Appendix 2 to Lecture 21: Backwards Symbolic Reachability Analysis

J. Meseguer

Given a topmost rewrite theory $\mathcal{R} = (\Sigma, B, R)$, define its *inverse* theory \mathcal{R}^{-1} as the theory $\mathcal{R}^{-1} = (\Sigma, B, R^{-1})$, where $R^{-1} = _{def} \{r \to l \mid (l \to r) \in R\}$. Then, by the very definition of the rewriting relation $\to_{R/B}$ we have for any Σ -terms t, t' the equivalence:

$$t \rightarrow_{R/B} t' \Leftrightarrow t' \rightarrow_{R^{-1}/B} t.$$

That is, like with driving a car, the transitions of \mathcal{R}^{-1} are just those of \mathcal{R} in reverse. This has, as an immediate consequence of the Symbolic Verification of \Diamond Properties Theorem in pg. 11 of Lecture 21, the following useful corollary:

Corollary (Backwards Symbolic Verification of \Diamond properties). For $\mathcal{R} = (\Sigma, B, R)$ topmost, and $u_1 \vee \ldots \vee u_n$ and $v_1 \vee \ldots \vee v_m$ constructor pattern disjunctions,

$$\mathbb{C}_{\mathcal{R}}, (u_1 \vee \ldots \vee u_n) \models_{S4} \Diamond (v_1 \vee \ldots \vee v_m)$$

iff

$$\mathbb{C}_{\mathcal{R}^{-1}}, (v_1 \vee \ldots \vee v_m) \models_{S4} \Diamond (u_1 \vee \ldots \vee u_n)$$

iff there exist $i, j, 1 \le i \le n, 1 \le j \le m$ and an R, B-narrowing sequence $v_j \rightsquigarrow_{R^{-1}, B}^{\theta} w$ such that there is a B-unifier $\gamma \in Unif_B(u_i = w)$.

The symbolic search method based on performing narrowing search backwards from the target term v_j to the term u_i symbolically describing a (typically infinite) set of concrete initial states by performing narrowing with \mathcal{R}^{-1} is called *backwards symbolic reachability analysis*, and, as the above corollary shows, is completely equivalent to its forwards version.

The advantage of having both the forwards and the backwards narrowing options available to prove \lozenge properties $\mathbb{C}_{\mathcal{R}}$, $(u_1 \vee \ldots \vee u_n) \models_{S4} \lozenge (v_1 \vee \ldots \vee v_m)$ resides in the fact that, in some cases, the symbolic search may be much easier backwards than forwards. For example, our initial state may be a single ground term, for which we know a priori (see the remark in Lecture 21, pg. 18) that the narrowing relation $\leadsto_{R,B}^*$ becomes the rewrite relation $\to_{R/B}$, making truly symbolic search impossible, whereas this problem may completely evaporate by performing backwards narrowing search from the v_i to the u_i with \mathcal{R}^{-1} .

Note, finally, that, even assuming that \mathcal{R} is, as usual, executable by rewriting, that is, that for each $(l \to r) \in R$ we have $vars(r) \subseteq vars(l)$, \mathcal{R}^{-1} need not be executable by rewriting, since such a variable containment property will only hold in the opposite direction if vars(r) = vars(l). However, \mathcal{R}^{-1} is perfectly well executable by narrowing. This shows the greater generality of narrowing symbolic computation as compared to rewriting computation, as well as the considerably greater range of rewrite theories \mathcal{R} that can be symbolically executed

by narrowing, when compare to those executable by rewriting. Maude's fvu-narrow search command is fully general: it also applies to non-executable topmost rewrite theories \mathcal{R}^{-1} , thus supporting symbolic backwards narrowing search.