
Appendix 3 to Lecture 21:

Two Symbolic Methods to prove Deadlock Freedom

J. Meseguer

Call an admissible rewrite theory R “ pΣ, E Y B,Rq with constructor signature Ω never
terminating iff it has no deadlocks, i.e., iff for each t P TΩ in E⃗, B-canonical form there always
exists a t1 P TΣ such that t ÑR{B t1. This notion suggests two methods to symbolically
prove that a topmost rewrite theory of the form R “ pΣ, B,Rq satisfies the deadlock freedom
invariant from a symbolic initial state u1 _ . . . _ un:

Method 1: Check the Never Terminating Property Automatically

Obviously, if R “ pΣ, B,Rq is never terminating, it will automatically satisfy the deadlock
freedom invariant from any symbolic initial state u1 _ . . . _ un. If the rules pl Ñ rq P R are
all left-linear, i.e., each variable x in l appears at a single position p in l, checking whether R
is never terminating becomes decidable, since it reduces to checking that if R “ tli Ñ ri | 1 ď

i ď ku, then the set tli | 1 ď i ď ku is a generator set for the topmost sort State of R. But
this, as explained in pg. 18 of Lecture 15, can be automatically decided by the SCC tool by
checking the sufficient completeness of the Maude functional module defining the sort predicate
State : State Ñ Bool associated to supposed generator set tli | 1 ď i ď ku.

Since R satisfying the deadlock free invariant from a symbolic initial state u1 _ . . . _ un
is a weaker property than R being never terminating (since the invariant only involves states
reachable from u1 _ . . . _ un), the above automatic SCC check may fail (so that R fails to
be never terminating), whereas the deadlock free invariant may still hold for some symbolic
initial state u1 _ . . . _ un. What can we do in this case? Several things. But, first of all, note
that if the SCC test fails, then the SCC tool will give us a ground term counterexample of
the form: Statepwq, which exactly means that u is a concrete deadlock state. This opens up a
second possibility for trying to automatically check that the deadlock freedom invariant fails
for the symbolic initial state u1 _ . . ._ un as follows. Assuming that R satisfies the additional
property that @pl Ñ rq P R, varsplq “ varsprq, its inverse theory R´1 (see Appendix 2 to
Lecture 21) is excutable by rewriting, we will have proved that the deadlock freedom invariant
fails from u1 _ . . . _ un if the Maude search commands:

search r1s w ñ˚ u1

1 ď i ď n in the system module mod R´1 endm finds a solution for this search query.1 But
such a search command may not find a solution, even when R fails to be deadlock-free from
, since although w is a deadlock state, it may not be reachable from any of the ground states
specified by u1 _ . . . _ un. Therefore, either failure to find a solution to the query in finite

1More generally, we could repeatedly add equations Statepwiq “ true to the SCC check to get a sequence of
ground deadlock states w “ w0, w1, . . . , wn . . . and perform such checks on them, or even use a generalization
algorithm modulo B [2, 1] to learn pattern terms and check that they represent deadlock states.

1

time, or infinite looping searching for such a solution do not allow us to settle whether R is
actually deadlock-free from u1 _ . . . _ un or not: other methods are needed.

Method 2: Check the Deadlock Freedom Invariant by Narrowing Search
Assuming that the lefthand sides of rules in the topmost rewrite theory R “ pΣ, B,Rq are

left-linear, and that all constructor symbols in such lefthand sides belong to a subsignature
Σ0 Ď Σ of absolutely free constructors, i.e., constructors that do not obey any axioms in B, if
we fail to prove R never terminating by the sufficient completeness check described above, we
still have another alternative, namely, to specify the complement of the set of ground instances
of the set of Σ0-constructor patterns tli | 1 ď i ď ku by another set of Σ0-constructor patterns,
say tvj | 1 ď j ď nu. Then, R will be deadlock free from a symbolic initial state u1 _ . . . _ um
iff none of the above patterns vj can be reached from some ul, 1 ď l ď m, by narrowing search
using the fvu-narrow command. The terms tvj | 1 ď j ď nu can be chosen in two ways:

1. Automatically, by using the order-sorted pattern complement algoritm defined in [3].

2. By hand (which allows linear patterns that are free modulo B), by actually guessing
such patterns and then checking two properties automatically:

(a) Generation: that the set tli | 1 ď i ď ku Y tvj | 1 ď j ď nu is a generator set of
sort State by the method already described above.

(b) Disjointness: that for all i, j, 1 ď i ď k and 1 ď j ď n, the equalities li “ vj have
no B-unifiers.

References

[1] M. Alpuente, D. Ballis, A. Cuenca-Ortega, S. Escobar, and J. Meseguer. Acuos2: A
high-performance system for modular ACU generalization with subtyping and inheritance.
In Proc. Logics in Artificial Intelligence, JELIA 2019, volume 11468 of Lecture Notes in
Computer Science, pages 171–181. Springer, 2019.

[2] M. Alpuente, S. Escobar, J. Espert, and J. Meseguer. A modular order-sorted equational
generalization algorithm. Inf. Comput., 235:98–136, 2014.

[3] J. Meseguer and S. Skeirik. Equational formulas and pattern operations in initial order-
sorted algebras. Formal Asp. Comput., 29(3):423–452, 2017.

2

