Program Verification: Lecture 14

José Meseguer
Computer Science Department
University of Illinois at Urbana-Champaign

Provable Theorems and Theorems of an Equational Theory (Σ, E)

For $\Sigma=((S, \leq), G)$ and order-sorted signature, define the set of Σ-equations in the obvious way (where X has a countably infinite set X_{s} of variables for each sort $\left.s \in S\right)$:

$$
\Sigma . E q=\left\{u=v \mid \exists s, s^{\prime} \in S . u \in T_{\Sigma}(X)_{s} \wedge v \in T_{\Sigma}(X)_{s^{\prime}} \wedge[s]=\left[s^{\prime}\right]\right\}
$$

Given any set of Σ-equations $E \subseteq \Sigma . E q$, define the set of its provable theorems as:

$$
\operatorname{PThm}(E)=\left\{u=v \in \Sigma . E q \mid u=_{E} v\right\} .
$$

Likewise, for any $E \subseteq \Sigma . E q$, define the set of its theorems as:

$$
\operatorname{Thm}(E)=\left\{u=v \in \Sigma . E q \mid \forall \mathbb{A} \in \operatorname{Alg}_{(\Sigma, E)}, \mathbb{A} \models u=v\right\}
$$

The Soundness and Completeness Theorems show that we have:

$$
\operatorname{PThm}(E)=\operatorname{Thm}(E)
$$

Inductive Theorems of an Equational Theory (Σ, E)

Given any Σ-algebra \mathbb{A}, define its set of theorems as:

$$
\operatorname{Thm}(\mathbb{A})=\{u=v \in \Sigma . E q \mid \mathbb{A} \models u=v\}
$$

Then, given an equational theory (Σ, E) define its set of inductive theorems $\operatorname{IndThm}(\Sigma, E)$ by the set-theoretic equality:

$$
\operatorname{IndThm}(\Sigma, E)=_{\operatorname{def}} \operatorname{Thm}\left(\mathbb{T}_{\Sigma / E}\right)
$$

In particular, when a functional module $\operatorname{fmod}(\Sigma, E \cup B)$ endfm is (ground) confluent, terminating and sufficiently complete w.r.t. constructors Ω, since $\mathbb{T}_{\Sigma / E \cup B} \cong \mathbb{C}_{\Sigma, E / B}$, and by Ex. 12.2 we know that $\operatorname{Thm}\left(\mathbb{T}_{\Sigma / E}\right)=\operatorname{Thm}\left(\mathbb{C}_{\Sigma, E / B}\right)$, in this case $\operatorname{IndThm}(\Sigma, E)$ are the equational properties satisfied by the equational program $\operatorname{fmod}(\Sigma, E \cup B)$ endfm. Thus, the notion of inductive theorem is a crucial concept in program verification.

By definition, given a Σ-equation $u=v$, we write $E \models_{i n d} u=v$, or $(\Sigma, E) \models_{i n d} u=v$, and say that $u=v$ is an inductive theorem or an inductive consequence of E iff $(u=v) \in \operatorname{IndThm}(\Sigma, E)$.

But since $\operatorname{IndThm}(\Sigma, E)=\operatorname{Thm}\left(\mathbb{T}_{\Sigma / E}\right)$ and $\mathbb{T}_{\Sigma / E} \models E$, we have an inclusion $\operatorname{Thm}(E) \subseteq \operatorname{IndThm}(\Sigma, E)$, and therefore an implication:

$$
E \models u=v \Rightarrow E \models_{\text {ind }} u=v
$$

In general, however, the converse implication does not hold: there are theories (Σ, E) and Σ-equations $u=v$ such that $\mathbb{T}_{\Sigma / E} \models u=v$ but $E \not \vDash u=v$, so that, by Soundness and Completeness, $E \nvdash u=v$. Let us see some examples.

$$
\text { Can have } \mathbb{T}_{\Sigma / E} \models u=v \text { but } E \nvdash u=v
$$

Consider the unsorted signature $\Sigma=\left\{0, s,_{\not}+\ldots\right\}$ with $E=\{x+0=x, x+s(y)=s(x+y)\}$. We have already proved that \vec{E} is confluent and terminating. It is well-known and easy to prove (it will be done in a later lecture) that ${+\mathbb{C}_{\Sigma, E / B}}$ is associative and commutative. Therefore, $\mathbb{T}_{\Sigma / E}=x+y=y+x$, and $\mathbb{T}_{\Sigma / E} \models(x+y)+x=x+(y+z)$. However,

$$
E \nvdash x+y=y+x \quad \text { and } \quad E \nvdash(x+y)+z=x+(y+z)
$$

since, by the Church-Rosser Theorem, $x+y={ }_{E} y+x$ iff $(x+y)!_{\vec{E}}=(y+x)!_{\vec{E}}$, and $(x+y)+z=_{E} x+(y+z)$ iff $((x+y)+z)!_{\vec{E}}=(x+(y+z))!_{\vec{E}}$. But, those canonical forms are all different, because the terms involved, $x+y, y+x,(x+y)+z$ and $x+(y+z)$ are all in \vec{E}-canonical form: no \vec{E} rules apply to them.

Characterizing the Inductive Theorems of $(\Sigma, E \cup B)$

Can we say something about when $(u=v) \in \operatorname{IndThm}(\Sigma, E \cup B)$?
Theorem (Characterization of Inductive Theorems):

1. $(u=v) \in \operatorname{IndThm}(\Sigma, E \cup B)$ iff
$\forall \theta \in\left[X \rightarrow T_{\Sigma}\right], E \cup B \vdash u \theta=v \theta$, where $X=\operatorname{vars}(u) \cup \operatorname{vars}(v)$.
2. If rules \vec{E} are sort-decreasing, ground confluent, terminating and sufficiently complete w.r.t. Ω modulo B,

$$
(u=v) \in \operatorname{IndThm}(\Sigma, E \cup B) \Leftrightarrow \forall \rho \in\left[X \rightarrow T_{\Omega}\right], E \cup B \vdash u \rho=v \rho .
$$

Proof Hints: (1) follows from $\mathbb{T}_{\Sigma / E \cup B} \models u=v$, since any assignment $a \in\left[X \rightarrow T_{\Sigma / E}\right]$ is of the form $a=\theta ;\left[_\right]_{E \cup B}$ for some $\theta \in\left[X \rightarrow T_{\Sigma}\right]$. The proof of (2) is a variant of that of (1) using the (ground) Church-Rosser Theorem modulo B, sufficient completeness and the isomorphism $\mathbb{T}_{\Sigma / E \cup B} \cong \mathbb{C}_{\Sigma / E, B}$.

Inductive Theorems do not Change the Initial Algebra

Theorem (Lemma Internalization Theorem 1) Let (Σ, E) be an equational theory and G a set of Σ-equations such that $(\Sigma, E) \models_{\text {ind }} G$. Then, $\mathbb{T}_{\Sigma / E}=\mathbb{T}_{\Sigma / E \cup G}$.

Proof: Since $\mathbb{T}_{\Sigma / E \cup G} \models E$ we have a unique Σ-homomorphism $h: \mathbb{T}_{\Sigma / E} \rightarrow \mathbb{T}_{\Sigma / E \cup G}$. And since $\mathbb{T}_{\Sigma / E} \models E \cup G$, we also have a unique Σ-homomorphism $g: \mathbb{T}_{\Sigma / E \cup G} \rightarrow \mathbb{T}_{\Sigma / E}$. But then, the initiality of $\mathbb{T}_{\Sigma / E}$ forces $h ; g=i d_{\mathbb{T}_{\Sigma / E}}$, and the initiality of $\mathbb{T}_{\Sigma / E \cup G}$ forces $g ; h=i d_{\mathbb{T}_{\Sigma / E \cup G}}$. Therefore, we have an isomorphism: $\mathbb{T}_{\Sigma / E} \cong \mathbb{T}_{\Sigma / E \cup G}$. We will be done of we prove the following lemma:

Lemma Let E, E^{\prime} be two sets of Σ-equations such that $\mathbb{T}_{\Sigma / E} \cong \mathbb{T}_{\Sigma / E^{\prime}}$. Then, $\mathbb{T}_{\Sigma / E}=\mathbb{T}_{\Sigma / E^{\prime}}$.

Inductive Theorems do not Change the Initial Algebra (II)

Proof of the Lemma: $\mathbb{T}_{\Sigma / E}$ and $\mathbb{T}_{\Sigma / E^{\prime}}$ are uniquely determined by the respective ground equality relations $=_{E} \cap T_{\Sigma}^{2}$ and $={ }_{E^{\prime}} \cap T_{\Sigma}^{2}$. We just need to show $\left(=_{E} \cap T_{\Sigma}^{2}\right)=\left(==_{E^{\prime}} \cap T_{\Sigma}^{2}\right)$. Since we have a Σ-isomorphism $h: \mathbb{T}_{\Sigma / E} \rightarrow \mathbb{T}_{\Sigma / E^{\prime}}$, and unique Σ-homomorphisms $[\ldots]_{E}: \mathbb{T}_{\Sigma} \rightarrow \mathbb{T}_{\Sigma / E}$, and [__] $E_{E^{\prime}}: \mathbb{T}_{\Sigma} \rightarrow \mathbb{T}_{\Sigma / E}$, the initiality of \mathbb{T}_{Σ} forces $\left[_\right]_{E} ; h=\left[_\right]_{E^{\prime}}$, i.e., $h_{s}\left([t]_{E}\right)=[t]_{E^{\prime}}$ for each $t \in T_{\Sigma, s}, s \in S$. Let $t \in T_{\Sigma, s}$ and $t^{\prime} \in T_{\Sigma, s^{\prime}}$ with $t={ }_{E} t^{\prime}$. Then $[s]=\left[s^{\prime}\right]$ and, by h order-sorted Σ-homomorphism and $[t]_{E}=\left[t^{\prime}\right]_{E}$, we must have $h_{s}\left([t]_{E}\right)=h_{s^{\prime}}\left(\left[t^{\prime}\right]_{E}\right)$, which forces:

$$
h_{s}\left([t]_{E}\right)=[t]_{E^{\prime}}=\left[t^{\prime}\right]_{E^{\prime}}=h_{s^{\prime}}\left(\left[t^{\prime}\right]_{E}\right)
$$

giving us the containment $\left(=_{E} \cap T_{\Sigma}^{2}\right) \subseteq\left(=_{E^{\prime}} \cap T_{\Sigma}^{2}\right)$. Using the inverse isomorphism h^{-1} we likewise get $\left(=_{E^{\prime}} \cap T_{\Sigma}^{2}\right) \subseteq\left(=_{E} \cap T_{\Sigma}^{2}\right)$, giving us $\left(={ }_{E} \cap T_{\Sigma}^{2}\right)=\left(=E_{E^{\prime}} \cap T_{\Sigma}^{2}\right)$, as desired. q.e.d. q.e.d.

Equivalence of Equational Theories

Call two equational theories (Σ, E) and $\left(\Sigma, E^{\prime}\right)$ equivalent, denoted $(\Sigma, E) \equiv\left(\Sigma, E^{\prime}\right)$ iff (by definition) $E \vdash E^{\prime}$ and $E^{\prime} \vdash E$.

Ex.14.1 Prove: $(i)(\Sigma, E) \vdash E^{\prime} \Rightarrow\left(=E_{E^{\prime}}\right) \subseteq\left(==_{E}\right) \wedge\left(==_{E}\right)=\left(=E \cup E^{\prime}\right)$,
(ii) $(\Sigma, E) \equiv\left(\Sigma, E^{\prime}\right) \Leftrightarrow\left(={ }_{E}\right)=\left(==_{E^{\prime}}\right) \Leftrightarrow \operatorname{Alg}_{(\Sigma, E)}=\operatorname{Alg}_{\left(\Sigma, E^{\prime}\right)}$.

For example, the sets of equations
$E=\left\{x \cdot(y \cdot z)=(x \cdot y) \cdot z, x \cdot 1=x=1 \cdot x, x \cdot x^{-1}=1,1=x^{-1} \cdot x\right\}$, and $E^{\prime}=\left\{(x \cdot y) \cdot z=x \cdot(y \cdot z), 1 \cdot x=x, x \cdot 1=x, x \cdot x^{-1}=\right.$ $1, x^{-1} \cdot x=1,1^{-1}=1,\left(x^{-1}\right)^{-1}=x,(x \cdot y)^{-1}=$ $\left.y^{-1} \cdot x^{-1}, x \cdot\left(x^{-1} \cdot y\right)=y, x^{-1} \cdot(x \cdot y)=y\right\}$ define equivalent theories $(\Sigma, E) \equiv\left(\Sigma, E^{\prime}\right)$ for the theory of groups. But E^{\prime} is much better, because $\overrightarrow{E^{\prime}}$ is confluent and terminating. Therefore, by the Church-Rosser Theorem we can decide whether any Σ-equality $u=v$ is a theorem of group theory by checking whether $u!_{\overrightarrow{E^{\prime}}}=v!_{\overrightarrow{E^{\prime}}}$.

Inductive Equivalence of Equational Theories

Call two equational theories (Σ, E) and $\left(\Sigma, E^{\prime}\right)$ inductively equivalent, denoted $(\Sigma, E) \equiv_{\text {ind }}\left(\Sigma, E^{\prime}\right)$ iff (by definition) $(\Sigma, E) \models_{i n d} E^{\prime}$ and $\left(\Sigma, E^{\prime}\right) \models_{\text {ind }} E$.

Ex.14.2 Prove:
$(i)(\Sigma, E) \models_{{ }_{i n d}} E^{\prime} \Rightarrow\left(==_{E^{\prime}} \cap T_{\Sigma}^{2}\right) \subseteq\left(=_{E} \cap T_{\Sigma}^{2}\right) \wedge\left(=_{E} \cap T_{\Sigma}^{2}\right)=\left(=_{E \cup E^{\prime}} \cap T_{\Sigma}^{2}\right)$
(ii) $(\Sigma, E) \equiv_{\text {ind }}\left(\Sigma, E^{\prime}\right) \Leftrightarrow\left(=_{E} \cap T_{\Sigma}^{2}\right)=\left(==_{E^{\prime}} \cap T_{\Sigma}^{2}\right) \Leftrightarrow \mathbb{T}_{\Sigma / E}=\mathbb{T}_{\Sigma / E^{\prime}}$.

Ex.14.1 and Ex.14.2 give us
$(\Sigma, E) \equiv\left(\Sigma, E^{\prime}\right) \Rightarrow(\Sigma, E) \equiv_{\text {ind }}\left(\Sigma, E^{\prime}\right)$. But in general
$(\Sigma, E) \equiv_{i n d}\left(\Sigma, E^{\prime}\right)$ does not imply $(\Sigma, E) \equiv\left(\Sigma, E^{\prime}\right)$.

For example, in pg. 5 we saw that for $\Sigma=\left\{0, s,_{__{+}} __{-}\right\}$and $E=\{x+0=x, x+s(y)=s(x+y)\}, \mathbb{T}_{\Sigma / E} \models x+y=y+x$. Thus, by the Lemma Internalization Theorem 1 and Ex. 14.2 we have $(\Sigma, E) \equiv_{\text {ind }}(\Sigma, E \cup\{x+y=y+x\})$. But we saw in pg. 5 that $E \nvdash x+y=y+x$, and therefore $(\Sigma, E) \not \equiv(\Sigma, E \cup\{x+y=y+x\})$.

Semantic Equivalence of Equational Programs

In Program Verification a fundamental question is:
When are two different programs semantically equivalent?
The most obvious answer for admissible equational programs fmod (Σ, E) endfm and $\operatorname{fmod}\left(\Sigma, E^{\prime}\right)$ endfm is:

When they compute the same recursive functions, which mathematically just means: when $\mathbb{C}_{\Sigma / \vec{E}}=\mathbb{C}_{\Sigma / \vec{E}^{\prime}}$.

For example, we shall prove that for $\Sigma=\left\{0, s,_{__{-}}{ }_{-}\right\}$,
$E=\{x+0=x, x+s(y)=s(x+y)\}$ and $E^{\prime}=\{0+x=x, s(x)+y=s(x+y)\}, \operatorname{fmod}(\Sigma, E)$ endfm and fmod $\left(\Sigma, E^{\prime}\right)$ endfm are equivalent equational programs: both compute the addition function on natural numbers $+_{\mathbb{N}}$.

Let us give a more precise definition.

Admissible and Comparable programs

Call $\operatorname{fmod}(\Sigma, E \cup B)$ endfm admissible iff (i) Σ is B-preregular, with non-empty sorts, (ii) \vec{E} is sort-decreasing, and ground confluent and terminating modulo B, and (iii) it is sufficiently complete w.r.t. a constructor subsignature Ω.

Call $(\Sigma, E \cup B)$ satisfying (i)-(ii) ground convergent modulo B.
Given a constructor subsignature $\Omega \subseteq \Sigma$, let Ω^{+}denote the signature that extends Ω by adding all non-constructor operator typings that are subsort-overloaded with some operator in Ω. Call two admissible equational programs fmod $(\Sigma, E \cup B)$ endfm and fmod $\left(\Sigma, E^{\prime} \cup B^{\prime}\right)$ endfm, both with constructors Ω, comparable iff: (i) $E=E_{0} \uplus E_{\Omega^{+}}$and $E^{\prime}=E_{0}^{\prime} \uplus E_{\Omega^{+}}$, with $E_{\Omega^{+}} \Omega^{+}$-equations, and each rule in $\vec{E}_{0} \cup{\overrightarrow{E^{\prime}}}_{0}$ is of the form $f\left(u_{1}, \ldots, u_{n}\right) \rightarrow v$, with f in $\Sigma \backslash \Omega^{+}$, and (ii) $B=B_{0} \uplus B_{\Omega^{+}}$and $B^{\prime}=B_{0}^{\prime} \uplus B_{\Omega^{+}}$, with $B_{\Omega^{+}}$ $A \vee C \vee U \Omega^{+}$-axioms, and $B_{0} \cup B_{0}^{\prime} A \vee C\left(\Sigma \backslash \Omega^{+}\right)$-axioms.

Semantic Equivalence of Equational Programs (II)

Two admissible and comparable programs $f \bmod (\Sigma, E \cup B)$ endfm and $\operatorname{fmod}\left(\Sigma, E^{\prime} \cup B^{\prime}\right)$ endfm are called semantically equivalent, denoted $\operatorname{fmod}(\Sigma, E \cup B)$ endfm $\equiv_{\text {sem }} \operatorname{fmod}\left(\Sigma, E^{\prime} \cup B^{\prime}\right)$ endfm iff $\mathbb{C}_{\Sigma / \vec{E}, B}=\mathbb{C}_{\Sigma / \overrightarrow{E^{\prime}, B^{\prime}}}$.

Since the axioms in $B_{0} \cup B_{0}^{\prime}$ are $A \vee C\left(\Sigma \backslash \Omega^{+}\right)$-axioms, for any $u, v \in T_{\Omega^{+}}, u={ }_{B} v$ (resp. $u={B^{\prime}}^{\prime} v$) forces $u={ }_{B_{\Omega^{+}}} v$. Therefore, the unique Σ-homomorphisms $\left[\ldots \vec{E}^{2} / B\right]_{B}: \mathbb{T}_{\Sigma} \rightarrow \mathbb{C}_{\Sigma / \vec{E}, B}$ and $\left[-!\vec{E}^{\prime} / B^{\prime}\right]_{B^{\prime}}: \mathbb{T}_{\Sigma} \rightarrow \mathbb{C}_{\Sigma / \vec{E}^{\prime}, B^{\prime}}$ can be described more precisely as $\left[_!\vec{E} / B\right]_{\Omega^{+}}: \mathbb{T}_{\Sigma} \rightarrow \mathbb{C}_{\Sigma / \vec{E}, B}$ and $\left[_^{\prime}!_{\vec{E}^{\prime} / B^{\prime}}\right]_{B_{\Omega^{+}}}: \mathbb{T}_{\Sigma} \rightarrow \mathbb{C}_{\Sigma / \vec{E}^{\prime}, B^{\prime}}$

Ex.14.3. Prove that for admissible and comparable $f \bmod (\Sigma, E \cup B)$ endfm and fmod $\left(\Sigma, E^{\prime} \cup B^{\prime}\right)$ endfm, fmod $(\Sigma, E \cup B)$ endfm \equiv sem fmod $\left(\Sigma, E^{\prime} \cup B^{\prime}\right)$ endfm iff $\forall t \in T_{\Sigma}, t!_{\vec{E} / B}={ }_{B_{\Omega^{+}}} t!_{{\overrightarrow{E^{\prime}} / B^{\prime}} \text {. I.e., if }}$ Maude's red command gives the same result for both modulo $B_{\Omega^{+}}$.

Semantic Equivalence of Equational Programs (III)

Note that $\mathbb{C}_{\Sigma / \vec{E}, B}=\mathbb{C}_{\Sigma / \overrightarrow{E^{\prime}, B^{\prime}}}$ and the Lemma in pg. 2 force $\mathbb{T}_{\Sigma / E \cup B}=\mathbb{T}_{\Sigma / E^{\prime} \cup B^{\prime}}$. Therefore, by Ex.14.2, fmod $(\Sigma, E \cup B)$ endfm $\equiv_{\text {sem }} \operatorname{fmod}\left(\Sigma, E^{\prime} \cup B^{\prime}\right)$ endfm implies $(\Sigma, E \cup B) \equiv_{i n d}\left(\Sigma, E^{\prime} \cup B^{\prime}\right)$. But the converse implication does not hold in general.

For example, for $\Sigma=\{a, b, c\}, E=\{a=b\}$, and $E^{\prime}=\{b=a\}$, of course $(\Sigma, E) \equiv\left(\Sigma, E^{\prime}\right)$ and therefore $(\Sigma, E) \equiv_{\text {ind }}\left(\Sigma, E^{\prime}\right)$; but although \vec{E} and $\overrightarrow{E^{\prime}}$ are both convergent, they have different constructors $\Omega=\{b, c\}$ and $\Omega^{\prime}=\{a, c\}$, so that $\mathbb{C}_{\Sigma / \vec{E}} \neq \mathbb{C}_{\Sigma / \overrightarrow{E^{\prime}}}$. Therefore, $\operatorname{fmod}(\Sigma, E \cup B)$ endfm $\not \equiv{ }_{\text {sem }} \operatorname{fmod}\left(\Sigma, E^{\prime} \cup B^{\prime}\right)$ endfm.

Theorem (Program Equivalence Theorem) For admissible and comparable fmod $(\Sigma, E \cup B)$ endfm and $\operatorname{fmod}\left(\Sigma, E^{\prime} \cup B^{\prime}\right)$ endfm, fmod $(\Sigma, E \cup B)$ endfm $\equiv_{\text {sem }}$ fmod $\left(\Sigma, E^{\prime} \cup B^{\prime}\right)$ endfm iff $(\Sigma, E \cup B) \models_{i n d}\left(E_{0}^{\prime} \backslash E_{0}\right) \cup\left(B^{\prime} \backslash B\right)$.

Semantic Equivalence of Equational Programs (IV)

Proof: To see (\Rightarrow), note that sematic equivalence forces
$\mathbb{T}_{\Sigma / E \cup B}=\mathbb{T}_{\Sigma / E^{\prime} \cup B^{\prime}}$, which forces
$(\Sigma, E \cup B) \models_{\text {ind }}\left(E_{0}^{\prime} \backslash E_{0}\right) \cup\left(B^{\prime} \backslash B\right)$.
To prove the (\Leftarrow) implication, by Ex.14.3. we just need to show that $\forall t \in T_{\Sigma}, t!_{\vec{E} / B}=B_{\Omega^{+}} t!_{\vec{E}^{\prime} / B^{\prime}}$. But note that $(\Sigma, E \cup B) \models_{\text {ind }}\left(E_{0}^{\prime} \backslash E_{0}\right) \cup\left(B^{\prime} \backslash B\right)$ forces $(\Sigma, E \cup B) \models_{\text {ind }} E^{\prime} \cup B^{\prime}$, and by Ex.14.2. (i) this then forces $t!_{\vec{E} / B}={ }_{E \cup B} t!_{\vec{E}^{\prime} / B^{\prime}}$, which by the Church-Rosser property then forces $t!_{\vec{E} / B}={B_{\Omega^{+}}}\left(t!_{\vec{E}^{\prime} / B^{\prime}}\right)!_{\vec{E} / B}$.
 since $\vec{E}=\vec{E}_{0} \uplus \vec{E}_{\Omega^{+}}$, this means that no rule in \vec{E}_{0} can apply to $t!_{\vec{E}^{\prime} / B^{\prime}}$, and since $\vec{E}_{\Omega^{+}} \subseteq \overrightarrow{E^{\prime}}$, no rule in $\vec{E}_{\Omega^{+}}$can apply to $t!_{\vec{E}^{\prime} / B^{\prime}}$ either. This forces $\left(t!_{\vec{E}^{\prime} / B^{\prime}}\right)!_{\vec{E} / B}=t!_{\overrightarrow{E^{\prime} / B^{\prime}}}$, yielding $t!_{\vec{E} / B}={ }_{B_{\Omega^{+}}} t!_{\overrightarrow{E^{\prime} / B^{\prime}}}$, as desired. q.e.d.

Internalizing Lemmas in Equational Programs

Theorem (Lemma Internalization Theorem 2) Let fmod $(\Sigma, E \cup B)$ endfm be an admissible program with constructors Ω satisfying the extra requirements on E and B allowing it to be comparable to other programs, and let G be a finite set of Σ-equations such that $(\Sigma, E \cup B) \models_{i n d} G$. If the equations G can be oriented (left-to right or right to left) as sort-decreasing rules $\overrightarrow{G^{\prime}}$ of the form $f\left(u_{1}, \ldots, u_{n}\right) \rightarrow w$ with f in $\Sigma \backslash \Omega^{+}$and so that rules $\vec{E} \cup \overrightarrow{G^{\prime}}$ are terminating modulo B, then $\operatorname{fmod}\left(\Sigma, E \cup G^{\prime} \cup B\right)$ endfm (with G and G^{\prime} differing only in orientation) is admissible and fmod $(\Sigma, E \cup B)$ endfm $\equiv_{\text {sem }} \operatorname{fmod}\left(\Sigma, E \cup G^{\prime} \cup B\right)$ endfm.

Proof: We will be done if we prove that $\left(\Sigma, E \cup G^{\prime} \cup B\right)$ is locally ground confluent modulo B, since this makes $\operatorname{fmod}\left(\Sigma, E \cup G^{\prime} \cup B\right)$ endfm admissible and comparable with $\operatorname{fmod}(\Sigma, E \cup B)$ endfm and, thanks to the Program Equivalence Theorem, yields
fmod $(\Sigma, E \cup B)$ endfm $\equiv_{\text {sem }} \operatorname{fmod}\left(\Sigma, E \cup G^{\prime} \cup B\right)$ endfm.
Let $t, u, v \in T_{\Sigma}$ be such that $u_{\vec{E} \cup \vec{G}^{\prime} / B} \leftarrow t \rightarrow_{\vec{E} \cup \vec{G}^{\prime} / B} v$. We need to show that $u \downarrow_{\vec{E} \cup \vec{G}^{\prime} / B} v$. This will hold if we prove $u \downarrow_{\vec{E} / B} v$. But since $(\Sigma, E \cup B) \models_{\text {ind }} G$, Ex.14.2. (i) forces $u=_{E \cup B} v$, which, since \vec{E} is gound convergent modulo B, forces $u \downarrow_{\vec{E} / B} v$, as desired. q.e.d.

Theorem (Lemma Internalization Theorem 3) Let fmod
($\Sigma, E \cup B$) endfm be an admissible program with constructors Ω satisfying the extra requirements on E and B to be comparable to other programs, and let G be a finite set of $A \vee C$ axioms for binary operators $\Sigma_{0} \subseteq \Sigma \backslash \Omega^{+}$general enough to declare G axioms for all operators subsort-overloaded to those in Σ_{0}, and making Σ $(B \cup G)$-preregular. If $(\Sigma, E \cup B) \models_{\text {ind }} G$ and the rules \vec{E} are terminating modulo $B \cup G$, then $f \bmod (\Sigma, E \cup B \cup G)$ endfm is admissible and comparable to $f m o d(\Sigma, E \cup B)$ endfm, and $f m o d(\Sigma, E \cup B)$ endfm $\equiv_{\text {sem }} f$ fmod $(\Sigma, E \cup B \cup G)$ endfm.

Internalizing Lemmas in Equational Programs (II)

Proof: Reasoning as in the proof of the Lemma Internalization Theorem 2, we will be done if we prove that the rules \vec{E} are locally ground confluent modulo $B \cup G$. Let $t, u, v \in T_{\Sigma}$ be such that $u_{\vec{E} / B \cup G} \leftarrow t \rightarrow_{\vec{E} / B \cup G} v$. We need to show that $u \downarrow_{\vec{E} / B \cup G} v$. This will hold if we prove $u \downarrow_{\vec{E} / B} v$. But since $(\Sigma, E \cup B) \models_{\text {ind }} G$, Ex.14.2. (i) forces $u=_{E \cup B} v$, which, since \vec{E} is ground confluent modulo B, forces $u \downarrow_{\vec{E} / B} v$, as desired. q.e.d.

Exercises

Ex.14.4. Prove in detail the theorem characterizing the inductive theorems of a theory (Σ, E) stated in pg. 6 of this lecture.

Ex.14.5. Consider the equational theory (Σ, E) defined by the functional module:

```
fmod PEANO-p is
sorts NzNat Nat . subsorts NzNat < Nat .
op 0 : -> Nat [ctor] .
op s : Nat -> NzNat [ctor] .
op p : NzNat -> Nat .
eq p(s(N:Nat)) = N:Nat.
endfm
```

which defines the predecessor function p. Do the following:

1. Prove that (Σ, \vec{E}) is sort-decreasing, confluent, terminating, and sufficiently complete w.r.t. $\Omega=\{0, s\}$ by either using tools in Maude's Formal Environment, or giving a hand proof.
2. Prove that $E \nvdash s(p(y: N z N a t))=y: N z N a t$.
3. Prove that $(\Sigma, E) \models_{\text {ind }} s(p(y: N z N a t))=y$: NzNat by applying Part (2) of the theorem characterizing the inductive theorems of a theory (Σ, E) stated in pg. 6 of this lecture.
