
Appendix to Lecture 23: Automata and LTL Model Checking

J. Meseguer

LTL Satisfaction as Language Containment

Recall that, given a Kripke structure Q “ pQ,ÑQ,Aq on atomic propositions Π, and choosing
an initial state q P Q and an LTL formula φ P LTLpΠq, the satisfaction relation is defined by
the chain of equivalence:

Q, q |ùLTL φ ô @π P PathspQ‚qq π; preds |ùLTL φ ô @τ P TrpQ‚qq τ |ùLTL φ.

But we can view TrpQ‚qq as a language of infinite words on the alphabet PpΠq. Specifically,
an infinite word on an alphabet Λ is just a function τ P rN Ñ Λs, where we suggestively
denote rNÑ Λs as Λω (ω denotes the set of natural numbers viewed as an “ordinal set” with
its ă order), to emphasize that this is the language of infinite words on alphabet Λ, just
as Λ˚ is the language of finite words on Λ. Therefore, we have the language containment:
TrpQ‚qq Ď PpΠqω.

Now observe that the relation τ |ùLTL φ between an infinite word τ P PpΠqω and an LTL
formula φ P LTLpΠq is defined independently of any Kripke structure, since the inductive
semantic definition of τ |ùLTL φ is given in terms of the syntactic structure of φ and can be
expressed in terms of traces, regardless of where such traces come from. Therefore, an LTL
formula φ P LTLpΠq also defines a language of infinite words, namely, the set of all traces τ
that satisfy φ. Call this language Lpφq the language of φ, i.e., Lpφq “ tτ P PpΠqω | τ |ùLTL φu.
Using this notation, we can express the satisfaction relation A, a |ùLTL φ in an even simpler,
language-theoretic way by the equivalence:

Q, q |ùLTL φ ô TrpQ‚qq Ď Lpφq.

The intuitive meaning is that, semantically, the property φ specifies a set of allowable traces,
so Q starting at q satisfies property φ iff all traces of Q‚ from q are among those allowed by φ.

Büchi Automata and Decidability of ω-Regular Languages

Recall that regular languages are languages recognized by finite automata; and that Boolean
operations on such languages, such as union, intersection and complement, as well as properties
such as language containment or language emptiness, can be effectively computed, resp. decided,
by means of automata. Thanks to the work of the Swiss mathematician Richard Büchi, finite
automata on an input alphabet Λ can also recognize ω-regular languages as subsets of the set
Λω of infinite words on Λ. The definition of a finite automaton1 B on an input alphabet Λ
remains the same: we specify its input alphabet Λ, finite set B of states, initial state init P B,

1See Def. 5 in §7.2 of STACS, where Λ is denoted L and is called the labeled set. But here we need two
more pieces of information: In STACS, B is a triple B “ pB,Λ,ÑBq, with B a finite set; but here B is a 5-tuple
B “ pB, init ,Λ,ÑB, F q, with init P B the initial state, and F Ď B the set of accepting states.

1

Λ-labeled transition relation ÑB, and subset F Ď B of final/accepting states. The only thing
that changes is the notion of acceptance. A finite word w P Λ˚ is accepted by an automaton
B iff the input word w can reach a state in the set F of accepting states of B. Instead,
B will accept an infinite word τ P Λω (with τp0q “ init) describing an infinite computation
of B iff some state in F is visited infinitely often by τ , i.e., iff F X inf Bpτq ­“ H, where
inf Bpτq “def tb P B | |tn P N | τpnq “ bu| “ ωu. Given any set A, the notation |A| “ ω just
abbreviates the fact that there is a bijective function f : AÑ N. That is, inf Bpτq is the set of
states of B that are visited infinitely often by the infinite input word τ . Although automata
remain the same, when this new interpretation of input acceptance is given to them, they are
called Büchi automata, in honor of Richard Büchi.

For our current purposes we just need to use two facts about Büchi automata and ω-
regular languages: (1) (Language Intersection) If two ω-regular languages, L1 and L2 on Λ
are respectively recognized by Büchi automata B1 and B2, then their intersection L1 X L2 is
also an ω-regular language recognized by a Büchi automaton B1 bB2 called the synchronous
product of B1 and B2 (see §9.2 of [1] for a detailed construction of B1 bB2). (2) (Language
Emptiness) Given a Büchi automaton B, there is an algorithm to effectively decide whether
the language LpBq recognized by B is empty or not. Specifically, the procedure deciding the
ω-regular language emptiness problem answers “empty” when LpBq is empty, but in case LpBq
is non-empty, it effectively computes2 a witness τ P LpBq proving its non-emptiness.

Model Checking LTL Properties with Büchi Automata

We now have almost all the ingredients needed to obtain a model checking decision procedure
for deciding the LTL satisfaction problemQ, q |ù φ in case the set ReachQpqq of states reachable
from q is finite, except for two remaining technical details.

First, we need to associate to pQ‚, qq a Büchi automaton BpQ‚, qq such that LpBpQ‚, qqq “
TrpQ‚qq. This is easy: we can build BpQ‚, qq with input alphabet PpΠq so that it exactly
mimics the behavior of Q‚ from the initial state q as follows: (1) its set of states and its set
of accepting states are both tιu ZReachQpqq, (2) its initial state is the new added state ι, and
(3) its labeled transition relation is the union:

tι
predspqq
Ñ qu Y tq1

predspq2q
Ñ q2 | q1, q2 P ReachQpqq ^ q1 ÑQ‚ q2u.

The equality LpBpQ‚, qqq “ TrpQ‚qq follows trivially from this construction, since there is
a one-to-one correspondence between the infinite executions of Q‚ from q and the infinite
computations of BpQ‚, qq having the exact same traces by construction.

Second, we need to observe the fact that the language Lpφq is ω-regular. This is because
Lpφq is the language recognized by a Büchi automaton Bφ that can be effectively constructed
from the LTL formula φ. Since the details of the construction φ ÞÑ Bφ are somewhat involved,
I refer to Section 9.4 of [1] (or, alternatively, to Section 6.8 of [4]), where this construction is
described in full detail.

We are now ready to prove the main theorem of this Appendix:

2The reader might wonder how τ , being an infinite object, can be effectively specified. The reason is that the
set B of states is finite. Therefore, τ , viewed as an infinite path on a finite graph, will necessarily have cycles,
allowing a finite cycle description of τ .

2

Theorem (Decidability of LTL Model Checking). When the set of states ReachQpqq reachable
from state q is finite, the LTL satisfaction problem Q, q |ùLTL φ is decidable. Furthermore,
when Q, q ­|ùLTL φ, the decision procedure returns a (finite representation of) a trace τ P
TrpQ‚qq such that τ ­|ùLTL φ.

Proof: Since we have the equivalence Q, q |ùLTL φ ô TrpQ‚qq Ď Lpφq, we just need to
have a decision procedure for effectively checking the set containment TrpQ‚qq Ď Lpφq. But
this is equivalent to checking the emptiness problem TrpQ‚qq X Lpφqc “ H, where Lpφqc de-
notes the complement of Lpφq in PpΠqω. But by the semantic definition τ |ùLTL ␣φ ôdef

τ ­|ùLTL φ, we have the language identity Lpφqc “ Lp␣φq. So we just need a decision pro-
cedure for the emptiness problem TrpQ‚qq X Lp␣φq “ H. But this is just the emptiness
problem LpBpQ‚, aqqXLpB␣φq “ H; that is, the Büchi automata language emptiness problem
LpBpQ‚, qqbB␣φq “ H, which is decidable and returns a “witness trace” τ P TrpQ‚qq proving
that τ ­|ùLTL φ in such a language intersection if the intersection is non-empty, as desired. l

Further Reading

The already cited Chapter 9 of [1] contains a detailed description of all the concepts presented
here. In particular, Section 9.5 describes an on the fly LTL model checking algorithm to
efficiently decide the emptiness problem LpBpQ‚, qq b B␣φq “ H using double depth first
search. This is the explicit-state model checking algorithm used by both the Spin model checker
[3] and the Maude LTL model checker [2]. Another useful reference for the automata-theoretic
approach to model checking is provided by Chapters 5 and 6 of [4].

References

[1] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 2001.

[2] S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL model checker. Electron.
Notes Theor. Comput. Sci., 71:162–187, 2002.

[3] G. Holzmann. The Spin Model Checker - Primer and Reference Manual. Addison-Wesley,
2003.

[4] D. A. Peled. Software Reliability Methods. Texts in Computer Science. Springer, 2001.

3

