
Program Verification: Lecture 14

José Meseguer

Computer Science Department
University of Illinois at Urbana-Champaign

1

Provable Theorems and Theorems of an Equational Theory (Σ, E)

For Σ = ((S,≤), G) and order-sorted signature, define the set of
Σ-equations in the obvious way (where X has a countably infinite
set Xs of variables for each sort s ∈ S):

Σ.Eq = {u = v | ∃s, s′ ∈ S. u ∈ TΣ(X)s ∧ v ∈ TΣ(X)s′ ∧ [s] = [s′]}.

Given any set of Σ-equations E ⊆ Σ.Eq , define the set of its
provable theorems as:

PThm(E) = {u = v ∈ Σ.Eq | u =E v}.

Likewise, for any E ⊆ Σ.Eq , define the set of its theorems as:

Thm(E) = {u = v ∈ Σ.Eq | ∀A ∈ Alg(Σ,E), A |= u = v}.

The Soundness and Completeness Theorems show that we have:

PThm(E) = Thm(E).

2

Inductive Theorems of an Equational Theory (Σ, E)

Given any Σ-algebra A, define its set of theorems as:

Thm(A) = {u = v ∈ Σ.Eq | A |= u = v}.

Then, given an equational theory (Σ, E) define its set of inductive
theorems IndThm(Σ, E) by the set-theoretic equality:

IndThm(Σ, E) =def Thm(TΣ/E).

In particular, when a functional module fmod(Σ, E ∪B)endfm is
(ground) confluent, terminating and sufficiently complete w.r.t.
constructors Ω, since TΣ/E∪B

∼= CΣ,E/B , and by Ex.12.2 we know
that Thm(TΣ/E) = Thm(CΣ,E/B), in this case IndThm(Σ, E) are
the equational properties satisfied by the equational program
fmod(Σ, E ∪B)endfm. Thus, the notion of inductive theorem is a
crucial concept in program verification.

3

Inductive Theorems of an Equational Theory (Σ, E) (II)

By definition, given a Σ-equation u = v, we write E |=ind u = v, or
(Σ, E) |=ind u = v, and say that u = v is an inductive theorem or
an inductive consequence of E iff (u = v) ∈ IndThm(Σ, E).

But since IndThm(Σ, E) = Thm(TΣ/E) and TΣ/E |= E, we have an
inclusion Thm(E) ⊆ IndThm(Σ, E), and therefore an implication:

E |= u = v ⇒ E |=ind u = v

In general, however, the converse implication does not hold: there
are theories (Σ, E) and Σ-equations u = v such that TΣ/E |= u = v

but E ̸|= u = v, so that, by Soundness and Completeness,
E ̸⊢ u = v. Let us see some examples.

4

Can have TΣ/E |= u = v but E ̸⊢ u = v

Consider the unsorted signature Σ = {0, s,_ + _} with
E = {x+ 0 = x, x+ s(y) = s(x+ y)}. We have already proved that
E⃗ is confluent and terminating. It is well-known and easy to prove
(it will be done in a later lecture) that +CΣ,E/B

is associative and
commutative. Therefore, TΣ/E |= x+ y = y + x, and
TΣ/E |= (x+ y) + x = x+ (y + z). However,

E ̸⊢ x+ y = y + x and E ̸⊢ (x+ y) + z = x+ (y + z)

since, by the Church-Rosser Theorem, x+ y =E y + x iff
(x+ y)!E⃗ = (y + x)!E⃗ , and (x+ y) + z =E x+ (y + z) iff
((x+ y) + z)!E⃗ = (x+ (y+ z))!E⃗ . But, those canonical forms are all
different, because the terms involved, x+ y, y + x, (x+ y) + z and
x+ (y + z) are all in E⃗-canonical form: no E⃗ rules apply to them.

5

Characterizing the Inductive Theorems of (Σ, E ∪B)

Can we say something about when (u = v) ∈ IndThm(Σ, E ∪B)?

Theorem (Characterization of Inductive Theorems):

1. (u = v) ∈ IndThm(Σ, E ∪B) iff
∀θ ∈ [X → TΣ], E ∪B ⊢ uθ = vθ, where X = vars(u)∪ vars(v).

2. If rules E⃗ are sort-decreasing, ground confluent, terminating
and sufficiently complete w.r.t. Ω modulo B,

(u = v) ∈ IndThm(Σ, E∪B) ⇔ ∀ρ ∈ [X → TΩ], E∪B ⊢ uρ = vρ.

Proof Hints: (1) follows from TΣ/E∪B |= u = v, since any
assignment a ∈ [X → TΣ/E] is of the form a = θ; [_]E∪B for some
θ ∈ [X → TΣ]. The proof of (2) is a variant of that of (1) using the
(ground) Church-Rosser Theorem modulo B, sufficient
completeness and the isomorphism TΣ/E∪B

∼= CΣ/E⃗,B .

6

Inductive Theorems do not Change the Initial Algebra

Theorem (Lemma Internalization Theorem 1) Let (Σ, E) be an
equational theory and G a set of Σ-equations such that
(Σ, E) |=ind G. Then, TΣ/E = TΣ/E∪G.

Proof : Since TΣ/E∪G |= E we have a unique Σ-homomorphism
h : TΣ/E → TΣ/E∪G. And since TΣ/E |= E ∪G, we also have a
unique Σ-homomorphism g : TΣ/E∪G → TΣ/E . But then, the
initiality of TΣ/E forces h; g = idTΣ/E

, and the initiality of TΣ/E∪G

forces g;h = idTΣ/E∪G
. Therefore, we have an isomorphism:

TΣ/E
∼= TΣ/E∪G. We will be done of we prove the following lemma:

Lemma Let E,E′ be two sets of Σ-equations such that
TΣ/E

∼= TΣ/E′ . Then, TΣ/E = TΣ/E′ .

7

Inductive Theorems do not Change the Initial Algebra (II)

Proof of the Lemma: TΣ/E and TΣ/E′ are uniquely determined
by the respective ground equality relations =E ∩T 2

Σ and =E′ ∩T 2
Σ.

We just need to show (=E ∩T 2
Σ) = (=E′ ∩T 2

Σ). Since we have a
Σ-isomorphism h : TΣ/E → TΣ/E′ , and unique Σ-homomorphisms
[_]E : TΣ → TΣ/E , and [_]E′ : TΣ → TΣ/E , the initiality of TΣ

forces [_]E ;h = [_]E′ , i.e., hs([t]E) = [t]E′ for each t ∈ TΣ,s, s ∈ S.
Let t ∈ TΣ,s and t′ ∈ TΣ,s′ with t =E t′. Then [s] = [s′] and, by h

order-sorted Σ-homomorphism and [t]E = [t′]E , we must have
hs([t]E) = hs′([t

′]E), which forces:

hs([t]E) = [t]E′ = [t′]E′ = hs′([t
′]E)

giving us the containment (=E ∩T 2
Σ) ⊆ (=E′ ∩T 2

Σ). Using the
inverse isomorphism h−1 we likewise get (=E′ ∩T 2

Σ) ⊆ (=E ∩T 2
Σ),

giving us (=E ∩T 2
Σ) = (=E′ ∩T 2

Σ), as desired. q.e.d. q.e.d.

8

Equivalence of Equational Theories

Call two equational theories (Σ, E) and (Σ, E′) equivalent, denoted
(Σ, E) ≡ (Σ, E′) iff (by definition) E ⊢ E′ and E′ ⊢ E.

Ex.14.1 Prove: (i) (Σ, E) ⊢ E′ ⇒ (=E′) ⊆ (=E) ∧ (=E) = (=E∪E′),

(ii) (Σ, E) ≡ (Σ, E′) ⇔ (=E) = (=E′) ⇔ Alg(Σ,E) = Alg(Σ,E′).

For example, the sets of equations
E = {x · (y · z) = (x · y) · z, x · 1 = x = 1 · x, x · x−1 = 1, 1 = x−1 · x},
and E′ = {(x · y) · z = x · (y · z), 1 · x = x, x · 1 = x, x · x−1 =

1, x−1 · x = 1, 1−1 = 1, (x−1)−1 = x, (x · y)−1 =

y−1 · x−1, x · (x−1 · y) = y, x−1 · (x · y) = y} define equivalent
theories (Σ, E) ≡ (Σ, E′) for the theory of groups. But E′ is much
better, because E⃗′ is confluent and terminating. Therefore, by the
Church-Rosser Theorem we can decide whether any Σ-equality
u = v is a theorem of group theory by checking whether u!E⃗′ = v!E⃗′ .

9

Inductive Equivalence of Equational Theories

Call two equational theories (Σ, E) and (Σ, E′) inductively
equivalent, denoted (Σ, E) ≡ind (Σ, E′) iff (by definition)
(Σ, E) |=ind E′ and (Σ, E′) |=ind E.

Ex.14.2 Prove:

(i)(Σ, E) |=ind E′ ⇒ (=E′ ∩T 2
Σ) ⊆ (=E ∩T 2

Σ)∧(=E ∩T 2
Σ) = (=E∪E′ ∩T 2

Σ)

(ii) (Σ, E) ≡ind (Σ, E′) ⇔ (=E ∩T 2
Σ) = (=E′ ∩T 2

Σ) ⇔ TΣ/E = TΣ/E′ .

Ex.14.1 and Ex.14.2 give us
(Σ, E) ≡ (Σ, E′)⇒ (Σ, E) ≡ind (Σ, E′). But in general
(Σ, E) ≡ind (Σ, E′) does not imply (Σ, E) ≡ (Σ, E′).

10

For example, in pg. 5 we saw that for Σ = {0, s,_ + _} and
E = {x+ 0 = x, x+ s(y) = s(x+ y)}, TΣ/E |= x+ y = y + x. Thus,
by the Lemma Internalization Theorem 1 and Ex.14.2 we have
(Σ, E) ≡ind (Σ, E ∪ {x+ y = y + x}). But we saw in pg. 5 that
E ̸⊢ x+ y = y + x, and therefore (Σ, E) ̸≡ (Σ, E ∪ {x+ y = y + x}).

11

Semantic Equivalence of Equational Programs

In Program Verification a fundamental question is:

When are two different programs semantically equivalent?

The most obvious answer for admissible equational programs
fmod (Σ, E) endfm and fmod (Σ, E′) endfm is:

When they compute the same recursive functions,

which mathematically just means: when CΣ/E⃗ = CΣ/E⃗′ .

For example, we shall prove that for Σ = {0, s,_ + _},
E = {x+ 0 = x, x+ s(y) = s(x+ y)} and
E′ = {0 + x = x, s(x) + y = s(x+ y)}, fmod (Σ, E) endfm and
fmod (Σ, E′) endfm are equivalent equational programs: both
compute the addition function on natural numbers +N.

Let us give a more precise definition.

12

Admissible and Comparable programs

Call fmod (Σ, E ∪B) endfm admissible iff (i) Σ is B-preregular,
with non-empty sorts, (ii) E⃗ is sort-decreasing, and ground
confluent and terminating modulo B, and (iii) it is sufficiently
complete w.r.t. a constructor subsignature Ω.
Call (Σ, E ∪B) satisfying (i)–(ii) ground convergent modulo B.
Given a constructor subsignature Ω ⊆ Σ, let Ω+ denote the
signature that extends Ω by adding all non-constructor operator
typings that are subsort-overloaded with some operator in Ω. Call
two admissible equational programs fmod (Σ, E ∪B) endfm and
fmod (Σ, E′ ∪B′) endfm, both with constructors Ω, comparable iff:
(i) E = E0 ⊎EΩ+ and E′ = E′

0 ⊎EΩ+ , with EΩ+ Ω+-equations, and
each rule in E⃗0 ∪ E⃗′

0 is of the form f(u1, . . . , un)→ v, with f in
Σ \ Ω+, and (ii) B = B0 ⊎BΩ+ and B′ = B′

0 ⊎BΩ+ , with BΩ+

A ∨ C ∨ U Ω+-axioms, and B0 ∪B′
0 A ∨ C (Σ \ Ω+)-axioms.

13

Semantic Equivalence of Equational Programs (II)

Two admissible and comparable programs fmod (Σ, E ∪B) endfm
and fmod (Σ, E′ ∪B′) endfm are called semantically equivalent,
denoted fmod (Σ, E ∪B) endfm ≡sem fmod (Σ, E′ ∪B′) endfm iff
CΣ/E⃗,B = CΣ/E⃗′,B′ .

Since the axioms in B0 ∪B′
0 are A ∨ C (Σ \ Ω+)-axioms, for any

u, v ∈ TΩ+ , u =B v (resp. u =B′ v) forces u =BΩ+ v. Therefore, the
unique Σ-homomorphisms [_!E⃗/B]B : TΣ → CΣ/E⃗,B and
[_!E⃗′/B′]B′ : TΣ → CΣ/E⃗′,B′ can be described more precisely as
[_!E⃗/B]BΩ+ : TΣ → CΣ/E⃗,B and [_!E⃗′/B′]BΩ+ : TΣ → CΣ/E⃗′,B′ .

Ex.14.3. Prove that for admissible and comparable fmod (Σ, E ∪B)

endfm and fmod (Σ, E′ ∪B′) endfm, fmod (Σ, E ∪B) endfm ≡sem

fmod (Σ, E′ ∪B′) endfm iff ∀t ∈ TΣ, t!E⃗/B =BΩ+ t!E⃗′/B′ . I.e., if
Maude’s red command gives the same result for both modulo BΩ+ .

14

Semantic Equivalence of Equational Programs (III)

Note that CΣ/E⃗,B = CΣ/E⃗′,B′ and the Lemma in pg. 2 force
TΣ/E∪B = TΣ/E′∪B′ . Therefore, by Ex.14.2, fmod (Σ, E ∪B) endfm
≡sem fmod (Σ, E′ ∪B′) endfm implies (Σ, E ∪B) ≡ind (Σ, E′ ∪B′).
But the converse implication does not hold in general.

For example, for Σ = {a, b, c}, E = {a = b}, and E′ = {b = a}, of
course (Σ, E) ≡ (Σ, E′) and therefore (Σ, E) ≡ind (Σ, E′); but
although E⃗ and E⃗′ are both convergent, they have different
constructors Ω = {b, c} and Ω′ = {a, c}, so that CΣ/E⃗ ̸= CΣ/E⃗′ .
Therefore, fmod (Σ, E ∪B) endfm ̸≡sem fmod (Σ, E′ ∪B′) endfm.

Theorem (Program Equivalence Theorem) For admissible and
comparable fmod (Σ, E ∪B) endfm and fmod (Σ, E′ ∪B′) endfm,
fmod (Σ, E ∪B) endfm ≡sem fmod (Σ, E′ ∪B′) endfm iff
(Σ, E ∪B) |=ind (E′

0 \ E0) ∪ (B′ \B).

15

Semantic Equivalence of Equational Programs (IV)

Proof : To see (⇒), note that sematic equivalence forces
TΣ/E∪B = TΣ/E′∪B′ , which forces
(Σ, E ∪B) |=ind (E′

0 \ E0) ∪ (B′ \B).

To prove the (⇐) implication, by Ex.14.3. we just need to show
that ∀t ∈ TΣ, t!E⃗/B =BΩ+ t!E⃗′/B′ . But note that
(Σ, E ∪B) |=ind (E′

0 \E0)∪ (B′ \B) forces (Σ, E ∪B) |=ind E′ ∪B′,
and by Ex.14.2.(i) this then forces t!E⃗/B =E∪B t!E⃗′/B′ , which by
the Church-Rosser property then forces t!E⃗/B =BΩ+ (t!E⃗′/B′)!E⃗/B .
But note that, by sufficient completeness, t!E⃗′/B′ is an Ω-term, and
since E⃗ = E⃗0 ⊎ E⃗Ω+ , this means that no rule in E⃗0 can apply to
t!E⃗′/B′ , and since E⃗Ω+ ⊆ E⃗′, no rule in E⃗Ω+ can apply to t!E⃗′/B′

either. This forces (t!E⃗′/B′)!E⃗/B = t!E⃗′/B′ , yielding
t!E⃗/B =BΩ+ t!E⃗′/B′ , as desired. q.e.d.

16

Internalizing Lemmas in Equational Programs

Theorem (Lemma Internalization Theorem 2) Let fmod
(Σ, E ∪B) endfm be an admissible program with constructors Ω

satisfying the extra requirements on E and B allowing it to be
comparable to other programs, and let G be a finite set of
Σ-equations such that (Σ, E ∪B) |=ind G. If the equations G can
be oriented (left-to right or right to left) as sort-decreasing rules G⃗′

of the form f(u1, . . . , un)→ w with f in Σ \ Ω+ and so that rules
E⃗ ∪ G⃗′ are terminating modulo B, then fmod (Σ, E ∪G′ ∪B) endfm
(with G and G′ differing only in orientation) is admissible and
fmod (Σ, E ∪B) endfm ≡sem fmod (Σ, E ∪G′ ∪B) endfm.

Proof : We will be done if we prove that (Σ, E ∪G′ ∪B) is locally
ground confluent modulo B, since this makes fmod (Σ, E ∪G′ ∪B)

endfm admissible and comparable with fmod (Σ, E ∪B) endfm and,
thanks to the Program Equivalence Theorem, yields

17

fmod (Σ, E ∪B) endfm ≡sem fmod (Σ, E ∪G′ ∪B) endfm.

Let t, u, v ∈ TΣ be such that u E⃗∪G⃗′/B← t→E⃗∪G⃗′/B v. We need to
show that u ↓E⃗∪G⃗′/B v. This will hold if we prove u ↓E⃗/B v. But
since (Σ, E ∪B) |=ind G, Ex.14.2.(i) forces u =E∪B v, which, since
E⃗ is gound convergent modulo B, forces u ↓E⃗/B v, as desired. q.e.d.

Theorem (Lemma Internalization Theorem 3) Let fmod
(Σ, E ∪B) endfm be an admissible program with constructors Ω

satisfying the extra requirements on E and B to be comparable to
other programs, and let G be a finite set of A∨C axioms for binary
operators Σ0 ⊆ Σ \ Ω+ general enough to declare G axioms for all
operators subsort-overloaded to those in Σ0, and making Σ

(B ∪G)-preregular. If (Σ, E ∪B) |=ind G and the rules E⃗ are
terminating modulo B ∪G, then fmod (Σ, E ∪B ∪G) endfm is
admissible and comparable to fmod (Σ, E ∪B) endfm, and
fmod (Σ, E ∪B) endfm ≡sem fmod (Σ, E ∪B ∪G) endfm.

18

Internalizing Lemmas in Equational Programs (II)

Proof : Reasoning as in the proof of the Lemma Internalization
Theorem 2, we will be done if we prove that the rules E⃗ are locally
ground confluent modulo B ∪G. Let t, u, v ∈ TΣ be such that
u E⃗/B∪G← t→E⃗/B∪G v. We need to show that u ↓E⃗/B∪G v. This
will hold if we prove u ↓E⃗/B v. But since (Σ, E ∪B) |=ind G,
Ex.14.2.(i) forces u =E∪B v, which, since E⃗ is ground confluent
modulo B, forces u ↓E⃗/B v, as desired. q.e.d.

19

Exercises

Ex.14.4. Prove in detail the theorem characterizing the inductive
theorems of a theory (Σ, E) stated in pg. 6 of this lecture.

Ex.14.5. Consider the equational theory (Σ, E) defined by the
functional module:
fmod PEANO-p is
sorts NzNat Nat . subsorts NzNat < Nat .
op 0 : -> Nat [ctor] .
op s : Nat -> NzNat [ctor] .
op p : NzNat -> Nat .
eq p(s(N:Nat)) = N:Nat .
endfm

which defines the predecessor function p. Do the following:

1. Prove that (Σ, E⃗) is sort-decreasing, confluent, terminating,
and sufficiently complete w.r.t. Ω = {0, s} by either using tools
in Maude’s Formal Environment, or giving a hand proof.

20

2. Prove that E ̸⊢ s(p(y :NzNat)) = y :NzNat .

3. Prove that (Σ, E) |=ind s(p(y :NzNat)) = y :NzNat by applying
Part (2) of the theorem characterizing the inductive theorems
of a theory (Σ, E) stated in pg. 6 of this lecture.

21

