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Guessing Lemmas from Failed Proof Attempts

In inductive theorem proving it often happens that our first attempt
to prove a property is unsuccessful.

However, we can learn from a
failed attemp to guess a lemma that will solve the unproved goal.

In the NuITP the process of guessing and applying a lemma to a
goal is supported by the lemma enrichment (le) inference rule.

Of course, although the lemma thus guessed will typically prove
the unproved goal, we still need to prove that the lemma we have
guessed is in fact true.

Let us see an example, namely, proving commutativity of addition
in the PEANO+R module.
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Proving Commutativity of Addition

Our first attempt to prove addition commutative in PEANO+R yields
two unproved goals:
NuITP> set goal X:Nat + Y:Nat = Y:Nat + X:Nat .

Initial goal set.

Goal Id: 0

Generated By: init

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:

($1:Nat + $2:Nat) =($2:Nat + $1:Nat)

NuITP> apply gsi! to 0 on $1:Nat .

Generator Set Induction with Equality Predicate Simplification (GSI!)

applied to goal 0.
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Proving Commutativity of Addition (II)

Goal Id: 0.1.1

Generated By: EPS

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:

$2:Nat =(0 + $2:Nat)

Goal Id: 0.2.1

Generated By: EPS

Skolem Ops:

$3.Nat

Executable Hypotheses:

None

Non-Executable Hypotheses:

($3 + $2:Nat) =($2:Nat + $3)

Goal:

s($2:Nat + $3) =(s($3) + $2:Nat)
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Proving Commutativity of Addition (III)

However, we can guess from the unproved base case (goal 0.0.1):
$2:Nat =(0 + $2:Nat) the lemma 0 + X = X . In the NuITP we
can then apply this lemma to goal 0.0.1 as follows:
NuITP> apply le! to 0.1.1 with 0 + X:Nat = X:Nat .

Lemma Enrichment with Equality Predicate Simplification (LE!) applied to

goal 0.1.1.

Goal 0.1.1.2.1 has been proved.

Goal Id: 0.1.1.1

Generated By: LE

Skolem Ops:

None

Executable Hypotheses:

None

Non-Executable Hypotheses:

None

Goal:

$3:Nat =(0 + $3:Nat)
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Proving Commutativity of Addition (IV)

The base case has thus been proved, but we still need to prove the
guessed lemma (goal 0.1.1.1). We do so as follows:
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Generator Set Induction with Equality Predicate Simplification (GSI!)
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Proving Commutativity of Addition (V)

We still need to deal with the unproved induction step goal (0.2.1):
s($2:Nat + $3) =(s($3) + $2:Nat) for which we can guess
the lemma s(N) +M = s(M + N) and apply it to 0.2.1:

NuITP> apply le! to 0.2.1 with s(N:Nat) + M:Nat = s(M:Nat + N:Nat) .

Lemma Enrichment with Equality Predicate Simplification (LE!) applied

to goal 0.2.1.
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Executable Hypotheses:

None
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Goal:

s($4:Nat + $5:Nat) =(s($5:Nat) + $4:Nat)
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Proving Commutativity of Addition (VI)

Lastly, we need to prove the guessed lemma (0.2.1.1):

NuITP> apply gsi! to 0.2.1.1 on $4:Nat .

Generator Set Induction with Equality Predicate Simplification (GSI!)

applied to goal 0.2.1.1.
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Generated By: EPS
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Executable Hypotheses:
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Goal:
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Proving Commutativity of Addition (VII)

Goal Id: 0.2.1.1.2.1

Generated By: EPS

Skolem Ops:

$3.Nat

$6.Nat

Executable Hypotheses:

None

Non-Executable Hypotheses:

($3 + $2:Nat) =($2:Nat + $3)

s($6 + $5:Nat) =(s($5:Nat) + $6)

Goal:

s($6 + $5:Nat) =(s($6) + $5:Nat)

The base case for the guessed Lemma 0.1.1.1 is $5:Nat =(0 +

$5:Nat), which we can prove with our previous lemma
0 + X = X , so I leave this part for the reader. For the induction
step (goal 0.2.1.1.2.1) we just apply gsi to finish the proof:
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Proving Commutativity of Addition (VIII)

NuITP> apply gsi! to 0.2.1.1.2.1 on $5:Nat .

Generator Set Induction with Equality Predicate Simplification (GSI!) applied

to goal 0.2.1.1.2.1.

Goals 0.2.1.1.2.1.1.1 and 0.2.1.1.2.1.2.1 have been proved.

qed

The general heuristic to deal with unproven goals could be
summarized with the motto: generalize and conquer! That, is we
guess the needed lemma by generalizing the unproved goal.
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Internalize and Conquer

Proving lemmas is tedious.

Can we do better and achieve shorter
and perhaps lemmaless proofs? The answer is Yes!! The better
proof method has the motto: internalize and conquer! It is
supported by the NuITP based on the Lemma Internalization
Theorems 2 and 3 of Lecture 14.

This method is based on two simple ideas:

1 Low Hanging Fruit: If you have to prove several properties,
arrange them in order of difficulty and dependence. E.g., prove
associativity of addition before commutativity, and both
before associativity and commutativity of multiplication.

2 Internalize Everything! Use every single property you have
already proved to prove harder properties by internalizing it.

Let us see this method in action in an arithmetic case study:
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An Example: Natural Number Arithmetic

fmod NATURAL-ARITH is

sorts Nat NzNat .

subsort NzNat < Nat .

op 0 : -> Nat [ctor metadata "1"] .

op s : Nat -> NzNat [ctor metadata "2"] .

op _+_ : Nat Nat -> Nat [metadata "3"] .

op _*_ : Nat Nat -> Nat [metadata "4"] .

op _*_ : NzNat NzNat -> NzNat [metadata "5"] .

op _^_ : NzNat Nat -> NzNat [metadata "6"] . *** exponentiation

vars n m k : Nat . vars n’ k’ m’ : NzNat .

eq n + 0 = n .

eq n + s(m) = s(n + m) .

eq n * 0 = 0 .

eq n * s(m) = n + (n * m) .

eq n’ ^ 0 = s(0) .

eq n’ ^ s(m) = n’ * (n’ ^ m) .

endfm

This module’s canonical term algebra CΣ/E ,B is just N with the sN,

+N, ∗N, and ( )
( )
N functions. Consider some properties of

NATURAL-ARITH:
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Arithmetic Properties of NATURAL-ARITH

NATURAL-ARITH should enjoy the following arithmetic properties:

1 +N should be associative and commutative

2 ∗N should be left and right distributive over +N
3 ∗N should be associative and commutative

4 ( )
( )
N should enjoy the property: xy+z = xy ∗ xz

Reflecting on the (tedious) proof of commutativity for +N, which
required the lemmas 0 +M = M and s(N) +M = s(M + N), we
can see that proving commutativity of +N would have been trivial
if we had first proved and internalized that programs PEANO+R and
PEANO+L (whose equations are the above lemmas) are semantically
equivalent. The analogous observation holds for proving
commutativity of ∗N. Let’s prove all these arithmetic properties!
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Program Verification: Lecture 16

Proving Properties of NATURAL-ARITH

===================================

NuITP (alpha 22)

Inductive Theorem Prover

for Maude Equational Theories

===================================

Copyright 2021-2023

Universitat Politècnica de València

NuITP> set module NATURAL-ARITH .

Module NATURAL-ARITH is now active.

By the Program Equivalence Theorem in Lecture 14, We can next
prove the semantic equivalence between the left- and
right-recursive definitions of addition if we prove the following goal
by generator set induction using standard induction (SIND):
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Program Verification: Lecture 16

Proving Properties of NATURAL-ARITH (II)

NuITP> set goal ((0 + Y:Nat = Y:Nat) /\ (s(X:Nat) + Y:Nat) = s(X:Nat +

Y:Nat)) .

...

Goal Id: 0

...

Goal:

($2:Nat =(0 + $2:Nat)) /\ s($1:Nat + $2:Nat) =(s($1:Nat) + $2:Nat)

NuITP> apply gsi! to 0 on $2:Nat .

Generator Set Induction with Equality Predicate Simplification (GSI!)

applied to goal 0.

Goals 0.1.1 and 0.2.1 have been proved.

qed

The NuITP allows us to apply the Lemma Internalization Theorem
2 in Lecture 14 to internalize the just-proved semantically
equivalent left-recursive equations for + we just proved by adding
them to the current module as follows:
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Program Verification: Lecture 16

Proving Properties of NATURAL-ARITH (III)

NuITP> internalize .

Now that we have internalized the above semantic equivalence, we
prove the associativity of +, which succeeds with one blow:

NuITP> set goal X:Nat + (Y:Nat + Z:Nat) = (X:Nat + Y:Nat) + Z:Nat .

...

Goal Id: 0

...

Goal:

($1:Nat +($2:Nat + $3:Nat)) =(($1:Nat + $2:Nat) + $3:Nat)

NuITP> apply gsi! to 0 on $3:Nat .

Generator Set Induction with Equality Predicate Simplification (GSI!) applied to goal 0.

Goals 0.1.1 and 0.2.1 have been proved.

qed
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Program Verification: Lecture 16

Proving Properties of NATURAL-ARITH (IV)

The NuITP allows us to apply the Lemma Internalization Theorem
3 of Lecture 14 to internalize associativity as an axiom, From now
on, all simplification with + expressions can be done modulo
associativity:

NuITP> internalize as assoc .

Next we prove commutativity for +, which succeeds with one blow:
NuITP> set goal (X:Nat + Y:Nat = Y:Nat + X:Nat) .
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Program Verification: Lecture 16

Proving Properties of NATURAL-ARITH (V)

NuITP> internalize as comm .

From now on, all simplification with + expressions can be done
modulo associativity and commutativity. Next we prove right
distributivity of * over +, which succeeds with one blow:
NuITP> set goal X:Nat * (Y:Nat + Z:Nat) = (X:Nat * Y:Nat) + (X:Nat * Z:Nat) .

...

Goal Id: 0

...

Goal:

($1:Nat * $3:Nat + $2:Nat) =($1:Nat * $3:Nat) +($1:Nat * $2:Nat)

NuITP> apply gsi! to 0 on $2:Nat .

Generator Set Induction with Equality Predicate Simplification (GSI!) applied to goal 0.

Goals 0.1.1 and 0.2.1 have been proved.

qed

NuITP> internalize .
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Program Verification: Lecture 16

Proving Properties of NATURAL-ARITH (VI)

To overcome *’s recursion on its second argument we proceed as
for +, which succeeds with one blow:

NuITP> set goal ((0 * Y:Nat = 0) /\ (s(X:Nat) * Y:Nat) = (Y:Nat + (X:Nat * Y:Nat))) .

...

Goal Id: 0

...

Goal:

(0 =(0 * $2:Nat)) /\(s($1:Nat) * $2:Nat) = $2:Nat +($1:Nat * $2:Nat)

NuITP> apply gsi! to 0 on $2:Nat .

Generator Set Induction with Equality Predicate Simplification (GSI!) applied to goal 0.

Goals 0.1.1 and 0.2.1 have been proved.

qed

NuITP> internalize .
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Program Verification: Lecture 16

Proving Properties of NATURAL-ARITH (VII)

Next we prove left distributivity of * over +, which succeeds with
one blow:

NuITP> set goal (Y:Nat + Z:Nat) * X:Nat = (Y:Nat * X:Nat) + (Z:Nat * X:Nat) .

...

Goal Id: 0

...

Goal:

(($3:Nat + $2:Nat) * $1:Nat) =($3:Nat * $1:Nat) +($2:Nat * $1:Nat)

NuITP> apply gsi! to 0 on $2:Nat .

Generator Set Induction with Equality Predicate Simplification (GSI!) applied to goal 0.

Goals 0.1.1 and 0.2.1 have been proved.

qed

NuITP> internalize .

20/23



Program Verification: Lecture 16

Proving Properties of NATURAL-ARITH (VII)

Next we prove left distributivity of * over +, which succeeds with
one blow:

NuITP> set goal (Y:Nat + Z:Nat) * X:Nat = (Y:Nat * X:Nat) + (Z:Nat * X:Nat) .

...

Goal Id: 0

...

Goal:

(($3:Nat + $2:Nat) * $1:Nat) =($3:Nat * $1:Nat) +($2:Nat * $1:Nat)

NuITP> apply gsi! to 0 on $2:Nat .

Generator Set Induction with Equality Predicate Simplification (GSI!) applied to goal 0.

Goals 0.1.1 and 0.2.1 have been proved.

qed

NuITP> internalize .

20/23



Program Verification: Lecture 16

Proving Properties of NATURAL-ARITH (VIII)

Next we prove associativity of *, which succeeds with one blow:

NuITP> set goal X:Nat * (Y:Nat * Z:Nat) = (X:Nat * Y:Nat) * Z:Nat .

...

Goal Id: 0

...

Goal:

($1:Nat *($2:Nat * $3:Nat)) =(($1:Nat * $2:Nat) * $3:Nat)

NuITP> apply gsi! to 0 on $3:Nat .

Generator Set Induction with Equality Predicate Simplification (GSI!) applied to goal 0.

Goals 0.1.1 and 0.2.1 have been proved.

qed

NuITP> internalize as assoc .
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Program Verification: Lecture 16

Proving Properties of NATURAL-ARITH (IX)

Next we prove commutativity of *, which succeeds with one blow:

NuITP> set goal (X:Nat * Y:Nat = Y:Nat * X:Nat) .

...

Goal Id: 0

...

Goal:

($1:Nat * $2:Nat) = $2:Nat * $1:Nat

NuITP> apply gsi! to 0 on $2:Nat .

Generator Set Induction with Equality Predicate Simplification (GSI!) applied to goal 0.

Goals 0.1.1 and 0.2.1 have been proved.

qed

NuITP> internalize as comm .
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Program Verification: Lecture 16

Proving Properties of NATURAL-ARITH (X)

We finish proving all arithmetic properties (1)–(4) from slide 4 by
proving the equality xy+z = xy ∗ xz of exponentiation, which
succeeds with one blow:

NuITP> set goal (X:NzNat ^ (Y:Nat + Z:Nat) = (X:NzNat ^ Y:Nat) * (X:NzNat ^ Z:Nat)) .

...

Goal Id: 0

...

Goal:

(($1:NzNat ^ $3:Nat) *($1:NzNat ^ $2:Nat)) =($1:NzNat ^ $3:Nat + $2:Nat)

NuITP> apply gsi! to 0 on $2:Nat .

Generator Set Induction with Equality Predicate Simplification (GSI!) applied to goal 0.

Goals 0.1.1 and 0.2.1 have been proved.

qed
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