
Program Verification: Lecture 24

Program Verification: Lecture 24
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Fairness Properties

Fairness properties are closely related to the phenomena of conflict
and preemption between transitions.

Since any computable Kripke
structure can be specified as a Maude system module, W.L.O.G.
we can consider these fenomena for Kripke structures CΠ

R. Given a
state [u] in CΠ

R, two different state transitions [u] →R [v ] and
[u] →R [w ] are said to be in conflict, because the application of
one will preempt that of the other. The notions of race condition
and data race are phenomena arising from conflict and preemption.

Fairness is a property ensuring that in certain kinds of conflict
situations a given transition will not be preempted almost forever.
That is, if it is infinitely enabled to be applied, it will actually be
applied, not a finite, but an infinite number of times.
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Weak and Strong Fairness

Depending on how we interpret that a transition is infinitely
enabled to be applied, we get two different notions of fairness.

Suppose that enabledτ is the state predicate describing that
transition τ is enabled. Then, “infinitely enabled to be applied”
can mean either: (1) 32enabledτ , i.e., after a while τ is forever
enabled; or (2) 23enabledτ , i.e., τ is infinitely often enabled, but
can be so in an intermitten way. This distinction yields two notions:

1 Weak Fairness: 32enabledτ → 23takenτ
2 Strong Fairness: 23enabledτ → 23takenτ .

The problem is that takenτ is the property of an action (applying
τ), which need not be reflected in a state. But LTL(Π) is a
state-based temporal logic (the p ∈ Π are state predicates). So
specifying fairness conditions in LTL(Π) can be tricky. Can consider
three, increasingly more expressive modes of specifying fairness:
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Three Modes of Specifying Fairness

Weak or strong fairness can be specified in several modes:

1 State-Based mode, when the takenτ property can be
expressed as a state predicate holding in the resulting state.

2 Action-Based mode, by encoding in the system’s state the
label l of the transition used to reach it. This increases the
number of states, since a state [u] now splits into
[u].l1, . . . , [u].ln if it can be reached by n different transitions.

3 Object/Process/Thread Fairness is even more detailed: we
need to specify to which object/process/thread has transition
l been applied by encoding this in the resulting state [v ] as,
say, [v ].l(o), where o is the object/process/thread identifier.

The difference between (2) and (3) is that between applying a rule
l , and applying an instance of rule l to a given object o.

I will illustrate modes (1) and (3) by examples.
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A Traffic Lights Example

In Urbana-Champaign most street intersections are N − S
intersecting E −W , which, by analogy with a map, I shall call
vertical intersecting horizontal.

Here is a simple specification of a
traffic lights system of this kind:
mod TRAFFIC-LIGHTS is

sorts Conf LightState Intersection Direction Light Car .

subsorts LightState Intersection Car < Conf .

op mt : -> Conf [ctor] .

op _ _ : Conf Conf -> Conf [ctor assoc comm id: mt] .

op [_] : Conf -> Intersection [ctor] .

ops h v : -> Direction [ctor] .

op car : Direction -> Car [ctor] .

ops green red yellow : Direction -> Light [ctor] .

op {_,_} : Light Light -> LightState [comm] .

op init : -> Conf .

vars d d1 d2 : Direction . var L : Light . var C : Conf .

eq init = {green(h),red(v)} [mt] .
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A Traffic Lights Example (II)

rl [g2y] : {green(d1),red(d2)} [C] => {yellow(d1),red(d2)} [C] .

rl [y2r] : {yellow(d1),red(d2)} [mt] => {red(d1),green(d2)} [mt] .

rl [car.in] : {green(d),L} [mt] => {green(d),L} [car(d)] .

rl [car.in] : {green(d),L} [mt] => {green(d),L} [car(d) car(d)] .

rl [car.out] : {green(d),L} [car(d) car(d)] => {green(d),L} [mt] .

rl [car.out] : {green(d),L} [car(d)] => {green(d),L} [mt] .

rl [car.out] : {yellow(d),L} [car(d) car(d)] => {yellow(d),L} [mt] .

rl [car.out] : {yellow(d),L} [car(d)] => {yellow(d),L} [mt] .

endm

Within the horizontal, resp. vertical, direction no distinction is
made between a light facing (or a car moving) N or S (resp. E or
W ). The light system has just two transitions. While a ligh is green
in direction d , cars moving along d can enter the intersection. We
assume that no more than two such cars (e.g., one going N → S
and another S → N) do so; and of course they leave. This is
modeled by the [car.in] and [car.out] rules. Let us define
some state predicates and formulas for TRAFFIC-LIGHTS.
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A Traffic Lights Example (III)

in model-checker.maude

mod TRAFFIC-LIGHTS-PREDS is

protecting TRAFFIC-LIGHTS . protecting SATISFACTION .

subsort Conf < State .

vars L L’ : Light . vars C C’ : Conf . vars d d1 d2 : Direction .

op enabled : -> Prop [ctor] .

eq {green(d1),red(d2)} [C] C’ |= enabled = true .

eq {yellow(d1),red(d2)} [mt] C |= enabled = true .

eq {green(d),L} [mt] C |= enabled = true .

eq {green(d),L} [car(d) car(d)] C |= enabled = true .

eq {green(d),L} [car(d)] C |= enabled = true .

eq {yellow(d),L} [car(d) car(d)] C |= enabled = true .

eq {yellow(d),L} [car(d)] C |= enabled = true .

op on : Light -> Prop [ctor] .

eq {L,L’} C |= on(L) = true .
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A Traffic Lights Example (IV)

op side-collision-dngr : -> Prop [ctor] .

eq [car(h) car(v) C’] C |= side-collision-dngr = true .

op yellow-enabled : Direction -> Prop .

eq {green(d1),red(d2)} [C] C’ |= yellow-enabled(d1) = true .

endm

mod TRAFFIC-LIGHTS-CHECK is

protecting TRAFFIC-LIGHTS-PREDS .

including MODEL-CHECKER .

op yellow-fair : -> Formula .

eq yellow-fair = (([] <> yellow-enabled(h)) -> ([] <> on(yellow(h)))) /\

(([] <> yellow-enabled(v)) -> ([] <> on(yellow(v)))) .

endm

Let’s verify some properties. The main safety invariant is absence
of side collisions:
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A Traffic Lights Example (V)

red modelCheck(init,[] ~ side-collision-dngr) .

result Bool: true

Another important invariant is deadlock freedom:

red modelCheck(init,[] enabled) .

result Bool: true

A key property is that in any direction red always follows yellow:

red modelCheck(init,[] (on(yellow(h)) -> (on(yellow(h)) U on(red(h))))) .

result Bool: true

red modelCheck(init,[] (on(yellow(v)) -> (on(yellow(v)) U on(red(v))))) .

result Bool: true

However, yellow doesn’t always follow green:
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A Traffic Lights Example (VI)

red modelCheck(init,[] (on(green(h)) -> (on(green(h)) U on(yellow(h))))) .

result ModelCheckResult:

counterexample(nil,

{[mt] {green(h),red(v)},’car.in}

{[car(h)] {green(h),red(v)},’car.out})

As the counterexample shows this is due to a conflict between the
g2y rule and the car.in rules, and g2y gets forever preempted.

We can take two steps: Step 1. Consider TRAFFIC-LIGHTS a
high-level design missing some details and, assuming
yellow-fair, show that TRAFFIC-LIGHTS works as expected:
red modelCheck(init,yellow-fair ->

([] (on(green(h)) -> (on(green(h)) U on(yellow(h)))))) .

result Bool: true

red modelCheck(init,yellow-fair ->

([] (on(green(v)) -> (on(green(v)) U on(yellow(v)))))) .

result Bool: true
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Program Verification: Lecture 24

A Traffic Lights Example (VII)

Step 2. Develop a more detailed design where the traffic lights
system works as expected because its design ensures fairness by
construction. This second step is taken in the Appendix to this
lecture.

This example has illustrated the State-Based mode: we didn’t
need to explicitly encode the taking of a conflict transition like g2y
in the state because its effect could be detected by the yellow light
for the relevant direction being on after it was taken.

Next we consider the Object/Process/Thread Fairness mode by
revisiting the PARALLEL programming language from Lecture 20.
This will also allow us to illustrate the LTL formal verification of
concurrent imperative programs.
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Program Verification: Lecture 24

PARALLEL Revisited

In PARALLEL, to verify some LTL program properties we need to be
able to express Process Fairness. We can do so by: (1) slightly
modifying the main state costructor:

op {_,_} : Soup Memory -> MachineState .

to record the last process that modified the state. This can be
achieved with the state constructor:

op {_,_,_} : Soup Memory Pid -> MachineState .

and (2) slightly modify the rewrite rules of PARALLEL so that they
record the pid of the last executing process.

The only changes needed in the specification of PARALLEL in
Lecture 20 are the slight modifications (1) and (2) explained
above. Here is the modified specification of PARALLEL:
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PARALLEL Revisited (II)

mod PARALLEL is

inc SEQUENTIAL .

inc TESTS .

sorts Pid Process Soup MachineState .

subsort Process < Soup .

subsort Int < Pid .

op [_,_] : Pid Program -> Process .

op empty : -> Soup .

op _|_ : Soup Soup -> Soup [prec 61 assoc comm id: empty] .

op {_,_,_} : Soup Memory Pid -> MachineState .

vars P R : Program . var S : Soup . var U : UserStatement .

var L : LoopingUserStatement . vars I J : Pid . var M : Memory .

var Q : Qid . vars N X : Int . var T : Test . var E : Expression .
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PARALLEL Revisited (III)

rl {[I, U ; R] | S, M, J} => {[I, R] | S, M, I} .

rl {[I, L ; R] | S, M, J} => {[I, L ; R] | S, M, I} .

rl {[I, (Q := E) ; R] | S, [Q, X] M, J} =>

{[I, R] | S, [Q,eval(E,[Q, X] M)] M, I} .

crl {[I, (Q := E) ; R] | S, M, J} =>

{[I, R] | S, [Q,eval(E,M)] M, I} if Q in M =/= true .

rl {[I, if T then P fi ; R] | S, M, J} =>

{[I, if eval(T, M) then P else skip fi ; R] | S, M, I} .

rl {[I, while T do P od ; R] | S, M, J} =>

{[I, if eval(T, M) then (P ; while T do P od) else skip fi ; R]

| S, M, I} .

rl {[I, repeat P forever ; R] | S, M, J} =>

{[I, P ; repeat P forever ; R] | S, M, I} .

endm
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Dekker’s Mutex Algorithm

Dekker’s algorithm is specified extending the modified PARALLEL:

mod DEKKER is inc PARALLEL . subsort Int < Pid .

op crit : -> UserStatement .

op rem : -> LoopingUserStatement .

ops p1 p2 : -> Program .

op initialMem : -> Memory .

op initial : -> MachineState .

eq p1 =

repeat

’c1 := 1 ;

while ’c2 = 1 do

if ’turn = 2 then

’c1 := 0 ;

while ’turn = 2 do skip od ;

’c1 := 1

fi

od ;

crit ;

’turn := 2 ;

’c1 := 0 ;

rem

forever .
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Program Verification: Lecture 24

Dekker’s Mutex Algorithm (II)

eq p2 =

repeat

’c2 := 1 ;

while ’c1 = 1 do

if ’turn = 1 then

’c2 := 0 ;

while ’turn = 1 do skip od ;

’c2 := 1

fi

od ;

crit ;

’turn := 1 ;

’c2 := 0 ;

rem

forever .

eq initialMem = [’c1, 0] [’c2, 0] [’turn, 1] .

eq initial = { [1, p1] | [2, p2], initialMem, 0 } .

endm
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Dekker’s Mutex Algorithm (II)

eq p2 =
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while ’turn = 1 do skip od ;

’c2 := 1

fi

od ;

crit ;

’turn := 1 ;
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rem

forever .
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Program Verification: Lecture 24

LTL Model Checking of Dekker’s Algorithm

We need to define an enabled predicate and three predicates
parameterized by the process id: in-crit and in-rem, when the
process is resp. in its critical section, resp. in its remaining code
fragment, and exec, when the process has just executed.

mod DEKKER-PREDS is inc DEKKER . inc SATISFACTION .

inc LTL-SIMPLIFIER .

subsort MachineState < State .

vars P R : Program . var S : Soup . var U : UserStatement .

var L : LoopingUserStatement . vars I J : Pid . var M : Memory .

var Q : Qid . vars N X : Int . var T : Test . var E : Expression .

op enabled : -> Prop .

eq {[I, U ; R] | S, M, J} |= enabled = true .

eq {[I, L ; R] | S, M, J} |= enabled = true .

eq {[I, (Q := E) ; R] | S, [Q, X] M, J} |= enabled = true .

eq {[I, (Q := E) ; R] | S, M, J} |= enabled = true .

eq {[I, if T then P fi ; R] | S, M, J} |= enabled = true .

eq {[I, while T do P od ; R] | S, M, J} |= enabled = true .

eq {[I, repeat P forever ; R] | S, M, J} |= enabled = true .
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Program Verification: Lecture 24

LTL Model Checking of Dekker’s Algorithm (II)

ops in-crit in-rem exec : Pid -> Prop .

eq {[I, crit ; R] | S, M, J} |= in-crit(I) = true .

eq {[I, rem ; R] | S, M, J} |= in-rem(I) = true .

eq {S, M, J} |= exec(J) = true .

endm

mod DEKKER-CHECK is inc DEKKER-PREDS . inc MODEL-CHECKER .

inc LTL-SIMPLIFIER .

endm

We can now verify mutual exclusion and deadlock freedom:

red modelCheck(initial,[]~ (in-crit(1) /\ in-crit(2))) .

result Bool: true

red modelCheck(initial,[] enabled) .

result Bool: true
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Program Verification: Lecture 24

LTL Model Checking of Dekker’s Algorithm (III)

The strong fairness property that executing infinitely often implies
entering one’s critical section infinitely often does fail:

red modelCheck(initial,[]<> exec(1) -> []<> in-crit(1)) .

result ModelCheckResult:

counterexample({{[1,repeat ’c1 := 1 ; while ’c2 = 1 do if ’turn = 2 then ...

If p1 and p2 both get to execute infinitely often, the property that
if p1 is infinitely often out of its rem section it enters its critical
section infinitely often does hold. And the same holds for p2.

red modelCheck(initial,[]<> exec(1) /\ []<> exec(2)

-> []<> ~ in-rem(1) -> []<> in-crit(1)) .

result Bool: true

red modelCheck(initial,[]<> exec(2) /\ []<> exec(1)

-> []<> ~ in-rem(2) -> []<> in-crit(2)) .

result Bool: true

19/20



Program Verification: Lecture 24

LTL Model Checking of Dekker’s Algorithm (III)

The strong fairness property that executing infinitely often implies
entering one’s critical section infinitely often does fail:

red modelCheck(initial,[]<> exec(1) -> []<> in-crit(1)) .

result ModelCheckResult:

counterexample({{[1,repeat ’c1 := 1 ; while ’c2 = 1 do if ’turn = 2 then ...

If p1 and p2 both get to execute infinitely often, the property that
if p1 is infinitely often out of its rem section it enters its critical
section infinitely often does hold. And the same holds for p2.

red modelCheck(initial,[]<> exec(1) /\ []<> exec(2)

-> []<> ~ in-rem(1) -> []<> in-crit(1)) .

result Bool: true

red modelCheck(initial,[]<> exec(2) /\ []<> exec(1)

-> []<> ~ in-rem(2) -> []<> in-crit(2)) .

result Bool: true

19/20



Program Verification: Lecture 24

LTL Model Checking of Dekker’s Algorithm (III)

The strong fairness property that executing infinitely often implies
entering one’s critical section infinitely often does fail:

red modelCheck(initial,[]<> exec(1) -> []<> in-crit(1)) .

result ModelCheckResult:

counterexample({{[1,repeat ’c1 := 1 ; while ’c2 = 1 do if ’turn = 2 then ...

If p1 and p2 both get to execute infinitely often, the property that
if p1 is infinitely often out of its rem section it enters its critical
section infinitely often does hold. And the same holds for p2.

red modelCheck(initial,[]<> exec(1) /\ []<> exec(2)

-> []<> ~ in-rem(1) -> []<> in-crit(1)) .

result Bool: true

red modelCheck(initial,[]<> exec(2) /\ []<> exec(1)

-> []<> ~ in-rem(2) -> []<> in-crit(2)) .

result Bool: true

19/20



Program Verification: Lecture 24

LTL Model Checking of Dekker’s Algorithm (III)

The strong fairness property that executing infinitely often implies
entering one’s critical section infinitely often does fail:

red modelCheck(initial,[]<> exec(1) -> []<> in-crit(1)) .

result ModelCheckResult:

counterexample({{[1,repeat ’c1 := 1 ; while ’c2 = 1 do if ’turn = 2 then ...

If p1 and p2 both get to execute infinitely often, the property that
if p1 is infinitely often out of its rem section it enters its critical
section infinitely often does hold. And the same holds for p2.

red modelCheck(initial,[]<> exec(1) /\ []<> exec(2)

-> []<> ~ in-rem(1) -> []<> in-crit(1)) .

result Bool: true

red modelCheck(initial,[]<> exec(2) /\ []<> exec(1)

-> []<> ~ in-rem(2) -> []<> in-crit(2)) .

result Bool: true

19/20



Program Verification: Lecture 24

LTL Model Checking of Dekker’s Algorithm (IV)

The PARALLEL example has illustrated two main points:

1 LTL Properties of concurrent imperative programs can be
model checked directly from the rewriting logic semantics of
the language (no language-specific tool is needed).

2 The PARALLEL example illustrates the usefulness of the
Object/Process/Thread Fairness mode.

For PARALLEL we only needed to record in the machine state the
pid of the process that had last executed. But in other
Object/Process/Thread Fairness mode examples we often need
to record more information. For example, information of the form
l(o), recording that rule l was the last rule executed and that it
was applied to object/process/thread o.
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