
Program Verification: Lecture 15

José Meseguer

Computer Science Department
University of Illinois at Urbana-Champaign

1

Formal Verification of Equational Programs

We shall consider two main problems in the formal verification of
equational programs:

1. Proofs of Program Equivalence, that is, of equivalences of the
form: fmod (Σ, E ∪B) endfm ≡sem fmod (Σ, E′ ∪B′) endfm for
admissible and comparable programs.

2. Proofs of Program Properties, which in their most general form,
for an admissible program fmod (Σ, E ∪B) endfm, just means
proofs of properties of the form CΣ/E⃗,B |= φ or, equivalently,
TΣ/E∪B |= φ, for φ a first-order logic (FOL) Σ-formula.

2

Formal Verification of Equational Programs (II)

Regarding proofs of program equivalence, we have three theorems,
namely, the Program Equivalence Theorem, and the Lemma
Internalization Theorems 2 and 3, which in essence reduce all such
proofs to proofs of inductive consequences of the form
(Σ, E ∪B) |=ind G, for G a finite set of equations.

Regarding proofs of program properties, since equational logic is a
sublogic of first-order logic, we can just generalize the |=ind relation
to first-order logic Σ-formulas φ by stating that (Σ, E ∪B) |=ind φ

holds by definition iff TΣ/E∪B |= φ.

This requires explaining the syntax and semantics of first-order
logic, including the satisfaction relation A |= φ between a Σ-algebra
A and a first-order logic Σ-formula φ. The Appendix to this lecture
explains these topics in sufficient detail for our present purposes.

3

The Need for an Inductive Logic

Therefore, the task of equational program verification, both in
proving program equivalences and program properties, boils down
to proving inductive consequences of the form (Σ, E ∪B) |=ind φ

(in the case of a set of equations G = {u1 = v1, . . . , un = vn},
φ = (u1 = v1 ∧ . . . ∧ un = vn)). But, by definition, proving
(Σ, E ∪B) |=ind φ exactly means proving that TΣ/E∪B |= φ, which
is a semantic relation between the initial algebra TΣ/E∪B and a
FOL formula φ.

For this, we need correct reasoning principles unambiguously
embodied in a formal system of inference rules which we can rightly
call an inductive logic, denoted ⊢ind , allowing us to prove the
semantic property (Σ, E ∪B) |=ind φ by proving (Σ, E ∪B) ⊢ind φ.

4

The Need for an Inductive Logic (II)

Of course, saying that the inductive logic ⊢ind provides “correct
reasoning principles” for this task exactly means that ⊢ind is sound.
That is, that for any (Σ, E ∪B) and φ we have an implication:

(Σ, E ∪B) ⊢ind φ ⇒ (Σ, E ∪B) |=ind φ

Can ⊢ind be complete, so that the reverse implication holds?

The answer is no. To explain why not, we need to observe that the
set PThm⊢ind

(Σ, E ∪B) of theorems of a theory (Σ, E ∪B)

provable by an inference system ⊢ind defined by inference rules that
syntactically manipulate formulas (where the theory’s “axioms”
E ∪B are a finite or recursively enumerable set) must be a
recursively enumerable set (r.e. set). This is so because we can
implement ⊢ind by a computer program that generates the set
PThm⊢ind

(Σ, E ∪B), so that PThm⊢ind
(Σ, E ∪B) must be r.e.

5

Göedel for Dummies

Let (Σ, E) be the equational theory of the Maude program:
fmod NAT+x is sort Nat .
op 0 : -> Nat [ctor] . op s: Nat -> Nat [ctor] .
ops (_+_) (_*_) : Nat Nat -> Nat . vars N M : Nat .
eq N + 0 = N . eq N * 0
eq N + s(M) = s(N + M) . eq N * s(M) = N + (N * M) .

Theorem (Göedel’s Incompleteness of Arithmetic). For the above
theory (Σ, E), the set

Thm |=ind
(Σ, E) =def {φ ∈ FormFOL(Σ) | TΣ/E |=ind φ} = ThmFOL(TΣ/E)

is not r.e.

Therefore for any sound inductive logic ⊢ind in general we will have
a strict containment PThm⊢ind

(Σ, E ∪B) ⊂ Thm |=ind
(Σ, E ∪B),

making ⊢ind necessarily incomplete.

6

The Inference System ⊢ind of Maude’s NuITP

To prove both equational program equivalences and equational
program properties we shall use Maude’s New Inductive Theorem
Prover (NuITP), which mechanizes the inference rules of a sound
inductive logic ⊢ind .

The formulas that ⊢ind , and therefore Maude’s NuITP, proves are
quantifier-free multiclauses, which, as the Appendix to this lecture
on FOL explains, are formulas of the form:

(w1 = w′
1∧. . .∧wk = w′

k) ⇒ ((u1
1 = v11∨. . .∨u1

m1
= v1m1

)∧. . .∧(uk
1 = vk1∨. . .∨uk

mk
= vkmk

).)

7

Proving Inductive Theorems with the NuITP

The NuITP is a next-generation inductive theorem proper for
Maude. It uses advanced symbolic techniques to automate large
parts of inductive proofs, thus saving proof time and effort.

In the NuITP, standard induction on the natural numbers is
generalized to induction on constructors, using the so-called
generator set induction (GSI) inference rule.

To better understand generator set induction we can see how, in
the case of the natural numbers, it can directly express standard
natural number induction.

Let us see how associativity of addition is proved, first by standard
induction, and then by the NuITP using generator set induction.

8

Standard Proof of Associativity of Addition

We want to prove that the addition operation in the module:

fmod PEANO+R is
sort Nat .
op 0 : -> Nat [ctor] .
op s : Nat -> Nat [ctor] .
op _+_ : Nat Nat -> Nat .
vars N M L : Nat .
eq N + 0 = N .
eq N + s(M) = s(N + M) .

endfm

where PEANO+R suggests that we recurse on the right (R) argument
when defining +, satisfies the associativity property,

(∀N, M, L) N + (M + L) = (N + M) + L.

9

Standard Proof of Associativity of Addition (II)

We can prove this property by induction on L. That is, we prove it
for L = 0 (base case) and then assuming that it holds for L, we
prove it for s(L) (induction step).

BaseCase: We need to show,

(∀N, M) N + (M + 0) = (N + M) + 0.

We can do this trivially, by simplification with the equation

eq N + 0 = N .

10

Standard Proof of Associativity of Addition (III)

InductionStep: We think of L as a generic constant (typically
written n in textbooks) and assume that the associativity equation
(induction hypothesis (IH))

(∀N, M) N + (M + L) = (N + M) + L

holds for that constant. Then, we try to prove the equation,

(∀N, M) N + (M + s(L)) = (N + M) + s(L).

using the induction hypothesis. Again, we can do this by
simplification with the equations E in NAT, and the induction
hypothesis IH equation, since we have,

11

Standard Proof of Associativity of Addition (IV)

N + (M + s(L)) −→E N + s(M + L)

−→E s(N + (M + L)) −→IH s((N + M) + L)).

and

(N + M) + s(L) −→E s((N + M) + L).

q.e.d

12

Machine-Assisted Inductive Proofs with Maude’s NuITP

Maude’s NuITP is an inductive theorem prover supporting proofs
by induction of properties (expressed as first-order formulas) of
Maude functional modules. The NuITP is a research collaboration
involving Francisco Durán at the University of Málaga, Santiago
Escobar and Julia Sapiña at the Technical University of Valencia,
and José Meseguer at UIUC. It is a Maude program used as follows:

• one first loads in Maude the functional module or modules one
wants to reason about

• one then loads the file NuITP.maude into Maude.

• one sets one of the modules previously loaded in Maude as the
current module and sets a multiclause as the goal to be proved.

• one then gives commands, corresponding to inductive proof
steps, or formula simplification steps, to prove the chosen goal.

13

Proof of + Associativity with Maude’s NuITP (I)

To prove the associativity of addition, we first load into Maude
PEANO+R annotated with an RPO termination order, just as for the
MTA. To prevent Maude from also loading BOOL we first type:
set include BOOL off .

fmod PEANO+R is
sort Nat .
op 0 : -> Nat [ctor metadata "0"] .
op s : Nat -> Nat [ctor metadata "4"] .
op _+_ : Nat Nat -> Nat [metadata "8"] .
vars N M L : Nat .
eq N + 0 = N .
eq N + s(M) = s(N + M) .

endfm

Then we load NuITP.maude into Maude and set PEANO+R as current
module

14

Proof of + Associativity with Maude’s NuITP (II)
===================================

NuITP (alpha 22)
Inductive Theorem Prover

for Maude Equational Theories
===================================

Copyright 2021-2023
Universitat Politècnica de València

NuITP> set module PEANO+R .

Module PEANO+R is now active.

NuITP>

To perform proofs that exactly correspond to natural number
induction we define the following generator set:
NuITP> genset SIND for Nat is 0 ;; s(n:Nat) .

15

Generator set SIND for sort Nat added.

SIND (default):
0
s(n:Nat)

NuITP>

This generator set specifies that the base case is 0 and the
induction step will assume the property true for n and will prove it
for s(n). Since we can use different generator sets for proving
different properties, we give each generator set a name (here SIND
for “standard induction”). Since this is the first generator set that
has been defined for sort Nat, the NuITP declares SIND as the
default generator set for Nat. This means that we do not need to
mention its name when later performing generator set induction.
Let us explore the generator set concept in more detail.

16

Generator Sets

For fmod (Σ, E ∪B) endfm an admissible equational program
sufficiently complete w.r.t. constructors Ω, a generator set for sort
s in Σ, is a finite set of constructor terms of sort s,

{u1, . . . , un} ⊆ TΩ(X)s

such that any ground constructor term of sort s is a ground
instance modulo B of some ui, i.e., ∀w ∈ TΩs

∃i, 1 ≤ i ≤ n,
∃γ ∈ [vars(ui) → TΩ], s.t. w =B uiγ.

{0, s(K)} is a generator set of sort Nat; and {0, s(0), s(s(K))} is
also a generator set for Nat: many choices are possible.

For _;_ an associative operator of sort List with Nat < List,
{nil , n, (L;L′)}, {nil , n, (m;L)} and {nil , n, (L;m)} are all
generator sets of sort List (with variables n,m : Nat, L,L′ : List).

17

Checking Correctness of Generator Sets

Correctness of a generator set {u1, . . . , un} for a sort s can be
reduced to: (i) checking {u1, . . . , un} ⊆ TΩ(X)s and (ii) a sufficient
completeness check for a module. For {nil , n, (m;L)} the module:
fmod GEN-SET-SORT-PREDICATE-FOR-List is protecting TRUTH-VALUE .
sorts Nat List . subsorts Nat < List .
op 0 : -> Nat [ctor] op nil : -> List [ctor] .
op s : Nat -> Nat [ctor] op _;_ : List List -> List [ctor assoc] .
op List : List -> Bool .
eq List(nil) = true . eq List(n:Nat) = true .
eq List(m:Nat ; L:List) = true .
endfm

In the current alpha version of NuITP it is the user’s responsibility
to check the sufficient completeness of the module defining the sort
predicate associated to a generator set using Maude’s SCC.

Warning: the variables of a generator set should be fresh, not
appearing in any goal. And the ui should be linear terms.

18

Proof of + Associativity with Maude’s NuITP (III)

To prove the associativity of + we first enter the associativity
property as a goal for the NuITP to prove for PEANO+R as follows:

NuITP> set goal ((N:Nat + M:Nat) + L:Nat = N:Nat + (M:Nat + L:Nat)) .

Initial goal set.

Goal Id: 0
Skolem Ops:
None

Executable Hypotheses:
None

Non-Executable Hypotheses:
None

Goal:
($3:Nat +($2:Nat + $1:Nat)) =(($3:Nat + $2:Nat) + $1:Nat)

NuITP>

19

Note that NuITP has renamed the goal’s variables. We can now
give the gsi command to prove by induction this goal (goal 0)
inducting on variable $1:Nat as follows:
NuITP> apply gsi to 0 on $1:Nat .

Generator Set Induction (GSI) applied to goal 0.

Goal Id: 0.1
Generated By: GSI
Skolem Ops:
None

Executable Hypotheses:
None

Non-Executable Hypotheses:
None

Goal:
($3:Nat +($2:Nat + 0)) =(($3:Nat + $2:Nat) + 0)

Goal Id: 0.2
Generated By: GSI

20

Skolem Ops:
$4.Nat

Executable Hypotheses:
(($3:Nat + $2:Nat) + $4) =>($3:Nat +($2:Nat + $4))

Non-Executable Hypotheses:
None

Goal:
($3:Nat +($2:Nat + s($4))) =(($3:Nat + $2:Nat) + s($4))

NuITP>

These goals are exactly those generated by standard induction on
the naturals. Note that the role of the generic constant L is here
played by the Skolem constant $4.

As in standard induction, all we have left to do is to simplify these
goals using: (i) the module’s equations; and (ii) the induction
hypothesis. In the NuITP this is done with the equality predicate
simplification (eps) command as follows:

21

Proof of + Associativity with Maude’s NuITP (IV)

NuITP> apply eps to 0.1 .

Equality Predicate Simplification (EPS) applied to goal 0.1.

Goal 0.1.1 has been proved.

Unproven goals:

Goal Id: 0.2
Generated By: GSI
Skolem Ops:
$4.Nat

Executable Hypotheses:
(($3:Nat + $2:Nat) + $4) =>($3:Nat +($2:Nat + $4))

Non-Executable Hypotheses:
None

Goal:
($3:Nat +($2:Nat + s($4))) =(($3:Nat + $2:Nat) + s($4))

22

Total unproven goals: 1

NuITP> apply eps to 0.2 .

Equality Predicate Simplification (EPS) applied to goal 0.2.

Goal 0.2.1 has been proved.

qed

NuITP>

The qed acronym indicates that there are no pending goals and the
inductive proof of associativity of + has been finished, exactly as
with standard induction.

If we had instead used the generator set {0, s(0), s(s(n))} a
somewhat different proof with two “base cases” and one “induction
step” would have been created. The user has the freedom to choose

23

a generator set that best matches the recursive equations in the
module. In this example the generator set {0, s(n)} was a good
match; but in other examples, involving different recursive
equations, other choices may be preferable.

A good example of a module where using the {0, s(0), s(s(n))}
generator set would be better than using the SIND one we have used
so far is provided by the PEANO+R-FAST module later in this lecture.

24

The gsi! Command

For many NuITP commands like gsi that apply an inductive
inference rule, the best strategy before applying another command
is to simplify the subgoals just generated using the eps command.

This situation is so common, that the NuITP combines both
commands into the gsi! command, that applies eps to each of the
goals generated by gsi. This can greatly shorten proofs. Let us see
the effect of proving associativity of + this way:
NuITP> set goal ((N:Nat + M:Nat) + L:Nat = N:Nat + (M:Nat + L:Nat)) .

Initial goal set.

Goal Id: 0
Generated By: init
Skolem Ops:
None

25

Executable Hypotheses:
None

Non-Executable Hypotheses:
None

Goal:
($3:Nat +($2:Nat + $1:Nat)) =(($3:Nat + $2:Nat) + $1:Nat)

NuITP> apply gsi! to 0 on $1:Nat .

Generator Set Induction with Equality Predicate Simplification (GSI!) applied
to goal 0.

Goals 0.1.1 and 0.2.1 have been proved.

qed

NuITP>

26

Proving Program Equivalences in NuITP

Recall from the Program Equivalence Theorem in Lecture 14 that
for comparable admissible modules fmod (Σ, E ∪B) endfm ≡sem

fmod (Σ, E′ ∪B′) endfm iff (Σ, E ∪B) ≡ind (Σ, E′ ∪B′) iff (by
definition)

(Σ, E ∪B) |=ind (E′
0 \ E0) ∪ (B′ \B).

In particular, proving program equivalences can be useful for
program optimization purposes.

Let us prove that our equational program PEANO+R is semantically
equivalent to the following program PEANO+R-FAST, which runs,
roughly, twice as fast.

27

Proving Program Equivalences in NuITP (II)
fmod PEANO+R-FAST is

sort Nat .
op 0 : -> Nat [ctor metadata "0"] .
op s : Nat -> Nat [ctor metadata "4"] .
op _+_ : Nat Nat -> Nat [metadata "8"] .
vars N M : Nat .
eq N + 0 = N .
eq N + s(0) = s(N) .
eq N + s(s(M)) = s(s(N + M)) .

endfm

Note that a good generator set for this program, matching its
recursive equations, is: {0, s(0), s(s(n))}. Proofs for this module
using this generator set will tend to be shorter than proofs using
the “vanilla flavored” generator set {0, s(n)}.
Let us prove that PEANO+R and PEANO+R-FAST are semantically
equivalent.

28

Proving Program Equivalences in NuITP (III)

if we choose PEANO+R as our (Σ, E ∪B) and PEANO+R-FAST as our
(Σ, E′ ∪B′), and noticing that B = B′ = ∅, E = E0, E′ = E′

0 and
E′

0 \E0 = {N + s(0) = s(N), N + s(s(M)) = s(s(N +M))}, we will
prove that PEANO+R and PEANO+R-FAST are semantically equivalent
using the NuITP if in PEANO+R if we prove the inductive goal:

NuITP> set goal (N:Nat + s(0) = s(N:Nat)) /\
(N:Nat + s(s(M:Nat)) = s(s(N:Nat + M:Nat)))) .

Initial goal set.

Goal Id: 0
Generated By: init
Skolem Ops:
None

Executable Hypotheses:
None

29

Non-Executable Hypotheses:
None

Goal:
(s($2:Nat) =($2:Nat + s(0))) /\ s(s($2:Nat + $1:Nat)) =($2:Nat + s(s(
$1:Nat)))

NuITP>

This goal is so simple that we do not need to use induction: just
applyingn the equality predicate simplification rule eps suffices:

NuITP> apply eps to 0 .

Equality Predicate Simplification (EPS) applied to goal 0.

Goal 0.1 has been proved.

qed

NuITP>

30

