> %1:Set

13/19

Program Verification: Lecture 25

An FVP Example: SET (II)

SET is FVP because S U S’ has a finite number of variants:
get variants S U S’ .

Variant 1

Set: #1:Set U #2:Set

S --> #1:Set

S’ --> #2:Set

Variant 2

Set: %1:Set

S --> mt

S’ --> %1:Set

Variant 3

Set: %1:Set

S --> %1:Set

S’ --> mt

Variant 4

Set: %1:Set

S --> %1:Set

S’ --> %1:Set
13/19

Program Verification: Lecture 25

An FVP Example: SET (III)

Variant 5

Set: %1:Set U %2:Set U %3:Set

S --> %1:Set U %2:Set

S’ --> %1:Set U %3:Set

Variant 6

Set: %1:Set U %2:Set

S --> %1:Set U %2:Set

S’ --> %2:Set

Variant 7

Set: %1:Set U %2:Set

S --> %2:Set

S’ --> %1:Set U %2:Set

No more variants.

14/19

Program Verification: Lecture 25

Variant Unification for FVP Theories

It is easy to check (exercise!) that if (Σ,E ∪ B) is FVP, then
(Σ≡,E≡ ∪ B) is also FVP. This means that, when (Σ,E ∪ B) is
FVP, variant unification always provides a finite and complete set
of E ∪ B-unifiers. For example, since SET is FVP any
E ∪ AC -unification problem has a finite number of variant unifiers.

filtered variant unify a U a U b U S =? a U c U S’ .

Unifier 1

S --> c U %1:Set

S’ --> b U %1:Set

Unifier 2

S --> a U c U #1:Set

S’ --> b U #1:Set

Unifier 3

S --> c U #1:Set

S’ --> a U b U #1:Set

No more unifiers.

15/19

Program Verification: Lecture 25

Variant Unification for FVP Theories

It is easy to check (exercise!) that if (Σ,E ∪ B) is FVP, then
(Σ≡,E≡ ∪ B) is also FVP. This means that, when (Σ,E ∪ B) is
FVP, variant unification always provides a finite and complete set
of E ∪ B-unifiers. For example, since SET is FVP any
E ∪ AC -unification problem has a finite number of variant unifiers.
filtered variant unify a U a U b U S =? a U c U S’ .

Unifier 1

S --> c U %1:Set

S’ --> b U %1:Set

Unifier 2

S --> a U c U #1:Set

S’ --> b U #1:Set

Unifier 3

S --> c U #1:Set

S’ --> a U b U #1:Set

No more unifiers.
15/19

Program Verification: Lecture 25

Symbolic Model Checking for R = (Σ,E ∪ B ,R) when
E ∪ B is FVP

Thus, for (Σ,E ∪ B) FVP, the Completeness of Narrowing Search
Theorem for a rewrite theory R = (Σ,E ∪ B,R) of pg. 8 makes
symbolic model checking tractable. In fact, it is supported by the
same fvu-narrow command already discussed in Lecture 21.

In summary, we have generalized the symbolic model checking
results from Lecture 21 to: (i) any topmost rewrite theory
R = (Σ,E ∪ B,R) with E⃗ convergent modulo B, and (ii) made it
tractable when E ∪ B is FVP. For symbolic model checking
examples when E ∪ B is FVP, see §15 of the The Maude Manual.
Further examples will be given in Lectures 26 and 27.

16/19

Program Verification: Lecture 25

Symbolic Model Checking for R = (Σ,E ∪ B ,R) when
E ∪ B is FVP

Thus, for (Σ,E ∪ B) FVP, the Completeness of Narrowing Search
Theorem for a rewrite theory R = (Σ,E ∪ B,R) of pg. 8 makes
symbolic model checking tractable. In fact, it is supported by the
same fvu-narrow command already discussed in Lecture 21.

In summary, we have generalized the symbolic model checking
results from Lecture 21 to:

(i) any topmost rewrite theory
R = (Σ,E ∪ B,R) with E⃗ convergent modulo B, and (ii) made it
tractable when E ∪ B is FVP. For symbolic model checking
examples when E ∪ B is FVP, see §15 of the The Maude Manual.
Further examples will be given in Lectures 26 and 27.

16/19

Program Verification: Lecture 25

Symbolic Model Checking for R = (Σ,E ∪ B ,R) when
E ∪ B is FVP

Thus, for (Σ,E ∪ B) FVP, the Completeness of Narrowing Search
Theorem for a rewrite theory R = (Σ,E ∪ B,R) of pg. 8 makes
symbolic model checking tractable. In fact, it is supported by the
same fvu-narrow command already discussed in Lecture 21.

In summary, we have generalized the symbolic model checking
results from Lecture 21 to: (i) any topmost rewrite theory
R = (Σ,E ∪ B,R) with E⃗ convergent modulo B, and

(ii) made it
tractable when E ∪ B is FVP. For symbolic model checking
examples when E ∪ B is FVP, see §15 of the The Maude Manual.
Further examples will be given in Lectures 26 and 27.

16/19

Program Verification: Lecture 25

Symbolic Model Checking for R = (Σ,E ∪ B ,R) when
E ∪ B is FVP

Thus, for (Σ,E ∪ B) FVP, the Completeness of Narrowing Search
Theorem for a rewrite theory R = (Σ,E ∪ B,R) of pg. 8 makes
symbolic model checking tractable. In fact, it is supported by the
same fvu-narrow command already discussed in Lecture 21.

In summary, we have generalized the symbolic model checking
results from Lecture 21 to: (i) any topmost rewrite theory
R = (Σ,E ∪ B,R) with E⃗ convergent modulo B, and (ii) made it
tractable when E ∪ B is FVP.

For symbolic model checking
examples when E ∪ B is FVP, see §15 of the The Maude Manual.
Further examples will be given in Lectures 26 and 27.

16/19

Program Verification: Lecture 25

Symbolic Model Checking for R = (Σ,E ∪ B ,R) when
E ∪ B is FVP

Thus, for (Σ,E ∪ B) FVP, the Completeness of Narrowing Search
Theorem for a rewrite theory R = (Σ,E ∪ B,R) of pg. 8 makes
symbolic model checking tractable. In fact, it is supported by the
same fvu-narrow command already discussed in Lecture 21.

In summary, we have generalized the symbolic model checking
results from Lecture 21 to: (i) any topmost rewrite theory
R = (Σ,E ∪ B,R) with E⃗ convergent modulo B, and (ii) made it
tractable when E ∪ B is FVP. For symbolic model checking
examples when E ∪ B is FVP, see §15 of the The Maude Manual.
Further examples will be given in Lectures 26 and 27.

16/19

Program Verification: Lecture 25

The Folding Narrowing Forest FNFR(u1 ∨ . . . ∨ un)

For R = (Σ,E ∪ B,R) with E ∪ B FVP, the folding narrowing
forest from u1 ∨ . . . ∨ un is the forest FNFR(u1 ∨ . . . ∨ un) =def⋃

n∈N FNF n
R(u1 ∨ . . . ∨ un),

where FNF n
R(u1 ∨ . . . ∨ un) has back

and front disjoint node sets and is inductively defined as follows:

• FNF 0
R(u1 ∨ . . . ∨ un) has back(FNF

0
R(u1 ∨ . . . ∨ un)) = ∅,

front(FNF 0
R(u1 ∨ . . . ∨ un)) = {u1, . . . , un}, and no edges.

• FNF n+1
R (u1 ∨ . . . ∨ un) has back(FNF

n+1
R (u1 ∨ . . . ∨ un)) =

FNF n
R(u1 ∨ . . . ∨ un), prefront(FNF

n+1
R (u1 ∨ . . . ∨ un)) =

{v | ∃u ∈ front(FNF n
R(u1 ∨ . . . ∨ un)) s.t. u ;R,(E∪B) v}

and front(FNF n+1
R (u1 ∨ . . . ∨ un)) =

{v ∈ prefront(FNF n+1
R (u1∨. . .∨un)) |̸ ∃w ∈ FNF n

R(u1∨. . .∨un) s.t. v ⊑E∪B w}

where v ⊑E∪B w ⇔def ∃θ s.t. v =E∪B wθ, is called the
folding or subsumption or matching relation modulo E ∪ B.

17/19

Program Verification: Lecture 25

The Folding Narrowing Forest FNFR(u1 ∨ . . . ∨ un)

For R = (Σ,E ∪ B,R) with E ∪ B FVP, the folding narrowing
forest from u1 ∨ . . . ∨ un is the forest FNFR(u1 ∨ . . . ∨ un) =def⋃

n∈N FNF n
R(u1 ∨ . . . ∨ un), where FNF n

R(u1 ∨ . . . ∨ un) has back
and front disjoint node sets and is inductively defined as follows:

• FNF 0
R(u1 ∨ . . . ∨ un) has back(FNF

0
R(u1 ∨ . . . ∨ un)) = ∅,

front(FNF 0
R(u1 ∨ . . . ∨ un)) = {u1, . . . , un}, and no edges.

• FNF n+1
R (u1 ∨ . . . ∨ un) has back(FNF

n+1
R (u1 ∨ . . . ∨ un)) =

FNF n
R(u1 ∨ . . . ∨ un), prefront(FNF

n+1
R (u1 ∨ . . . ∨ un)) =

{v | ∃u ∈ front(FNF n
R(u1 ∨ . . . ∨ un)) s.t. u ;R,(E∪B) v}

and front(FNF n+1
R (u1 ∨ . . . ∨ un)) =

{v ∈ prefront(FNF n+1
R (u1∨. . .∨un)) |̸ ∃w ∈ FNF n

R(u1∨. . .∨un) s.t. v ⊑E∪B w}

where v ⊑E∪B w ⇔def ∃θ s.t. v =E∪B wθ, is called the
folding or subsumption or matching relation modulo E ∪ B.

17/19

Program Verification: Lecture 25

The Folding Narrowing Forest FNFR(u1 ∨ . . . ∨ un)

For R = (Σ,E ∪ B,R) with E ∪ B FVP, the folding narrowing
forest from u1 ∨ . . . ∨ un is the forest FNFR(u1 ∨ . . . ∨ un) =def⋃

n∈N FNF n
R(u1 ∨ . . . ∨ un), where FNF n

R(u1 ∨ . . . ∨ un) has back
and front disjoint node sets and is inductively defined as follows:

• FNF 0
R(u1 ∨ . . . ∨ un) has

back(FNF 0
R(u1 ∨ . . . ∨ un)) = ∅,

front(FNF 0
R(u1 ∨ . . . ∨ un)) = {u1, . . . , un}, and no edges.

• FNF n+1
R (u1 ∨ . . . ∨ un) has back(FNF

n+1
R (u1 ∨ . . . ∨ un)) =

FNF n
R(u1 ∨ . . . ∨ un), prefront(FNF

n+1
R (u1 ∨ . . . ∨ un)) =

{v | ∃u ∈ front(FNF n
R(u1 ∨ . . . ∨ un)) s.t. u ;R,(E∪B) v}

and front(FNF n+1
R (u1 ∨ . . . ∨ un)) =

{v ∈ prefront(FNF n+1
R (u1∨. . .∨un)) |̸ ∃w ∈ FNF n

R(u1∨. . .∨un) s.t. v ⊑E∪B w}

where v ⊑E∪B w ⇔def ∃θ s.t. v =E∪B wθ, is called the
folding or subsumption or matching relation modulo E ∪ B.

17/19

Program Verification: Lecture 25

The Folding Narrowing Forest FNFR(u1 ∨ . . . ∨ un)

For R = (Σ,E ∪ B,R) with E ∪ B FVP, the folding narrowing
forest from u1 ∨ . . . ∨ un is the forest FNFR(u1 ∨ . . . ∨ un) =def⋃

n∈N FNF n
R(u1 ∨ . . . ∨ un), where FNF n

R(u1 ∨ . . . ∨ un) has back
and front disjoint node sets and is inductively defined as follows:

• FNF 0
R(u1 ∨ . . . ∨ un) has back(FNF

0
R(u1 ∨ . . . ∨ un)) = ∅,

front(FNF 0
R(u1 ∨ . . . ∨ un)) = {u1, . . . , un}, and no edges.

• FNF n+1
R (u1 ∨ . . . ∨ un) has back(FNF

n+1
R (u1 ∨ . . . ∨ un)) =

FNF n
R(u1 ∨ . . . ∨ un), prefront(FNF

n+1
R (u1 ∨ . . . ∨ un)) =

{v | ∃u ∈ front(FNF n
R(u1 ∨ . . . ∨ un)) s.t. u ;R,(E∪B) v}

and front(FNF n+1
R (u1 ∨ . . . ∨ un)) =

{v ∈ prefront(FNF n+1
R (u1∨. . .∨un)) |̸ ∃w ∈ FNF n

R(u1∨. . .∨un) s.t. v ⊑E∪B w}

where v ⊑E∪B w ⇔def ∃θ s.t. v =E∪B wθ, is called the
folding or subsumption or matching relation modulo E ∪ B.

17/19

Program Verification: Lecture 25

The Folding Narrowing Forest FNFR(u1 ∨ . . . ∨ un)

For R = (Σ,E ∪ B,R) with E ∪ B FVP, the folding narrowing
forest from u1 ∨ . . . ∨ un is the forest FNFR(u1 ∨ . . . ∨ un) =def⋃

n∈N FNF n
R(u1 ∨ . . . ∨ un), where FNF n

R(u1 ∨ . . . ∨ un) has back
and front disjoint node sets and is inductively defined as follows:

• FNF 0
R(u1 ∨ . . . ∨ un) has back(FNF

0
R(u1 ∨ . . . ∨ un)) = ∅,

front(FNF 0
R(u1 ∨ . . . ∨ un)) = {u1, . . . , un},

and no edges.

• FNF n+1
R (u1 ∨ . . . ∨ un) has back(FNF

n+1
R (u1 ∨ . . . ∨ un)) =

FNF n
R(u1 ∨ . . . ∨ un), prefront(FNF

n+1
R (u1 ∨ . . . ∨ un)) =

{v | ∃u ∈ front(FNF n
R(u1 ∨ . . . ∨ un)) s.t. u ;R,(E∪B) v}

and front(FNF n+1
R (u1 ∨ . . . ∨ un)) =

{v ∈ prefront(FNF n+1
R (u1∨. . .∨un)) |̸ ∃w ∈ FNF n

R(u1∨. . .∨un) s.t. v ⊑E∪B w}

where v ⊑E∪B w ⇔def ∃θ s.t. v =E∪B wθ, is called the
folding or subsumption or matching relation modulo E ∪ B.

17/19

Program Verification: Lecture 25

The Folding Narrowing Forest FNFR(u1 ∨ . . . ∨ un)

For R = (Σ,E ∪ B,R) with E ∪ B FVP, the folding narrowing
forest from u1 ∨ . . . ∨ un is the forest FNFR(u1 ∨ . . . ∨ un) =def⋃

n∈N FNF n
R(u1 ∨ . . . ∨ un), where FNF n

R(u1 ∨ . . . ∨ un) has back
and front disjoint node sets and is inductively defined as follows:

• FNF 0
R(u1 ∨ . . . ∨ un) has back(FNF

0
R(u1 ∨ . . . ∨ un)) = ∅,

front(FNF 0
R(u1 ∨ . . . ∨ un)) = {u1, . . . , un}, and no edges.

• FNF n+1
R (u1 ∨ . . . ∨ un) has back(FNF

n+1
R (u1 ∨ . . . ∨ un)) =

FNF n
R(u1 ∨ . . . ∨ un), prefront(FNF

n+1
R (u1 ∨ . . . ∨ un)) =

{v | ∃u ∈ front(FNF n
R(u1 ∨ . . . ∨ un)) s.t. u ;R,(E∪B) v}

and front(FNF n+1
R (u1 ∨ . . . ∨ un)) =

{v ∈ prefront(FNF n+1
R (u1∨. . .∨un)) |̸ ∃w ∈ FNF n

R(u1∨. . .∨un) s.t. v ⊑E∪B w}

where v ⊑E∪B w ⇔def ∃θ s.t. v =E∪B wθ, is called the
folding or subsumption or matching relation modulo E ∪ B.

17/19

Program Verification: Lecture 25

The Folding Narrowing Forest FNFR(u1 ∨ . . . ∨ un)

For R = (Σ,E ∪ B,R) with E ∪ B FVP, the folding narrowing
forest from u1 ∨ . . . ∨ un is the forest FNFR(u1 ∨ . . . ∨ un) =def⋃

n∈N FNF n
R(u1 ∨ . . . ∨ un), where FNF n

R(u1 ∨ . . . ∨ un) has back
and front disjoint node sets and is inductively defined as follows:

• FNF 0
R(u1 ∨ . . . ∨ un) has back(FNF

0
R(u1 ∨ . . . ∨ un)) = ∅,

front(FNF 0
R(u1 ∨ . . . ∨ un)) = {u1, . . . , un}, and no edges.

• FNF n+1
R (u1 ∨ . . . ∨ un) has

back(FNF n+1
R (u1 ∨ . . . ∨ un)) =

FNF n
R(u1 ∨ . . . ∨ un), prefront(FNF

n+1
R (u1 ∨ . . . ∨ un)) =

{v | ∃u ∈ front(FNF n
R(u1 ∨ . . . ∨ un)) s.t. u ;R,(E∪B) v}

and front(FNF n+1
R (u1 ∨ . . . ∨ un)) =

{v ∈ prefront(FNF n+1
R (u1∨. . .∨un)) |̸ ∃w ∈ FNF n

R(u1∨. . .∨un) s.t. v ⊑E∪B w}

where v ⊑E∪B w ⇔def ∃θ s.t. v =E∪B wθ, is called the
folding or subsumption or matching relation modulo E ∪ B.

17/19

Program Verification: Lecture 25

The Folding Narrowing Forest FNFR(u1 ∨ . . . ∨ un)

For R = (Σ,E ∪ B,R) with E ∪ B FVP, the folding narrowing
forest from u1 ∨ . . . ∨ un is the forest FNFR(u1 ∨ . . . ∨ un) =def⋃

n∈N FNF n
R(u1 ∨ . . . ∨ un), where FNF n

R(u1 ∨ . . . ∨ un) has back
and front disjoint node sets and is inductively defined as follows:

• FNF 0
R(u1 ∨ . . . ∨ un) has back(FNF

0
R(u1 ∨ . . . ∨ un)) = ∅,

front(FNF 0
R(u1 ∨ . . . ∨ un)) = {u1, . . . , un}, and no edges.

• FNF n+1
R (u1 ∨ . . . ∨ un) has back(FNF

n+1
R (u1 ∨ . . . ∨ un)) =

FNF n
R(u1 ∨ . . . ∨ un),

prefront(FNF n+1
R (u1 ∨ . . . ∨ un)) =

{v | ∃u ∈ front(FNF n
R(u1 ∨ . . . ∨ un)) s.t. u ;R,(E∪B) v}

and front(FNF n+1
R (u1 ∨ . . . ∨ un)) =

{v ∈ prefront(FNF n+1
R (u1∨. . .∨un)) |̸ ∃w ∈ FNF n

R(u1∨. . .∨un) s.t. v ⊑E∪B w}

where v ⊑E∪B w ⇔def ∃θ s.t. v =E∪B wθ, is called the
folding or subsumption or matching relation modulo E ∪ B.

17/19

Program Verification: Lecture 25

The Folding Narrowing Forest FNFR(u1 ∨ . . . ∨ un)

For R = (Σ,E ∪ B,R) with E ∪ B FVP, the folding narrowing
forest from u1 ∨ . . . ∨ un is the forest FNFR(u1 ∨ . . . ∨ un) =def⋃

n∈N FNF n
R(u1 ∨ . . . ∨ un), where FNF n

R(u1 ∨ . . . ∨ un) has back
and front disjoint node sets and is inductively defined as follows:

• FNF 0
R(u1 ∨ . . . ∨ un) has back(FNF

0
R(u1 ∨ . . . ∨ un)) = ∅,

front(FNF 0
R(u1 ∨ . . . ∨ un)) = {u1, . . . , un}, and no edges.

• FNF n+1
R (u1 ∨ . . . ∨ un) has back(FNF

n+1
R (u1 ∨ . . . ∨ un)) =

FNF n
R(u1 ∨ . . . ∨ un), prefront(FNF

n+1
R (u1 ∨ . . . ∨ un)) =

{v | ∃u ∈ front(FNF n
R(u1 ∨ . . . ∨ un)) s.t. u ;R,(E∪B) v}

and front(FNF n+1
R (u1 ∨ . . . ∨ un)) =

{v ∈ prefront(FNF n+1
R (u1∨. . .∨un)) |̸ ∃w ∈ FNF n

R(u1∨. . .∨un) s.t. v ⊑E∪B w}

where v ⊑E∪B w ⇔def ∃θ s.t. v =E∪B wθ, is called the
folding or subsumption or matching relation modulo E ∪ B.

17/19

Program Verification: Lecture 25

The Folding Narrowing Forest FNFR(u1 ∨ . . . ∨ un)

For R = (Σ,E ∪ B,R) with E ∪ B FVP, the folding narrowing
forest from u1 ∨ . . . ∨ un is the forest FNFR(u1 ∨ . . . ∨ un) =def⋃

n∈N FNF n
R(u1 ∨ . . . ∨ un), where FNF n

R(u1 ∨ . . . ∨ un) has back
and front disjoint node sets and is inductively defined as follows:

• FNF 0
R(u1 ∨ . . . ∨ un) has back(FNF

0
R(u1 ∨ . . . ∨ un)) = ∅,

front(FNF 0
R(u1 ∨ . . . ∨ un)) = {u1, . . . , un}, and no edges.

• FNF n+1
R (u1 ∨ . . . ∨ un) has back(FNF

n+1
R (u1 ∨ . . . ∨ un)) =

FNF n
R(u1 ∨ . . . ∨ un), prefront(FNF

n+1
R (u1 ∨ . . . ∨ un)) =

{v | ∃u ∈ front(FNF n
R(u1 ∨ . . . ∨ un)) s.t. u ;R,(E∪B) v}

and front(FNF n+1
R (u1 ∨ . . . ∨ un)) =

{v ∈ prefront(FNF n+1
R (u1∨. . .∨un)) |̸ ∃w ∈ FNF n

R(u1∨. . .∨un) s.t. v ⊑E∪B w}

where v ⊑E∪B w ⇔def ∃θ s.t. v =E∪B wθ, is called the
folding or subsumption or matching relation modulo E ∪ B.

17/19

Program Verification: Lecture 25

The Folding Narrowing Forest FNFR(u1 ∨ . . . ∨ un)

For R = (Σ,E ∪ B,R) with E ∪ B FVP, the folding narrowing
forest from u1 ∨ . . . ∨ un is the forest FNFR(u1 ∨ . . . ∨ un) =def⋃

n∈N FNF n
R(u1 ∨ . . . ∨ un), where FNF n

R(u1 ∨ . . . ∨ un) has back
and front disjoint node sets and is inductively defined as follows:

• FNF 0
R(u1 ∨ . . . ∨ un) has back(FNF

0
R(u1 ∨ . . . ∨ un)) = ∅,

front(FNF 0
R(u1 ∨ . . . ∨ un)) = {u1, . . . , un}, and no edges.

• FNF n+1
R (u1 ∨ . . . ∨ un) has back(FNF

n+1
R (u1 ∨ . . . ∨ un)) =

FNF n
R(u1 ∨ . . . ∨ un), prefront(FNF

n+1
R (u1 ∨ . . . ∨ un)) =

{v | ∃u ∈ front(FNF n
R(u1 ∨ . . . ∨ un)) s.t. u ;R,(E∪B) v}

and front(FNF n+1
R (u1 ∨ . . . ∨ un)) =

{v ∈ prefront(FNF n+1
R (u1∨. . .∨un)) |̸ ∃w ∈ FNF n

R(u1∨. . .∨un) s.t. v ⊑E∪B w}

where v ⊑E∪B w ⇔def ∃θ s.t. v =E∪B wθ, is called the
folding or subsumption or matching relation modulo E ∪ B.

17/19

Program Verification: Lecture 25

The Folding Narrowing Forest FNFR(u1 ∨ . . . ∨ un)

For R = (Σ,E ∪ B,R) with E ∪ B FVP, the folding narrowing
forest from u1 ∨ . . . ∨ un is the forest FNFR(u1 ∨ . . . ∨ un) =def⋃

n∈N FNF n
R(u1 ∨ . . . ∨ un), where FNF n

R(u1 ∨ . . . ∨ un) has back
and front disjoint node sets and is inductively defined as follows:

• FNF 0
R(u1 ∨ . . . ∨ un) has back(FNF

0
R(u1 ∨ . . . ∨ un)) = ∅,

front(FNF 0
R(u1 ∨ . . . ∨ un)) = {u1, . . . , un}, and no edges.

• FNF n+1
R (u1 ∨ . . . ∨ un) has back(FNF

n+1
R (u1 ∨ . . . ∨ un)) =

FNF n
R(u1 ∨ . . . ∨ un), prefront(FNF

n+1
R (u1 ∨ . . . ∨ un)) =

{v | ∃u ∈ front(FNF n
R(u1 ∨ . . . ∨ un)) s.t. u ;R,(E∪B) v}

and front(FNF n+1
R (u1 ∨ . . . ∨ un)) =

{v ∈ prefront(FNF n+1
R (u1∨. . .∨un)) |̸ ∃w ∈ FNF n

R(u1∨. . .∨un) s.t. v ⊑E∪B w}

where v ⊑E∪B w ⇔def ∃θ s.t. v =E∪B wθ, is called the
folding or subsumption or matching relation modulo E ∪ B.

17/19

Program Verification: Lecture 25

The Folding Narrowing Forest FNFR(u1 ∨ . . . ∨ un) (II)

As an optimization, whenever v , v ′ ∈ front(FNF n+1
R (u1 ∨ . . . ∨ un))

are such that v ⊑E∪B v ′ we can remove node v as redundant.

We add to FNF n+1
R (u1 ∨ . . . ∨ un) as new edges those narrowings

u ;R,(E∪B) v s.t. u ∈ front(FNF n
R(u1 ∨ . . . ∨ un)) and

v ∈ front(FNF n+1
R (u1 ∨ . . . ∨ un)).

If for some n ∈ N front(FNF n
R(u1 ∨ . . . ∨ un)) = ∅, then we have

FNFR(u1 ∨ . . . ∨ un) = FNF n
R(u1 ∨ . . . ∨ un), i.e., get a fixpoint.

By construction we have the inclusion:

JFNFR(u1 ∨ . . . ∨ un)K ⊆
⋃

{JvK | ∃i , 1 ≤ i ≤ n s.t. ui ;
∗
R,(E∪B) v}.

But that inclusion is an equality, since we also have:⋃
{JvK | ∃i , 1 ≤ i ≤ n s.t. ui ;

∗
R,(E∪B) v} ⊆ JFNFR(u1 ∨ . . . ∨ un)K.

The proof is an easy induction on k for narrowing sequences
ui ;

k
R,(E∪B) v , 1 ≤ i ≤ n, using that v ⊑E∪B w ⇒ JvK ⊆ JwK.

18/19

Program Verification: Lecture 25

The Folding Narrowing Forest FNFR(u1 ∨ . . . ∨ un) (II)

As an optimization, whenever v , v ′ ∈ front(FNF n+1
R (u1 ∨ . . . ∨ un))

are such that v ⊑E∪B v ′ we can remove node v as redundant.

We add to FNF n+1
R (u1 ∨ . . . ∨ un) as new edges those narrowings

u ;R,(E∪B) v s.t. u ∈ front(FNF n
R(u1 ∨ . . . ∨ un)) and

v ∈ front(FNF n+1
R (u1 ∨ . . . ∨ un)).

If for some n ∈ N front(FNF n
R(u1 ∨ . . . ∨ un)) = ∅, then we have

FNFR(u1 ∨ . . . ∨ un) = FNF n
R(u1 ∨ . . . ∨ un), i.e., get a fixpoint.

By construction we have the inclusion:

JFNFR(u1 ∨ . . . ∨ un)K ⊆
⋃

{JvK | ∃i , 1 ≤ i ≤ n s.t. ui ;
∗
R,(E∪B) v}.

But that inclusion is an equality, since we also have:⋃
{JvK | ∃i , 1 ≤ i ≤ n s.t. ui ;

∗
R,(E∪B) v} ⊆ JFNFR(u1 ∨ . . . ∨ un)K.

The proof is an easy induction on k for narrowing sequences
ui ;

k
R,(E∪B) v , 1 ≤ i ≤ n, using that v ⊑E∪B w ⇒ JvK ⊆ JwK.

18/19

Program Verification: Lecture 25

The Folding Narrowing Forest FNFR(u1 ∨ . . . ∨ un) (II)

As an optimization, whenever v , v ′ ∈ front(FNF n+1
R (u1 ∨ . . . ∨ un))

are such that v ⊑E∪B v ′ we can remove node v as redundant.

We add to FNF n+1
R (u1 ∨ . . . ∨ un) as new edges those narrowings

u ;R,(E∪B) v s.t. u ∈ front(FNF n
R(u1 ∨ . . . ∨ un)) and

v ∈ front(FNF n+1
R (u1 ∨ . . . ∨ un)).

If for some n ∈ N front(FNF n
R(u1 ∨ . . . ∨ un)) = ∅, then we have

FNFR(u1 ∨ . . . ∨ un) = FNF n
R(u1 ∨ . . . ∨ un),

i.e., get a fixpoint.

By construction we have the inclusion:

JFNFR(u1 ∨ . . . ∨ un)K ⊆
⋃

{JvK | ∃i , 1 ≤ i ≤ n s.t. ui ;
∗
R,(E∪B) v}.

But that inclusion is an equality, since we also have:⋃
{JvK | ∃i , 1 ≤ i ≤ n s.t. ui ;

∗
R,(E∪B) v} ⊆ JFNFR(u1 ∨ . . . ∨ un)K.

The proof is an easy induction on k for narrowing sequences
ui ;

k
R,(E∪B) v , 1 ≤ i ≤ n, using that v ⊑E∪B w ⇒ JvK ⊆ JwK.

18/19

Program Verification: Lecture 25

The Folding Narrowing Forest FNFR(u1 ∨ . . . ∨ un) (II)

As an optimization, whenever v , v ′ ∈ front(FNF n+1
R (u1 ∨ . . . ∨ un))

are such that v ⊑E∪B v ′ we can remove node v as redundant.

We add to FNF n+1
R (u1 ∨ . . . ∨ un) as new edges those narrowings

u ;R,(E∪B) v s.t. u ∈ front(FNF n
R(u1 ∨ . . . ∨ un)) and

v ∈ front(FNF n+1
R (u1 ∨ . . . ∨ un)).

If for some n ∈ N front(FNF n
R(u1 ∨ . . . ∨ un)) = ∅, then we have

FNFR(u1 ∨ . . . ∨ un) = FNF n
R(u1 ∨ . . . ∨ un), i.e., get a fixpoint.

By construction we have the inclusion:

JFNFR(u1 ∨ . . . ∨ un)K ⊆
⋃

{JvK | ∃i , 1 ≤ i ≤ n s.t. ui ;
∗
R,(E∪B) v}.

But that inclusion is an equality, since we also have:⋃
{JvK | ∃i , 1 ≤ i ≤ n s.t. ui ;

∗
R,(E∪B) v} ⊆ JFNFR(u1 ∨ . . . ∨ un)K.

The proof is an easy induction on k for narrowing sequences
ui ;

k
R,(E∪B) v , 1 ≤ i ≤ n, using that v ⊑E∪B w ⇒ JvK ⊆ JwK.

18/19

Program Verification: Lecture 25

The Folding Narrowing Forest FNFR(u1 ∨ . . . ∨ un) (II)

As an optimization, whenever v , v ′ ∈ front(FNF n+1
R (u1 ∨ . . . ∨ un))

are such that v ⊑E∪B v ′ we can remove node v as redundant.

We add to FNF n+1
R (u1 ∨ . . . ∨ un) as new edges those narrowings

u ;R,(E∪B) v s.t. u ∈ front(FNF n
R(u1 ∨ . . . ∨ un)) and

v ∈ front(FNF n+1
R (u1 ∨ . . . ∨ un)).

If for some n ∈ N front(FNF n
R(u1 ∨ . . . ∨ un)) = ∅, then we have

FNFR(u1 ∨ . . . ∨ un) = FNF n
R(u1 ∨ . . . ∨ un), i.e., get a fixpoint.

By construction we have the inclusion:

JFNFR(u1 ∨ . . . ∨ un)K ⊆
⋃

{JvK | ∃i , 1 ≤ i ≤ n s.t. ui ;
∗
R,(E∪B) v}.

But that inclusion is an equality, since we also have:⋃
{JvK | ∃i , 1 ≤ i ≤ n s.t. ui ;

∗
R,(E∪B) v} ⊆ JFNFR(u1 ∨ . . . ∨ un)K.

The proof is an easy induction on k for narrowing sequences
ui ;

k
R,(E∪B) v , 1 ≤ i ≤ n, using that v ⊑E∪B w ⇒ JvK ⊆ JwK.

18/19

Program Verification: Lecture 25

The Folding Narrowing Forest FNFR(u1 ∨ . . . ∨ un) (II)

As an optimization, whenever v , v ′ ∈ front(FNF n+1
R (u1 ∨ . . . ∨ un))

are such that v ⊑E∪B v ′ we can remove node v as redundant.

We add to FNF n+1
R (u1 ∨ . . . ∨ un) as new edges those narrowings

u ;R,(E∪B) v s.t. u ∈ front(FNF n
R(u1 ∨ . . . ∨ un)) and

v ∈ front(FNF n+1
R (u1 ∨ . . . ∨ un)).

If for some n ∈ N front(FNF n
R(u1 ∨ . . . ∨ un)) = ∅, then we have

FNFR(u1 ∨ . . . ∨ un) = FNF n
R(u1 ∨ . . . ∨ un), i.e., get a fixpoint.

By construction we have the inclusion:

JFNFR(u1 ∨ . . . ∨ un)K ⊆
⋃

{JvK | ∃i , 1 ≤ i ≤ n s.t. ui ;
∗
R,(E∪B) v}.

But that inclusion is an equality, since we also have:⋃
{JvK | ∃i , 1 ≤ i ≤ n s.t. ui ;

∗
R,(E∪B) v} ⊆ JFNFR(u1 ∨ . . . ∨ un)K.

The proof is an easy induction on k for narrowing sequences
ui ;

k
R,(E∪B) v , 1 ≤ i ≤ n, using that v ⊑E∪B w ⇒ JvK ⊆ JwK.

18/19

Program Verification: Lecture 25

The Folding Narrowing Forest FNFR(u1 ∨ . . . ∨ un) (II)

As an optimization, whenever v , v ′ ∈ front(FNF n+1
R (u1 ∨ . . . ∨ un))

are such that v ⊑E∪B v ′ we can remove node v as redundant.

We add to FNF n+1
R (u1 ∨ . . . ∨ un) as new edges those narrowings

u ;R,(E∪B) v s.t. u ∈ front(FNF n
R(u1 ∨ . . . ∨ un)) and

v ∈ front(FNF n+1
R (u1 ∨ . . . ∨ un)).

If for some n ∈ N front(FNF n
R(u1 ∨ . . . ∨ un)) = ∅, then we have

FNFR(u1 ∨ . . . ∨ un) = FNF n
R(u1 ∨ . . . ∨ un), i.e., get a fixpoint.

By construction we have the inclusion:

JFNFR(u1 ∨ . . . ∨ un)K ⊆
⋃

{JvK | ∃i , 1 ≤ i ≤ n s.t. ui ;
∗
R,(E∪B) v}.

But that inclusion is an equality, since we also have:

⋃
{JvK | ∃i , 1 ≤ i ≤ n s.t. ui ;

∗
R,(E∪B) v} ⊆ JFNFR(u1 ∨ . . . ∨ un)K.

The proof is an easy induction on k for narrowing sequences
ui ;

k
R,(E∪B) v , 1 ≤ i ≤ n, using that v ⊑E∪B w ⇒ JvK ⊆ JwK.

18/19

Program Verification: Lecture 25

The Folding Narrowing Forest FNFR(u1 ∨ . . . ∨ un) (II)

As an optimization, whenever v , v ′ ∈ front(FNF n+1
R (u1 ∨ . . . ∨ un))

are such that v ⊑E∪B v ′ we can remove node v as redundant.

We add to FNF n+1
R (u1 ∨ . . . ∨ un) as new edges those narrowings

u ;R,(E∪B) v s.t. u ∈ front(FNF n
R(u1 ∨ . . . ∨ un)) and

v ∈ front(FNF n+1
R (u1 ∨ . . . ∨ un)).

If for some n ∈ N front(FNF n
R(u1 ∨ . . . ∨ un)) = ∅, then we have

FNFR(u1 ∨ . . . ∨ un) = FNF n
R(u1 ∨ . . . ∨ un), i.e., get a fixpoint.

By construction we have the inclusion:

JFNFR(u1 ∨ . . . ∨ un)K ⊆
⋃

{JvK | ∃i , 1 ≤ i ≤ n s.t. ui ;
∗
R,(E∪B) v}.

But that inclusion is an equality, since we also have:⋃
{JvK | ∃i , 1 ≤ i ≤ n s.t. ui ;

∗
R,(E∪B) v} ⊆ JFNFR(u1 ∨ . . . ∨ un)K.

The proof is an easy induction on k for narrowing sequences
ui ;

k
R,(E∪B) v , 1 ≤ i ≤ n, using that v ⊑E∪B w ⇒ JvK ⊆ JwK.

18/19

Program Verification: Lecture 25

The Folding Narrowing Forest FNFR(u1 ∨ . . . ∨ un) (II)

As an optimization, whenever v , v ′ ∈ front(FNF n+1
R (u1 ∨ . . . ∨ un))

are such that v ⊑E∪B v ′ we can remove node v as redundant.

We add to FNF n+1
R (u1 ∨ . . . ∨ un) as new edges those narrowings

u ;R,(E∪B) v s.t. u ∈ front(FNF n
R(u1 ∨ . . . ∨ un)) and

v ∈ front(FNF n+1
R (u1 ∨ . . . ∨ un)).

If for some n ∈ N front(FNF n
R(u1 ∨ . . . ∨ un)) = ∅, then we have

FNFR(u1 ∨ . . . ∨ un) = FNF n
R(u1 ∨ . . . ∨ un), i.e., get a fixpoint.

By construction we have the inclusion:

JFNFR(u1 ∨ . . . ∨ un)K ⊆
⋃

{JvK | ∃i , 1 ≤ i ≤ n s.t. ui ;
∗
R,(E∪B) v}.

But that inclusion is an equality, since we also have:⋃
{JvK | ∃i , 1 ≤ i ≤ n s.t. ui ;

∗
R,(E∪B) v} ⊆ JFNFR(u1 ∨ . . . ∨ un)K.

The proof is an easy induction on k for narrowing sequences
ui ;

k
R,(E∪B) v , 1 ≤ i ≤ n, using that v ⊑E∪B w ⇒ JvK ⊆ JwK.

18/19

Program Verification: Lecture 25

Completeness of Folding Narrowing Search

Theorem (Completeness of Folding Narrowing Search). For a
topmost and admissible R = (Σ,E ∪ B,R) with E ∪ B FVP, and
u1 ∨ . . . ∨ un and v1 ∨ . . . ∨ vm non-variable constructor patterns,

R, (u1 ∨ . . . ∨ un) |=S4 3(v1 ∨ . . . ∨ vm)

holds iff

there exists w ∈ FNFR(u1 ∨ . . . ∨ un) having a
E ∪ B-unifier γ ∈ Unif E∪B(w = vj) for some j , 1 ≤ j ≤ m.

Proof: It follows immediately from the Completeness of Narrowing
Search Theorem, thanks to the equality:

JFNFR(u1 ∨ . . . ∨ un)K =
⋃

{JvK | ∃i , 1 ≤ i ≤ n s.t. ui ;
∗
R,(E∪B) v}. 2

19/19

Program Verification: Lecture 25

Completeness of Folding Narrowing Search

Theorem (Completeness of Folding Narrowing Search). For a
topmost and admissible R = (Σ,E ∪ B,R) with E ∪ B FVP, and
u1 ∨ . . . ∨ un and v1 ∨ . . . ∨ vm non-variable constructor patterns,

R, (u1 ∨ . . . ∨ un) |=S4 3(v1 ∨ . . . ∨ vm)

holds iff there exists w ∈ FNFR(u1 ∨ . . . ∨ un) having a
E ∪ B-unifier γ ∈ Unif E∪B(w = vj) for some j , 1 ≤ j ≤ m.

Proof: It follows immediately from the Completeness of Narrowing
Search Theorem, thanks to the equality:

JFNFR(u1 ∨ . . . ∨ un)K =
⋃

{JvK | ∃i , 1 ≤ i ≤ n s.t. ui ;
∗
R,(E∪B) v}. 2

19/19

Program Verification: Lecture 25

Completeness of Folding Narrowing Search

Theorem (Completeness of Folding Narrowing Search). For a
topmost and admissible R = (Σ,E ∪ B,R) with E ∪ B FVP, and
u1 ∨ . . . ∨ un and v1 ∨ . . . ∨ vm non-variable constructor patterns,

R, (u1 ∨ . . . ∨ un) |=S4 3(v1 ∨ . . . ∨ vm)

holds iff there exists w ∈ FNFR(u1 ∨ . . . ∨ un) having a
E ∪ B-unifier γ ∈ Unif E∪B(w = vj) for some j , 1 ≤ j ≤ m.

Proof: It follows immediately from the Completeness of Narrowing
Search Theorem, thanks to the equality:

JFNFR(u1 ∨ . . . ∨ un)K =
⋃

{JvK | ∃i , 1 ≤ i ≤ n s.t. ui ;
∗
R,(E∪B) v}. 2

19/19

Program Verification: Lecture 25

Completeness of Folding Narrowing Search

Theorem (Completeness of Folding Narrowing Search). For a
topmost and admissible R = (Σ,E ∪ B,R) with E ∪ B FVP, and
u1 ∨ . . . ∨ un and v1 ∨ . . . ∨ vm non-variable constructor patterns,

R, (u1 ∨ . . . ∨ un) |=S4 3(v1 ∨ . . . ∨ vm)

holds iff there exists w ∈ FNFR(u1 ∨ . . . ∨ un) having a
E ∪ B-unifier γ ∈ Unif E∪B(w = vj) for some j , 1 ≤ j ≤ m.

Proof: It follows immediately from the Completeness of Narrowing
Search Theorem, thanks to the equality:

JFNFR(u1 ∨ . . . ∨ un)K =
⋃

{JvK | ∃i , 1 ≤ i ≤ n s.t. ui ;
∗
R,(E∪B) v}. 2

19/19

