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Verification of Concurrent Programs

We will begin considering the topic of verification of concurrent
programs. We will consider first the case of declarative concurrent
programs. Later in the course we will also consider verification of
imperative (sequential or concurrent) programs.

So the first question is, what is a suitable computational logic to
write concurrent programs in a declarative style? This is of course
an open-ended question, in that a variety of answers are possible at
present, and new answers may be proposed in the future.
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Verification of Concurrent Programs (II)

In this course, we will use rewriting logic as a specific
computational logic that is indeed well suited for concurrent
programming.

This is in full harmony with our use of equational logic for what,
rather than sequential, we could better call deterministic
declarative programming. In fact, rewriting logic generalizes
equational logic in a natural way.
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Rewrite Theories: Preliminary Definition

We give a first, already quite general, definition of rewrite theories.
We will further generalize this notion later.

A rewrite theory R is a triple R = (Σ, E,R), with:

• (Σ, E) a (kind-complete) order-sorted equational theory, and

• R a set of labeled rewrite rules of the form l : t −→ t′ ⇐ cond,
with l a label, t, t′ ∈ TΣ(X)k for some kind k, and cond a
condition (involving the same variables X) as explained below.
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Conditional Rewrite Rules

The most general form of a conditional rewrite rule is:

l : t −→ t′ if (
∧
i

ui = u′
i) ∧ (

∧
j

wj −→ w′
j),

that is, in general, the condition is a conjunction of equations and
rewrites, where the variables in all the Σ-terms t, t′, ui, u

′
i, wj , w

′
j

are contained in a common set X. There is no requirement that
vars(t) = X, and no assumptions of confluence or termination.
The rule is called unconditional if the condition is empty.
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Maude System Modules

In Maude, rewrite theories are specified in system modules.

The same way that a functional module has essentially the form,
fmod (Σ, E) endfm, with (Σ, E) an order-sorted equational logic
theory, a system module has the form, mod (Σ, E,R) endm, with
(Σ, E,R) a rewrite theory.

We will illustrate the syntax details in examples. In particular, a
conditional rewrite rule of the form, l : t −→ t′ if cond is specified
in Maude with syntax,

crl [l] : t => t′ if cond .

and an unconditional rule l : t −→ t′ with syntax,

rl [l] : t => t′ .
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Rewriting Logic is a Semantic Framework for Concurrency

Rewriting logic naturally expresses concurrent computation as
concurrent rewriting, and can model, for example,

1. Automata

2. Grammars and Tree Automata

3. Petri Nets

4. Process Calculi like CCS and the π-Calculus

5. Concurrent Object Systems

6. Concurrent Programming Languages

very naturally and without any encodings.

7



Some Rewriting Logic Examples

To motivate rewriting logic as a formalism to mathematically model
and program concurrent systems, I will show how it can be used to
naturally specify three important classes of systems, namely:

• automata, also called labeled transition systems,

• Petri nets, one of the simplest concurrency models, and

• object-oriented concurrent systems, the most common and
natural way to model and program distributed systems.

Recall that we already know (Lecture 9) that tree automata are
rewrite theories. In a later lecture I will show how concurrent
programming languages can also be naturally specified.
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Concurrency vs. Nondeterminism: Automata

We can motivate concurrency by its absence. The point is that we
can have systems that are nondeterministic, but are not concurrent.
Consider the following faulty automaton to buy candy:

�� �$

�� �ready

�� �nestle

�� �broken

�� �m&m

�� �q
-�

������1
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Concurrency vs. Nondeterminism: Automata (II)

Although in the above automaton each labeled transition from each
state leads to a single next state, i.e., it is a so-called incomplete
DFA,a the automaton’s computations are nevertheless
nondeterministic, in the sense that they are not confluent, and
therefore completely different outcomes are possible.

For example, from the ready state the transitions fault and 1 lead
to completely different states that can never be reconciled in a
common subsequent state.

aThis exactly means that for each state q and each transition label l there is
at most one state q′ such that there is a transition q

l→ q′.
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Concurrency vs. Nondeterminism: Automata (III)

So, the automaton is in this sense nondeterminisitc, yet it is strictly
sequential, in the sense that, although at each state the automaton
may be able to take several transitions, it can only take one
transition at a time.

Since the intuitive notion of concurrency is that at some states
several transitions can happen simultaneously, we can conclude by
saying the our automaton —although its computations are
nondeterministic (i.e, non-confluent)— it has no concurrency
whatsoever.
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Automata as Rewrite Theories

We can specify such an automaton as a system module,

mod CANDY-AUTOMATON is
sort State .
ops $ ready broken nestle m&m q : -> State .
rl [in] : $ => ready .
rl [cancel] : ready => $ .
rl [1] : ready => nestle .
rl [2] : ready => m&m .
rl [fault] : ready => broken .
rl [chng] : nestle => q .
rl [chng] : m&m => q .

endm
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Rewite Rules as Transitions

Note that rewrite rules do not have an equational interpretation.
They are not understood as equations, but as transitions, that in
general cannot be reversed.

This is why, in a rewite theory (Σ, E,R) the equations in E are
totally different from the rules R, since equations and rules have a
totally different semantics.

However, operationally Maude will assume that the equations in E

are confluent, terminating, and sort decreasing modulo axioms B,
and will compute with such equations and also with the rules in R

by rewriting, yet distinguishing equation simplification (the reduce
command) from rewriting with rules and equations (the rewrite
command).
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The rewrite Command

Maude can execute rewrite theories with the rewrite command
(can be abbreviated to rew). For example,

Maude> rew $ .
rewrite in CANDY-AUTOMATON : $ .
rewrites: 5 in 0ms cpu (0ms real) (~ rewrites/second)
result State: q

The rewrite command applies the rules in a fair way (all rules are
given a chance) hopefully until termination, and, if it terminates,
gives one result.
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The rewrite Command (II)

In this example, fairness saves us from nontermination, but in
general we can esily have nonterminating computations.

For this reason the rewrite command can be given a numeric
argument stating the maximum number of rewrite steps.
Furthermore, using Maude’s the trace command we can observe
such steps. For example,
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The rewrite Command (III)

Maude> set trace on .
Maude> rew [3] $ .
rewrite [3] in CANDY-AUTOMATON : $ .
*********** rule
rl [in]: $ => ready .
empty substitution
$ ---> ready
*********** rule
rl [cancel]: ready => $ .
empty substitution
ready ---> $
*********** rule
rl [in]: $ => ready .
empty substitution
$ ---> ready
rewrites: 3 in 0ms cpu (0ms real) (~ rewrites/second)
result State: ready
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The search Command

Of course, since we are in a nondeterministic situation, the
rewrite command gives us one possible behavior among many.

To systematically explore all behaviors from an initial state we can
use the search command, which takes two terms: a ground term
which is our initial state, and a term, usually with variables, which
describes our desired target state.

Maude then does a breadth first search to try to reach the desired
target state. For example, to find the terminating states from the $
state we can give the command (where the “!” in =>! specifies
that the target state must be a terminating state),
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The search Command (II)

Maude> search $ =>! X:State .
search in CANDY-AUTOMATON : $ =>! X:State .

Solution 1 (state 4)
states: 6 in 0ms cpu (0ms real)
X:State --> broken

Solution 2 (state 5)
states: 6 in 0ms cpu (0ms real)
X:State --> q

We can then inspect the search graph by giving the command,
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The search Command (III)

Maude> show search graph .
state 0, State: $
arc 0 ===> state 1 (rl [in]: $ => ready .)

state 1, State: ready
arc 0 ===> state 0 (rl [cancel]: ready => $ .)
arc 1 ===> state 2 (rl [1]: ready => nestle .)
arc 2 ===> state 3 (rl [2]: ready => m&m .)
arc 3 ===> state 4 (rl [fault]: ready => broken .)

state 2, State: nestle
arc 0 ===> state 5 (rl [chng]: nestle => q .)

state 3, State: m&m
arc 0 ===> state 5 (rl [chng]: m&m => q .)

state 4, State: broken
state 5, State: q
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The search Command (IV)

We can then ask for the shortest path to any state in the state
graph (for example, state 5) by giving the command,

Maude> show path 5 .
state 0, State: $
===[ rl [in]: $ => ready . ]===>
state 1, State: ready
===[ rl [1]: ready => nestle . ]===>
state 2, State: nestle
===[ rl [chng]: nestle => q . ]===>
state 5, State: q
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The search Command (V)

Similarly, we can search for target terms reachable by one rewrite
step, one or more steps, or zero or more steps by typing
(respectively):

• search t =>1 t′ .

• search t =>+ t′ .

• search t =>* t′ .
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The search Command (VI)

Furthermore, we can restrict any of those searches by giving an
equational condition on the target term. For example, all
terminating states reachable from $ other than broken can be
found by the command,

Maude> search $ =>! X:State such that X:State =/= broken .
search in CANDY-AUTOMATON : $ =>! X:State
such that X:State =/= broken = true .

Solution 1 (state 5)
states: 6 in 0ms cpu (0ms real)
X:State --> q
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The search Command (VII)

Of course, in general there can be an infinite number of solutions to
a given search. Therefore, a search can be further restricted by
giving as an extra parameter in brackets the number of solutions
(i.e., target terms that are instances of the pattern and satisfy the
condition) we want:

search [1] in CANDY-AUTOMATON : $ =>! X:State .

Solution 1 (state 4)
states: 6 in 0ms cpu (0ms real)
X:State --> broken
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The search Command (VIII)

In our CANDY-AUTOMATON example the number of states is finite,
but for a general rewrite theory the number of states reachable
from an initial state can be infinite. So, even if we search for a
single solution, the search process may not terminate, because no
such solution exists. To make search terminating we can add a
second parameter, namely, a bound on the length of the paths
searched from the initial state.

search [1, 1] in CANDY-AUTOMATON : $ =>! X:State .

No solution.
states: 2 rewrites: 2 in 0ms cpu (36ms real) (~ rewrites/second)
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Labelled Transition Systems

Our CANDY-AUTOMATON example is just a special instance of a
general concept, namely, that of automaton, also called a labeled
transition system (LTS) by which we mean a triple: A = (A,L, T )

with:

• A is a set, called the set of states,

• L is a set called the set of labels, and

• T ⊆ A× L×A is called the set of labeled transitions.
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LTS’s as Rewrite Theories

Note that we have associated to our candy automaton a rewrite
theory (system module) CANDY-AUTOMATON.

This is of course just an instance of a general transformation, that
assign to a LTS A a rewrite theory R(A) with a single sort A,
constants x ∈ A, and for each (x, l, y) ∈ T a rewrite rule l : x −→ y.
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Petri Nets

So far so good, but we have not yet seen any concurrency. The
simplest concurrent system examples are probably the concurrent
automata called Petri nets. Consider for example the picture,
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Petri Nets (II)

The previous picture represents a concurrent machine to buy cakes
and apples; a cake costs a dollar and an apple three quarters.

Due to an unfortunate design, the machine only accepts dollars,
and it returns a quarter when the user buys an apple; to alleviate
in part this problem, the machine can change four quarters into a
dollar.

The machine is concurrent, because we can push several buttons at
once, provided enough resources exist in the corresponding slots,
which are called places
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Petri Nets (III)

For example, if we have one dollar in the $ place, and four quarters
in the q place, we can simultaneously push the buy-a and change
buttons, and the machine returns, also simultaneously, one dollar in
$, one apple in a, and one quarter in q.

That is, we can achieve the concurrent computation,

buy-a change : $ q q q q −→ a q $.
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Petri Nets (IV)

This has a straightforward expression as a rewrite theory (system
module) as follows:

mod PETRI-MACHINE is
sort Marking .
ops null $ c a q : -> Marking .
op _ _ : Marking Marking -> Marking [assoc comm id: null] .
rl [buy-c] : $ => c .
rl [buy-a] : $ => a q .
rl [chng] : q q q q => $ .

endm
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Petri Nets (V)

That is, we view the distributed state of the system as a multiset of
places, called a marking, with identity for multiset union the empty
multiset null.

We then view a transition as a rewite rule from one (pre-)marking
to another (post-)marking.
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Petri Nets (VI)

The rewrite rule can be applied modulo associativity,
commutativity and identity to the distributed state iff its
pre-marking is a submultiset of that state.

Furthermore, if the distributed state contains the union of several
such presets, then several transitions can fire concurrently.

For example, from $ $ $ we can get in one concurrent step to c c
a q by pushing twice (concurrently!) the buy-c button and once
the buy-a button.
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Petri Nets (VII)

We can of course ask and get answers to questions about the
behaviors possible in this system. For example, if I have a dollar
and three quarters, can I get a cake and an apple?

Maude> search $ q q q =>+ c a M:Marking .
search in PETRI-MACHINE : $ q q q =>+ c a M:Marking .

Solution 1 (state 4)
states: 5 in 0ms cpu (0ms real)
M:Marking --> null

we can also interrogate the search graph,
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Petri Nets (VIII)

Maude> show search graph .
state 0, Marking: $ q q q
arc 0 ===> state 1 (rl [buy-c]: $ => c .)
arc 1 ===> state 2 (rl [buy-a]: $ => a q .)

state 1, Marking: c q q q

state 2, Marking: a q q q q
arc 0 ===> state 3 (rl [chng]: q q q q => $ .)

state 3, Marking: $ a
arc 0 ===> state 4 (rl [buy-c]: $ => c .)
arc 1 ===> state 5 (rl [buy-a]: $ => a q .)

state 4, Marking: c a

state 5, Marking: a a q
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Petri Nets (IX)

Maude> show path 4 .
state 0, Marking: $ q q q
===[ rl [buy-a]: $ => a q . ]===>
state 2, Marking: a q q q q
===[ rl [chng]: q q q q => $ . ]===>
state 3, Marking: $ a
===[ rl [buy-c]: $ => c . ]===>
state 4, Marking: c a
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Petri Nets in General

I give the Meseguer-Montanari “Petri nets are monoids” definition,
instead than the usual, but less enlightening, multigraph definition.

A place-transition Petri net N consists of:

• a set P of places; we then call markings to the elements in the
free commutative monoid M(P ) of finite multisets of P .

• a labeled transition system N = (M(P ), L, T ).
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Petri Nets in General (II)

The general transformation associating a rewrite theory R(N) to
each Petri net N is then obvious. R(N) has:

• a single sort, named, say M(P ), or just Marking, with
constants the elements of P and a null constant.

• a binary operator
_ _ : Marking Marking −→ Marking [assoc comm id : null]

• for each (m, l,m′) ∈ T a rewrite rule l : m −→ m′.
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What is Concurrency?

Why was concurrency impossible in our CANDY-AUTOMATON
example, but possible in our little PETRI-MACHINE example?

The problem with CANDY-AUTOMATON, and with any LTS having
unstructured states, is that its states are atomic, and, having no
smaller pieces, cannot be distributed.

By contrast, a Petri net marking is made out of smaller pieces,
namely its constituent places, and therefore can be distributed, so
that several transitions can happen simultaneously.
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What is Concurrency? (II)

Then what, is concurrency about multisets?

Not necessarily; this is the very common fallacy of taking the part
for the whole; for example, “Logic Programming = Prolog,” or
“Concurrency = Petri Nets”.

A more fair and open-minded answer is to give the rewriting logic
motto:

Concurrent Structure = Algebraic Structure.
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What is Concurrency? (III)

That is, any algebraic structure in the set of states, other than
atomic constants, even a single unary operator, will open the
possibility for the states to be distributed, and therefore for
transitions being concurrent.

Of course that potential for concurrency may be frustrated by the
specific transitions of a system forcing a sequential execution, but
the potential is there if we use other transitions.

In summary, there are as many possible styles of concurrent
systems as there are signatures Σ and equations E. For example:
multiset concurrency, tree concurrency, string concurrency, and
many, many other possibilities.
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