Appendix to CS 476 Lecture 15: First-Order Logic

José Meseguer, CS Department, UIUC

Syntax of First-Order Logic

Assume an order-sorted signature Σ that is preregular, kind-complete and has non-empty sorts. Then define a quantifier-free (QF) Σ-formula as a formula built from Σ-equations by repeated application of: (i) negation \neg, (ii) conjunction \wedge and (iii) disjunction \vee.

Note: a QF Σ-formula is also called a (QF) equational formula, since only equations appear in it (no predicates like, e.g., $x>0$, appear in the formula). However, it is always possible to turn predicate symbols into function symbols, so that equational formulas are just as expressive as formulas having both equations and predicates. For example, the predicate $x>0$ becomes the equation $x>0=$ true.

It is easy to show that:

1. By applying the DeMorgan Laws $\neg(A \vee B) \equiv \neg A \wedge \neg B$ and $\neg(A \wedge B) \equiv \neg A \vee \neg B$, plus the double negation law $\neg(\neg(A)) \equiv A$, we can always "push negations to the equations," so that a negation symbol only appears around an equation. Notation: $\neg(u=v)$ is abbreviated to $u \neq v$. The formula $u \neq v$ is called a disequality, to distinguish it from a (strict or non-strict) inequality, such as $u>v$ or $u \geq v$, since inequality is a different notion associated to partial orders.
2. After negations have been pushed to equations, we can apply the distributivity of \vee over \wedge (i.e., $A \vee(B \wedge C) \equiv(A \vee B) \wedge(A \vee C))$, to always "push" occurrences of \vee below \wedge.

In this way, any QF formula φ can be put in conjunctive normal form as Boolean equivalent to a formula of the form:

$$
\varphi \equiv \bigwedge_{1 \leq j \leq n} c l_{j}
$$

where each $c l_{j}$, called a clause, is a disjunction of equalities and disequalities, that is, a formula of the form:

$$
u_{1}=v_{1} \vee \ldots u_{m}=v_{m} \vee w_{1} \neq w_{1}^{\prime} \vee \ldots \vee w_{k} \neq w_{k}^{\prime}
$$

where $m+k \geq 1$.
Note. If in step 2 above we were to apply instead the distributivity of \wedge over \vee (i.e., $A \wedge(B \vee$ $C) \equiv(A \wedge B) \vee(A \wedge C))$, we would instead get the notion of a QF formula in disjunctive normal
form, i.e., we can alternatively always express any $\mathrm{QF} \varphi$ as a disjunction of conjunctions of equalities and disequalities.

By noticing that $w_{1} \neq w_{1}^{\prime} \vee \ldots w_{k} \neq w_{k}^{\prime} \equiv \neg\left(w_{1}=w_{1}^{\prime} \wedge \ldots \wedge w_{k}=w_{k}^{\prime}\right)$ and that, by definition, $A \Rightarrow B \equiv \neg(A) \vee B$, a clause can always be written as an implication:

$$
\left(w_{1}=w_{1}^{\prime} \wedge \ldots \wedge w_{k}=w_{k}^{\prime}\right) \Rightarrow\left(u_{1}=v_{1} \vee \ldots u_{m}=v_{m}\right)
$$

Note also that a so-called conditional equation (also called a Horn clause) is a clause such that $m=1$, i.e., of the form:

$$
\left(w_{1}=w_{1}^{\prime} \wedge \ldots \wedge w_{k}=w_{k}^{\prime}\right) \Rightarrow u_{1}=v_{1}
$$

For example, $x \cdot y=x \cdot z \Rightarrow y=z$ is a conditional equation that is true for . \cdot list concatenation or multiset union, but not for set union, since $\{a\} \cup\{b\}=\{a\} \cup\{a, b\}$, but $b \neq\{a, b\}$.

The notion of a clause can be generalized to what I call a multiclause. This is a formula of the form:

$$
\left(w_{1}=w_{1}^{\prime} \wedge \ldots \wedge w_{k}=w_{k}^{\prime}\right) \Rightarrow\left(\left(u_{1}^{1}=v_{1}^{1} \vee \ldots \vee u_{m_{1}}^{1}=v_{m_{1}}^{1}\right) \wedge \ldots \wedge\left(u_{1}^{k}=v_{1}^{k} \vee \ldots \vee u_{m_{k}}^{k}=v_{m_{k}}^{k}\right)\right)
$$

which condenses into a sigle formula k clauses having the same condition $\left(w_{1}=w_{1}^{\prime} \wedge \ldots \wedge w_{k}=\right.$ w_{k}^{\prime}), namely, the k clauses:

$$
\begin{gathered}
\left(w_{1}=w_{1}^{\prime} \wedge \ldots \wedge w_{k}=w_{k}^{\prime}\right) \Rightarrow\left(u_{1}^{1}=v_{1}^{1} \vee \ldots \vee u_{m_{1}}^{1}=v_{m_{1}}^{1}\right) \\
\ldots \\
\left(w_{1}=w_{1}^{\prime} \wedge \ldots \wedge w_{k}=w_{k}^{\prime}\right) \Rightarrow\left(u_{1}^{k}=v_{1}^{k} \vee \ldots \vee u_{m_{k}}^{k}=v_{m_{k}}^{k}\right) .
\end{gathered}
$$

As we shall see when we discuss Maude's New Inductive Theorem Prover (NuITP), a multiclause condensing k clauses can make proofs considerably shorter than proofs of clauses, often cutting by a factor of k the amount of proving that is needed.

A Σ-sentence is a formula with no free variables, i.e., such that (as a tree) any variable appears below a universal \forall or an existential \exists quantifier for it. For example, if φ is a QF formula, then we can consider three kinds of sentences associated to a QF formula φ :

1. Universal Closure: $\forall\left(x_{1}, \ldots, x_{p}\right) \varphi$, where x_{1}, \ldots, x_{p} are the variables appearing in φ, which we can abbreviate to just $\forall \varphi$.
2. Existential Closure: $\exists\left(x_{1}, \ldots, x_{p}\right) \varphi$, where x_{1}, \ldots, x_{p} are the variables appearing in φ, which we can abbreviate to just $\exists \varphi$.

3. Formula in Prenex Form:

$$
Q_{1}\left(x_{1}^{1}, \ldots, x_{p_{1}}^{1}\right) Q_{2}\left(x_{1}^{2}, \ldots, x_{p_{2}}^{2}\right) \ldots Q_{k}\left(x_{1}^{k}, \ldots, x_{p_{k}}^{k}\right) \varphi
$$

where the Q_{j} are \forall or \exists quantifiers, and the variables $x_{1}^{1}, \ldots, x_{p_{1}}^{1}, \ldots, x_{1}^{k}, \ldots, x_{p_{k}}^{k}$ are all different and are exactly the variables appearing in φ. Note that cases (1) and (2) are special cases of (3), namely, $k=1$.

Note, finally, that a general first-order Σ-formula is defined as any formula obtained from Σ-equalities by repeated application of: (i) negation \neg, (ii) conjunction \wedge, (iii) disjunction \vee, universal quantification \forall, and existential quantification \exists. A first-order Σ-sentence is then a first-order Σ-formula such that each of its variables appears below some quantifier for it.

Fact. Any first-order Σ-sentence is equivalent to one in Prenex form. The, somewhat nontrivial, proof is nevertheless constructive: we can gradually put any Σ-sentence in Prenex form by applying a series of formula equivalences to "bubble up" the quantifiers to the top of the formula. In fact this is just an algorithm the same way that putting a QF formula in conjunctive, resp. disjunctive, normal form is an algorithm.

Semantics of First-Order Logic

We can now define the notion of truth or validity or satisfaction of a first-order Σ-formula in an algebra \mathbb{A}. This relation is denoted $\mathbb{A} \vDash \varphi$. I shall first define the relation for $\varphi \mathrm{QF}$, and then will consider the case of universal or existential closures.

Given a QF Σ-formula φ and a Σ-algebra \mathbb{A}, the relation $\mathbb{A} \models \varphi$ holds by definition iff $\forall a \in$ $[X \rightarrow A](\mathbb{A}, a) \models \varphi$. We then define $(\mathbb{A}, a) \models \varphi$ inductively on the structure of the formula as follows:

1. Equations: $(\mathbb{A}, a) \models u=v$ iff $u a=v a$.
2. Negation: $(\mathbb{A}, a) \models \neg \varphi$ iff $(\mathbb{A}, a) \not \models \varphi$.
3. Conjunction: $(\mathbb{A}, a) \models \varphi \wedge \psi$ iff $(\mathbb{A}, a) \models \varphi$ and $(\mathbb{A}, a) \models \psi$.
4. Disjunction: $(\mathbb{A}, a) \models \varphi \vee \psi$ iff $(\mathbb{A}, a) \models \varphi$ or $(\mathbb{A}, a) \models \psi$.

Important Remarks.

1. If $\mathbb{A} \vDash u \neq v$, then $\mathbb{A} \not \vDash u=v$, but the converse implication is not true. For example, for \mathbb{N} the natural numbers, $\mathbb{N} \vDash x \neq s(x)$, i.e., by definition of satisfaction we have: $\forall a \in[X \rightarrow N](\mathbb{N}, a) \models x \neq s(x)$, which by the non-empty sorts assumption implies $\exists a \in$ $[X \rightarrow N](\mathbb{N}, a) \models x \neq s(x)$, which is equivalent to $\neg(\forall a \in[X \rightarrow N](\mathbb{N}, a) \models x=s(x))$, which by definition is the meaning of $\mathbb{N} \not \vDash x=s(x)$.

Instead we have $\mathbb{N} \not \vDash x=0$, since for an assignment a such that $a(x)=1$ we have $(\mathbb{N}, a) \models x \neq 0$. However, this does not imply $\mathbb{N} \models x \neq 0$, since the disequation $x \neq 0$ is not valid in \mathbb{N}, since it does not hold for an assignment a such that $a(x)=0$.
2. Likewise, if $\mathbb{A} \models \varphi$ or $\mathbb{A} \models \psi$, then $\mathbb{A} \models \varphi \vee \psi$, but the converse implication is not true. For example, since $\mathbb{N} \models x \geq 0=$ true we have that $\mathbb{N} \models x \geq 0=$ true or $\mathbb{N} \models x=s(x)$ holds, and therefore $\mathbb{N} \models x \geq 0=\operatorname{true} \vee x=s(x)$ holds. However, the converse implication does not hold for arbitrary φ and ψ. For example, for rem the reminder function we have: $\mathbb{N} \models \operatorname{rem}(n, 2)=0 \vee \operatorname{rem}(n, 2)=1$, but the disjunction $\mathbb{N} \models \operatorname{rem}(n, 2)=0$ or $\mathbb{N} \models \operatorname{rem}(n, 2)=1$ if false, since neither $\operatorname{rem}(n, 2)=0 \operatorname{nor} \operatorname{rem}(n, 2)=1$ are valid equations in \mathbb{N}.

Exercise. Check that for conjunction we are in a better situation, since we have the equivalence:

$$
\mathbb{A} \models \varphi \text { and } \mathbb{A} \models \psi \Leftrightarrow \mathbb{A} \models \varphi \wedge \psi
$$

I will not give the general definition of satisfaction for arbitrary Σ-sentences: it is not difficult, but the case of a universal or existential closure of a QF formula is easier to define and will suffice for our purposes. For φ a QF Σ-formula with $\operatorname{vars}(\varphi)=X$ and \mathbb{A} a Σ-algebra we define:

$$
\begin{gathered}
\mathbb{A} \models \forall \varphi \Leftrightarrow{ }_{\text {def }} \quad \mathbb{A} \models \varphi \\
\mathbb{A} \models \exists \varphi \quad \Leftrightarrow_{\text {def }} \exists a \in[X \rightarrow A](\mathbb{A}, a) \models \varphi .
\end{gathered}
$$

Finally, a first-order Σ-theory is a pair (Σ, Γ) with Γ a set of Σ-sentences. We then say that a Σ-algebra \mathbb{A} is a model of the theory (Σ, Γ), denoted $\mathbb{A} \models \Gamma$, iff $\mathbb{A} \models \varphi$ for each sentence $\varphi \in \Gamma$. In particular, we view an equational theory (Σ, E) as a first-order theory of the form: $(\Sigma, \forall E)$, where, by definition, $\forall E=\{\forall u=v \mid(u=v) \in E\}$. Of course, $\mathbb{A} \vDash E$ iff $\mathbb{A} \vDash \forall E$. That is, (Σ, E) and $(\Sigma, \forall E)$ define the same class of models, namely the (Σ, E)-algebras.

First-order logic is sound and complete: we can give a set of inference rules defining a provability relation $(\Sigma, \Gamma) \vdash \varphi$ such that we have an equivalence $(\Sigma, \Gamma) \vdash \varphi \Leftrightarrow(\Sigma, \Gamma) \models \varphi$.

