
Program Verification: Lecture 21

José Meseguer

Computer Science Department
University of Illinois at Urbana-Champaign

1

Symbolic Verification of Infinite-State Systems

Recall from Lecture 19 that we are interested in verifying Modal
Logic properties of the forms:

CR, I |=S4 2B or CR, I |=S4 3B

from initial states I, for B a Boolean combination of state
predicates. Assume I,B are disjunctions of constrained patterns.

Explicit-state model checking only works for I a singleton set
having a finite set of reachable states. We would like to verify
infinite-state systems from infinite sets I of initial states. To do
this we need symbolic methods allowing us to perform transitions
with symbolic states that provide a finite description of infinite sets
of states. This is what symbolic evaluation by narrowing can do.

2

Symbolic Evaluation

Consider the equations [1] n+ 0 = n, [2] n+ s(m) = s(n+m)

defining natural number addition.

Q1: Can we evaluate x+ y?

A1: No, since x+ y is not an instance of either n+ 0 or n+ s(m).

Q2: Can we symbolically evaluate x+ y?

A2: We could, if we could find most general instances of x+ y that
can be evaluated in the standard sense.

3

Symbolic Evaluation = Narrowing

Q3: How do we find those most general instances of x+ y?

A3: By unifying x+ y with the lefthand sides n+ 0 and n+ s(m)

equations [1], [2]. This gives unifiers θ1 = {n 7→ x, y 7→ 0}, which
evaluates to y with rule [1], and θ2 = {n 7→ x, y 7→ s(y′),m 7→ y′},
which evaluates to s(x+ y′) with rule [2].

This method is called narrowing. It generalizes rewriting, where
l → r rewrites t if there is a position p and a substitution θ such
that t|p = lθ, and then t → t[rθ]p, by replacing the matching
condition t|p = lθ by a unification condition θ ∈ Unif (t|p = l).
Then we get a symbolic evaluation step, called narrowing, and
denoted:

t
θ
; t[r]pθ

In our example we get x+ y
θ1
; x and x+ y

θ2
; s(x+ y′).

4

More on Narrowing

As, for rewriting, given a set R of rewrite rules, we have the

reflexive-transitive closure t
θ

;∗
R v, where for 0 steps we get θ = id

and v = t, and for n+ 1 steps we get a sequence:

t
θ1
;R t1 . . . tn

θn+1
;R tn+1

with v = tn+1 and θ the composed substitution θ = θ1 . . . θn+1. To
avoid variable capture, we always assume that rules in R are
variable renamed, so that they do not share any variables with any
of the terms ti; and that for each unifier θi, 1 ≤ i ≤ n+ 1, the
variables in rng(θi) = {y ∈ X | ∃x ∈ dom(θi) s.t. y ∈ vars(θi(x)},
are fresh (i.e., never used before).

Symbolic computations in such sequences t
θ

;∗
R v from a common t

are the paths in the so-called narrowing tree of t (see figures below).

5

6

7

The Lifting Lemma

Symbolic computation by narrowing covers all rewriting
computations as instances as shown below (proof in Appendix 1):

Theorem (Lifting Lemma). Let (Σ, R) be a term rewriting
system, t ∈ TΣ(X), and θ an R-irreducible substitution (i.e., if
x ∈ dom(θ), then θ(x) cannot be rewritten with R). Then, for each
rewrite step tθ →R u there is a narrowing step t

α
;R v and an

R-irreducible substitution δ such that vδ = u.

Note that, since each narrowing step in the Lifting Lemma
preserves the invariant that the substitution θ for t, resp. γ for v, is
R-irreducible, this lemma extends in a straightforward manner to
narrowing sequences t

θ1
;R t1 . . . tn

θn+1
;R tn+1, which do indeed cover

all R-rewriting computations tθ →∗
R w as instances.

8

Narrowing Modulo B

The same way that rewriting with R extends to rewriting modulo
axioms B, narrowing extends in a completely smilar way. Here is
the precise definition (including the case B = ∅ as a special case):

Given a rewrite theory (Σ, B,R), and a term t ∈ TΣ(X), an
R-narrowing step modulo B, denoted t

θ
;R,B v holds iff there

exists a non-variable position p in t, a rule l → r in R, and a
B-unifier θ ∈ Unif B(t|p = l) such that v = t[r]pθ.

In particular, the Lifting Lemma extends in a natural way to
narrowing steps and narrowing sequences modulo B, so that all
R/B-rewriting computations tθ →∗

R/B w are covered as instances.
A small technicality is that we should narrow t not just with R, but
with all its B-extensions, which for R/B-rewriting is done
automatically by Maude (see §4.8 in “All About Maude”).

9

Topmost Rewrite Theories

Call a rewrite theory R = (Σ, E ∪B,R) topmost if it has a sort
State, which is the top sort of one of its connected components,
such that: (i) no Σ-term f(u1, . . . , un) can have a proper subterm
of sort State; and (ii) for all rules l → r in R, l (and therefore r)
has sort State. As we shall see shortly, topmost rewrite theories are
very useful for narrowing-based symbolic model checking.

Many rewrite theories can be easily transformed into semantically
equivalent topmost ones. For example, if R specifies a concurrent
object system, we can just add a new sort State and a constructor
{_} : Configuration → State and convert, for example, a rule
credit(O,M) 〈O : Accnt|bal : N〉 → 〈O : Accnt|bal : N +M〉 into
the semantically equivalent rule:
{credit(O,M) 〈O : Accnt|bal : N〉 C} → 〈O : Accnt|bal : N+M〉 C},
with C of sort Configuration.

10

Symbolic Model Checking of Topmost Rewrite Theories

Given a topmost rewrite theory R = (Σ, B,R), where the number
of reachable states from a given initial state may be infinite,
narrowing with R modulo axioms B supports the following
symbolic verification of modal logic properties result:

Theorem (Symbolic Verification of 3 Properties). For
R = (Σ, B,R) topmost, Σ with nonempty sorts, and u1 ∨ . . . ∨ un

and v1 ∨ . . . ∨ vm constructor pattern disjunctions,

CR, (u1 ∨ . . . ∨ un) |=S4 3(v1 ∨ . . . ∨ vm)

iff there exist i, j, 1 ≤ i ≤ n, 1 ≤ j ≤ m and an R,B-narrowing

sequence ui

θ

;∗
R,B w such that there is a B-unifier

γ ∈ Unif B(vj = w).

Ex.21.1. Prove this theorem using the Lifting Lemma modulo B.

11

Symbolic Verification of Invariants by Narrowing

The above theorem allows us to symbolically verify invariants:

Corollary (Symbolic Invariant Verification). For R = (Σ, B,R)

topmost, and u1 ∨ . . . ∨ un and v1 ∨ . . . ∨ vm pattern disjunctions,

CR, (u1 ∨ . . . ∨ un) |=S4 2¬(v1 ∨ . . . ∨ vm)

iff CR, (u1 ∨ . . . ∨ un) 6|=S4 3(v1 ∨ . . . ∨ vm), i.e., iff do not exist i, j,

1 ≤ i ≤ n, 1 ≤ j ≤ m, and an R,B-narrowing sequence ui

θ

;∗
R,B w

such that there is a B-unifier γ ∈ Unif B(vj = w).

This means that breadth-first search with the narrowing relation
;R/B gives us a semi-decision procedure for verifying invariant
failure from a symbolic initial state u1 ∨ . . . ∨ un by searching for a
symbolic counterexample, provided R = (Σ, B,R) is topmost.

12

Symbolic Verification of Invariants by Narrowing (II)

Just as for the search command, the narrowing search may not
terminate. However, Maude supports a {fold} vu-narrow
narrowing search command that tries to fold the infinite narrowing
search tree into a hopefully finite narrowing search graph, by not
exploring tree nodes that are substitution instances modulo B of
previously explored nodes. In practice this makes the search finite,
allowing full verification of the invariant, in significant examples.

Let us see an example. Consider the following Maude specification
of Lamport’s bakery protocol:

13

Lamport’s Bakery Protocol

mod BAKERY is
sorts Nat LNat Nat? State WProcs Procs .
subsorts Nat LNat < Nat? . subsort WProcs < Procs .
op 0 : -> Nat .
op s : Nat -> Nat .
op [_] : Nat -> LNat . *** number-locking operator
op < wait,_> : Nat -> WProcs .
op < crit,_> : Nat -> Procs .
op mt : -> WProcs . *** empty multiset
op __ : Procs Procs -> Procs [assoc comm id: mt] . *** union
op __ : WProcs WProcs -> WProcs [assoc comm id: mt] . *** union
op _|_|_ : Nat Nat? Procs -> State .
vars n m i j k : Nat . var x? : Nat? . var PS : Procs . var WPS : WProcs .

rl [new]: m | n | PS => s(m) | n | < wait,m > PS [narrowing] .
rl [enter]: m | n | < wait,n > PS => m | [n] | < crit,n > PS [narrowing] .
rl [leave]: m | [n] | < crit,n > PS => m | s(n) | PS [narrowing] .

endm

14

The states of BAKERY have the form “m | x? | PS” with m the
ticket-dispensing counter, x? the (possibly locked) counter to
access the critical section, and PS a multiset of processes either
waiting or in the critical section. BAKERY is infinite-state: [new]
creates new processes, and the counters can grow unboundedly.
When a waiting process enters the critical section with [enter],
the second counter n is locked as [n]; and it is unlocked and
incremented when it leaves it with [leave]. The key invariant is
mutual exclusion. Note that the term “i | x? | < crit, j > <
crit, k > PS” describes all states in the complement of the
invariant of mutual exclusion states.

15

Without the fold option, narrowing search does not terminate, but
with the following command we can verify that BAKERY satisfies
mutual exclusion, not just for the initial state “0 | 0 | mt”, but
for the much more general infinite set of initial states with waiting
processes only “m | n | WPS”.

Maude> {fold} vu-narrow {filter,delay}
m | n | WPS =>* i | x? | < crit, j > < crit, k > PS .

No solution.
rewrites: 4 in 1ms cpu (1ms real) (2677 rewrites/second)

We can visualize the dramatic state space reduction from an
infinite tree of symbolic states to a finite graph with only four
states in the figure below.

16

A somewhat counterintuitive lesson that we can learn from this
example and the very general initial state m | n | WPS is that for
symbolic model checking the more general the initial state, the
better. The reason is that, if we start with a quite specific initial
state, the subsequent symbolic states will be even more specific.
This is what the word “narrowing” means. But such quite specific
states will often lack the capacity to generalize other symbolic
states by folding.

17

In particular, if we had started with a ground state like 0 | 0 |
mt, since for ground terms narrowing coincides with rewriting, we
would in fact be performing Maude’s standard search command,
and would have lost all chances of obtaining a finite graph by
folding.

The general fact is: If for all rules (l → r) ∈ R vars(l) ⊇ vars(r),
then for each u, v ∈ TΣ,

u ;∗
R/B v ⇔ u →∗

R/B v

That is, under the assumption vars(l) ⊇ vars(r), for ground terms
symbolic narrowing search coincides with rewriting search. This is
another way to see that narrowing generalizes standard rewriting to
symbolic rewriting.

18

Backwards Narrowing-Based Symbolic Model Checking

Given a topmost rewrite theory R = (Σ, B,R), define its inverse
theory R−1 as the theory R−1 = (Σ, B,R−1), where
R−1 =def {r → l | (l → r) ∈ R}.

As shown in Appendix 2, as an immediate consequence of the
Symbolic Verification of 3 Properties Theorem we have::

Corollary (Backwards Symbolic Verification of 3 properties). For
R = (Σ, B,R) topmost, and u1 ∨ . . . ∨ un and v1 ∨ . . . ∨ vm

constructor pattern disjunctions,

CR, (u1 ∨ . . . ∨ un) |=S4 3(v1 ∨ . . . ∨ vm)

iff
CR−1 , (v1 ∨ . . . ∨ vm) |=S4 3(u1 ∨ . . . ∨ un)

19

Symbolic Verification of Deadlock Freedom

Although under additional assumptions (for example, that
R = (Σ, B, E⃗) is the rewrite theory of an admissible functional
module, illustrated by the Natural addition example in pgs. 3–6) it
is possible to model check failure of deadlock freedom by narrowing
search, in general this is a non-trivial matter. That is why Maude
does not support a narrowing search command with the ~>! option.

However, several symbolic methods (including narrowing-based
ones) can be used to establish that either:

1. a topmost rewrite theory R is deadlock free, or

2. the set of states R-reachable from some symbolic initial state
u1 ∨ . . . ∨ un is deadlock free.

Two such methods are presented in Appendix 3.

20

