Program Verification: Lecture 2

José Meseguer

Computer Science Department
University of Illinois at Urbana-Champaign

Equational Theories

Theories in equational logic are called equational theories. In
Computer Science they are sometimes referred to as algebraic specifications.

An equational theory is a pair (Σ, E), where:

- Σ, called the signature, describes the syntax of the theory, that is, what types of data and what operation symbols (function symbols) are involved;
- E is a set of equations between expressions (called terms) in the syntax of Σ.

Unsorted, Many-Sorted, and Order-Sorted Signatures

Our syntax Σ can be more or less expressive, depending on how many types (called sorts) of data it allows, and what relationships between types it supports:

- unsorted (or single-sorted) signatures have only one sort, and operation symbols on it;
- many-sorted signatures allow different sorts, such as Integer, Bool, List, etc., and operation symbols relating these sorts;
- order-sorted signatures are many-sorted signatures that, in addition, allow inclusion relations between sorts, such as Natural < Integer < Rational.

Maude Functional Modules

Maude functional modules are equational theories (Σ, E), declared with syntax

$$
\operatorname{fmod}(\Sigma, E) \text { endfm }
$$

Such theories can be unsorted, many-sorted, or order-sorted, or even more general membership equational theories (see §4.1-4.2 of "All about Maude").

In what follows we will see examples of unsorted, many-sorted and order-sorted equational theories (Σ, E) expressed as Maude functional modules, and of how one can use such theories as functional programs by computing with the equations E.

Unsorted Functional Modules

```
*** prefix syntax
fmod NAT-PREFIX is
    sort Natural .
    op 0 : -> Natural [ctor] .
    op s : Natural -> Natural [ctor] .
    op + : Natural Natural -> Natural .
    vars N M : Natural .
    eq +(N,0) = N .
    eq +(N,s(M)) = s(+(N,M)).
endfm
Maude> red +(s(s(0)),s(s(0))) .
reduce in NAT-PREFIX : +(s(s(0)), s(s(0))) .
rewrites: 3 in -10ms cpu (Oms real) (~ rewrites/second)
result Natural: s(s(s(s(0))))
Maude>
```


Unsorted Functional Modules (II)

fmod NAT-MIXFIX is $\quad * * *$ mixfix syntax sort Natural .
op 0 : -> Natural [ctor] .
op s_ : Natural -> Natural [ctor] .
op _+_ : Natural Natural -> Natural .
op _*_ : Natural Natural -> Natural .
vars N M : Natural .
eq $\mathrm{N}+\mathrm{O}=\mathrm{N}$.
eq $N+s M=s(N+M)$.
eq $N * 0=0$.
eq $N * s M=N+(N * M)$.
endfm

Maude> red (s s 0) + (s s 0).
reduce in NAT-MIXFIX : s s $0+\mathrm{s}$ s 0 .
rewrites: 3 in Oms cpu (Oms real) (~ rewrites/second)
result Natural: s s s s 0
Maude>

Many-Sorted Functional Modules

```
fmod NAT-LIST is
    protecting NAT-MIXFIX .
    sort List .
    op nil : -> List [ctor] .
    op _·_ : Natural List -> List [ctor] .
    op length : List -> Natural .
    var N : Natural .
    var L : List .
    eq length(nil) = 0 .
    eq length(N . L) = s length(L) .
endfm
Maude> red length(0 . (s 0 . (s s 0 . (0 . nil)))) .
reduce in NAT-LIST : length(0 . s 0 . s s 0 . 0 . nil) .
rewrites: 5 in Oms cpu (Oms real) (~ rewrites/second)
result Natural: s s s s 0
Maude>
```


Many-Sorted Signatures

The full signature Σ of the NAT-LIST example, that imports NAT-MIXFIX, is then,

```
sorts Natural List .
op 0 : -> Natural .
op s_ : Natural -> Natural .
op _+_ : Natural Natural -> Natural .
op _*_ : Natural Natural -> Natural .
op nil : -> List .
op _._ : Natural List -> List .
op length : List -> Natural .
```


Many-Sorted Signatures as Labeled Multigraphs

A many-sorted signature is just a labeled multigraph, whose nodes are called sorts, whose labels are called function symbols, and whose labeled multiedges are called the typings of the function symbols.

Definition. A labeled multigraph, [also called a many-sorted signature] is a triple $\Sigma=(S, F, G)$, where S is its set of nodes [also called sorts], F is its set of labels [also called function symbols], and G is its labeled multigraph, [also called the typings], which is a set G of triples of the form:

$$
G \subseteq S^{*} \times F \times S
$$

where S^{*} denotes the set of strings on the alphabet S. A triple $\left(s_{1} \ldots s_{n}, f, s\right) \in G$ is displayed as $f: s_{1} \ldots s_{n} \rightarrow s$, or, [to emphasize f as the label of the multiedge] as $s_{1} \ldots s_{n} \xrightarrow{f} s$.

Many-Sorted Signatures as Labeled Multigraphs (II)

In the signature terminology, we call $f: s_{1} \ldots s_{n} \rightarrow s$ a typing of f with input sorts $s_{1} \ldots s_{n}$ and result sort s.

In a typing of the form $a: \epsilon \rightarrow s$, we call $a \in F$ a constant symbol of sort s.

For example, we view an operator declaration like:

```
op _._ : Natural List -> List .
```

as a labeled multiedge having two input nodes and one output node (see picture below).

A signature as a tabled multigraph

Of course, when all operations are unary, signatures are exactly
labeled graphs (see picture below)
sorts Natural Boolean.
op $s:$ Natural \rightarrow Natural.
op not : Boolean \rightarrow Boolean.
op old : Natural \rightarrow Boolean.
op even: Natural \rightarrow Boolean.

Unary many -sorted siquatures are laholed graply

The Need for Order-Sorted Signatures

Many-sorted signatures are still too restrictive. The problem is that some operations are partial, and there is no natural way of defining them in just a many-sorted framework.

Consider for example defining a function first that takes the first element of a list of natural numbers, or a predecessor function p that assigns to each natural number its predecessor. What can we do? If we define:

```
op first : List -> Natural .
op p_ : Natural -> Natural .
```

we have then the awkward problem of defining the values of first(nil) and of p 0 , which in fact are undefined.

The Need for Order-Sorted Signatures (II)

A much better solution is to recognize that these functions are partial with the typing just given, but become total on appropriate subsorts NeList < List of nonempty lists, and NzNatural < Natural of nonzero natural numbers. If we define:

```
op s_ : Natural -> NzNatural .
op _._ : Natural List -> NeList .
op first : NeList -> Natural .
op p_ : NzNatural -> Natural .
```

everything is fine. Subsorts also allow us to overload operator symbols. For example, Natural < Integer, and

```
op _+_ : Natural Natural -> Natural .
op _+_ : Integer Integer -> Integer .
```


Order-Sorted Functional Modules

```
fmod NATURAL is
    sorts Natural NzNatural .
    subsorts NzNatural < Natural .
    op 0 : -> Natural [ctor] .
    op s_ : Natural -> NzNatural [ctor] .
    op p_ : NzNatural -> Natural .
    op _+_ : Natural Natural -> Natural .
    op _+_ : NzNatural NzNatural -> NzNatural .
    vars N M : Natural .
    eq p s N = N .
    eq N + O = N .
    eq N + s M = s(N + M).
endfm
Maude> red p((s s 0) + (s s 0)) .
reduce in NATURAL : p (s s 0 + s s 0).
rewrites: 4 in Oms cpu (Oms real) (~ rewrites/second)
result NzNatural: s s s 0
```


Order-Sorted Functional Modules (II)

```
fmod NAT-LIST-II is
    protecting NATURAL .
    sorts NeList List .
    subsorts NeList < List .
    op nil : -> List [ctor] .
    op _._ : Natural List -> NeList [ctor] .
    op length : List -> Natural .
    op first : NeList -> Natural .
    op rest : NeList -> List .
    var N : Natural .
    var L : List .
    eq length(nil) = 0 .
    eq length(N . L) = s length(L) .
    eq first(N . L) = N .
    eq rest(N . L) = L .
endfm
```


Order-Sorted Signatures Mathematically

An order-sorted signature Σ is a triple $\Sigma=((S,<), F, G)$, where (S, F, G) is a many-sorted signature, and where $<$ is a partial order relation on the set S of sorts called subsort inclusion.

That is, $<$ is a binary relation on S that is:

- irreflexive: $\neg(x<x)$
- transitive: $x<y$ and $y<z$ imply $x<z$

Any such relation $<$ has an associated \leq relation that is reflexive, antisymmetric, and transitive. We will move back and forth between $<$ and \leq (see STACS 7.4).

Note: Unless specified otherwise, by a signature we will always mean an order-sorted signature.

Connected Components of the Poset of Sorts

Given a signature Σ, we can define an equivalence relation (see STACS 7.6$) \equiv \leq$ between sorts $s, s^{\prime} \in S$ as the smallest relation such that:

- if $s \leq s^{\prime}$ or $s^{\prime} \leq s$ then $s \equiv \leq s^{\prime}$
- if $s \equiv \leq s^{\prime}$ and $s^{\prime} \equiv \leq s^{\prime \prime}$ then $s \equiv \leq s^{\prime \prime}$

We call the equivalence classes modulo $\equiv \leq$ the connected components of the poset order (S, \leq). Intuitively, when we view the poset as a directed acyclic graph, they are the connected components of the graph (see STACS 7.6, Exercise 68).

Connected Components Example

$S / \equiv \leq=\{\{N z N a t u r a l$, Natural, NzInteger, Integer $\},\{$ Nelist, List $\},\{$ Bool, Prop $\}\}$

Subsort vs. Ad-hoc Overloading

In general, the same operator name may have different declarations in the same signature Σ. For example, in the NATURAL module we have,

```
op _+_ : Natural Natural -> Natural .
op _+_ : NzNatural NzNatural -> NzNatural .
```

When we have two operator declarations, $f: s_{1} \ldots s_{n} \longrightarrow s$, and $f: s_{1}^{\prime} \ldots s_{n}^{\prime} \longrightarrow s^{\prime}$, then: (1) if $s_{i} \equiv \leq s_{i}^{\prime}, 1 \leq i \leq n$ and $s \equiv \leq s^{\prime}$, we call them subsort overloaded; (2) otherwise, e.g, _+_ for Natural and for exclusive or in Bool, we call them ad-hoc overloaded.

Order-Sorted Signatures as Labelled Multigraphs

Since an order-sorted signature is a many-sorted signature whose set of nodes is a poset, we can describe them graphically as labeled multigraphs whose set of nodes is a poset.

We can picture subsort inclusions as usual for partial orders, and operators, as before, as labeled multiedges in the multigraph. For example, the order-sorted signature of the module NAT-LIST-II is depicted this way in Picture 2.3.

Exercises

Ex.2.1. Define in Maude the following functions on the naturals:

- $>$ and \geq as Boolean-valued binary functions importing the built-in module BOOL with single sort Bool.
- max and min, that yield the maximum, resp. minimum, of two numbers,
- even and odd as Boolean-valued functions on the naturals,
- factorial, the factorial function.

Exercises (II)

Ex.2.2. Define in Maude the following functions on list of natural numbers:

- append and reverse, which appends two lists, resp. reverses the list,
- max and min that computes the biggest (resp. smallest) number in the list,
- get.even, which extracts the lists of even numbers of a list,
- odd.even, which, given a list, produces a pair of list: the first the sublist of its odd numbers and the second the sublist of its even numbers.

Exercises (III)

Ex.2.3. Given a poset (S, \leq), prove that the smallest equivalence relation $\equiv \leq$ containing \leq is the relation $(\leq \cup \geq)^{+}$, where, as explained in STACS, given a binary relation R, the relation R^{+} denotes its transitive closure.

