Appendix to CS 476 Lecture 15: First-Order Logic

José Meseguer, CS Department, UIUC

Syntax of First-Order Logic

Assume an order-sorted signature X that is preregular, kind-complete and has non-empty sorts.
Then define a quantifier-free (QF) 3-formula as a formula built from Y-equations by repeated
application of: (i) negation —, (ii) conjunction A and (iii) disjunction V.

Note: a QF X-formula is also called a (QF) equational formula, since only equations appear in
it (no predicates like, e.g., x > 0, appear in the formula). However, it is always possible to turn
predicate symbols into function symbols, so that equational formulas are just as expressive as
formulas having both equations and predicates. For example, the predicate x > 0 becomes the
equation x > 0 = true.

It is easy to show that:

1. By applying the DeMorgan Laws =(AV B) = A A =B and -(AA B) = =AV =B, plus
the double negation law —(—(A)) = A, we can always “push negations to the equations,”
so that a negation symbol only appears around an equation. Notation: —(u = v) is
abbreviated to v # v. The formula u # v is called a disequality, to distinguish it from
a (strict or non-strict) inequality, such as u > v or u > v, since inequality is a different
notion associated to partial orders.

2. After negations have been pushed to equations, we can apply the distributivity of V over
A (ie, AV(BAC)=(AVB)A(AV()), to always “push” occurrences of V below A.

In this way, any QF formula ¢ can be put in conjunctive normal form as Boolean equivalent
to a formula of the form:

¥

/\ Clj

1<j<n

where each clj, called a clause, is a disjunction of equalities and disequalities, that is, a formula
of the form:

u1:vl\/...um:vm\/wl#w’l\/...\/wk#wg
where m + k > 1.

Note. If in step 2 above we were to apply instead the distributivity of A over V (i.e., AA (BV
C) = (ANB)V(ANC)), we would instead get the notion of a QF formula in disjunctive normal



form, i.e., we can alternatively always express any QF ¢ as a disjunction of conjunctions of
equalities and disequalities.

By noticing that wy # w} V... w, # wj, = ~(w1 = w] A... Awy, = w)) and that, by definition,
A= B =-(A)V B, a clause can always be written as an implication:
(wy =wWi Ao Awg =wy) = (U =v1 V.. Uy, = Upy)
Note also that a so-called conditional equation (also called a Horn clause) is a clause such that
m =1, i.e., of the form:
(wy =Wy A... Awg = wp) = up = vy

For example, -y = -2 = y = z is a conditional equation that is true for _-_ list concatenation
or multiset union, but not for set union, since {a} U {b} = {a} U {a, b}, but b # {a, b}.

The notion of a clause can be generalized to what I call a multiclause. This is a formula
of the form:

(wy =wi A Awg = wy) = ((ug :Ul\/...\/u,ln1 :vizl)A.../\(ulf:vf\/...\/uffnk :vfflk))
which condenses into a sigle formula k clauses having the same condition (w1 = wjA.. . Awy =

wy,), namely, the &k clauses:

(w1:wll/\.../\wk:wfc):(u%:v%v...\/u%nl:v}nl)
(w1:wll/\.../\wk:wz.):>(ulf:v’f\/...Vulfnk:vfnk).

As we shall see when we discuss Maude’s New Inductive Theorem Prover (NulTP), a multi-
clause condensing k clauses can make proofs considerably shorter than proofs of clauses, often
cutting by a factor of £ the amount of proving that is needed.

A Y-sentence is a formula with no free variables, i.e., such that (as a tree) any variable appears
below a universal V or an existential 3 quantifier for it. For example, if ¢ is a QF formula,
then we can consider three kinds of sentences associated to a QF formula ¢:

1. Universal Closure: V(x1,...,xp,) ¢, where z1,...,x, are the variables appearing in ¢,
which we can abbreviate to just V.

2. Existential Closure: 3(xy,...,2,) ¢, where z1,..., 2z, are the variables appearing in
, which we can abbreviate to just Jip.

3. Formula in Prenex Form:

1 1 2 2 k k
Q1(w1, .-y xp,) Qo] .. xp,) - Qr(y, .. ) @
where the ); are V or 3 quantifiers, and the variables Tl ... 7%1917 e ,x’f, e ,m’;k are all

different and are exactly the variables appearing in ¢. Note that cases (1) and (2) are
special cases of (3), namely, k = 1.



Note, finally, that a general first-order Y-formula is defined as any formula obtained from
Y-equalities by repeated application of: (i) negation —, (ii) conjunction A, (iii) disjunction V,
universal quantification V, and existential quantification 3. A first-order Y-sentence is then a
first-order Y-formula such that each of its variables appears below some quantifier for it.

Fact. Any first-order ¥-sentence is equivalent to one in Prenex form. The, somewhat non-
trivial, proof is nevertheless constructive: we can gradually put any >-sentence in Prenex
form by applying a series of formula equivalences to “bubble up” the quantifiers to the top
of the formula. In fact this is just an algorithm the same way that putting a QF formula in
conjunctive, resp. disjunctive, normal form is an algorithm.

Semantics of First-Order Logic

We can now define the notion of truth or validity or satisfaction of a first-order Y-formula in
an algebra A. This relation is denoted A |= ¢. I shall first define the relation for ¢ QF, and
then will consider the case of universal or existential closures.

Given a QF Y-formula ¢ and a Y-algebra A, the relation A = ¢ holds by definition iff Va €
[X — A] (A,a) | ¢. We then define (A, a) = ¢ inductively on the structure of the formula as
follows:

1. Equations: (A,a) Fu=viff ua=va.

2. Negation: (A, a) = - iff (A, a) & ¢.

3. Conjunction: (A,a) =AY iff (A,a) E ¢ and (A, a) .
4. Disjunction: (A,a) = VY iff (A a) E ¢ or (A, a) = 9.

Important Remarks.

1. If A = u # v, then A [~ u = v, but the converse implication is not true. For example,
for N the natural numbers, N = x # s(x), i.e., by definition of satisfaction we have:
Va € [X — N| (N,a) = = # s(x), which by the non-empty sorts assumption implies Ja €
[X — N|] (N,a) = z # s(x), which is equivalent to —(Va € [X — N] (N,a) =z = s(z)),
which by definition is the meaning of N j£ x = s(x).

Instead we have N & x = 0, since for an assignment a such that a(z) = 1 we have
(N,a) = x # 0. However, this does not imply N |= x # 0, since the disequation = # 0 is
not valid in N, since it does not hold for an assignment a such that a(x) = 0.

2. Likewise, if A = p or A = 4, then A = ¢V1), but the converse implication is not true. For
example, since N = & > 0 = true we have that N =2 > 0 = true or N =z = s(x) holds,
and therefore N = x > 0 = true V = s(x) holds. However, the converse implication
does not hold for arbitrary ¢ and . For example, for rem the reminder function we
have: N = rem(n,2) = 0V rem(n,2) = 1, but the disjunction N | rem(n,2) = 0 or
N = rem(n,2) = 1 if false, since neither rem(n,2) = 0 nor rem(n,2) = 1 are valid
equations in N.



Exercise. Check that for conjunction we are in a better situation, since we have the equiva-
lence:

AEyp and AEY & AEeA.

I will not give the general definition of satisfaction for arbitrary -sentences: it is not difficult,
but the case of a universal or existential closure of a QF formula is easier to define and will
suffice for our purposes. For ¢ a QF X-formula with vars(¢) = X and A a 3-algebra we define:

AEYy i AFEg
AE3p ©ay Jac[X — Al (Aa) o

Finally, a first-order 3-theory is a pair (3,I") with I' a set of X-sentences. We then say that
a Y-algebra A is a model of the theory (X,T"), denoted A | T, iff A = ¢ for each sentence
¢ € I'. In particular, we view an equational theory (X, F) as a first-order theory of the form:
(X,VE), where, by definition, VE = {V u = v | (u = v) € E}. Of course, A = E iff A E VE.
That is, (X, F) and (X,VE) define the same class of models, namely the (X, F)-algebras.

First-order logic is sound and complete: we can give a set of inference rules defining a provability
relation (3,T) F ¢ such that we have an equivalence (X, T)F ¢ < (X,T) E .



