Program Verification: Lecture 14

José Meseguer

Computer Science Department University of Illinois at Urbana-Champaign

1

Provable Theorems and Theorems of an Equational Theory (Σ, E)

For $\Sigma = ((S, \leq), G)$ and order-sorted signature, define the set of Σ -equations in the obvious way (where X has a countably infinite set X_s of variables for each sort $s \in S$):

$$\Sigma.Eq = \{ u = v \mid \exists s, s' \in S. \ u \in T_{\Sigma}(X)_s \land v \in T_{\Sigma}(X)_{s'} \land [s] = [s'] \}.$$

Given any set of Σ -equations $E \subseteq \Sigma . Eq$, define the set of its provable theorems as:

$$PThm(E) = \{ u = v \in \Sigma . Eq \mid u =_E v \}.$$

Likewise, for any $E \subseteq \Sigma . Eq$, define the set of its theorems as:

$$Thm(E) = \{ u = v \in \Sigma . Eq \mid \forall \mathbb{A} \in \mathbf{Alg}_{(\Sigma, E)}, \ \mathbb{A} \models u = v \}.$$

The Soundness and Completeness Theorems show that we have:

$$PThm(E) = Thm(E).$$

Inductive Theorems of an Equational Theory (Σ, E)

Given any Σ -algebra \mathbb{A} , define its set of theorems as:

$$Thm(\mathbb{A}) = \{ u = v \in \Sigma . Eq \mid \mathbb{A} \models u = v \}.$$

Then, given an equational theory (Σ, E) define its set of inductive theorems $IndThm(\Sigma, E)$ by the set-theoretic equality:

$$IndThm(\Sigma, E) =_{def} Thm(\mathbb{T}_{\Sigma/E}).$$

In particular, when a functional module $\operatorname{fmod}(\Sigma, E \cup B)$ endfm is (ground) confluent, terminating and sufficiently complete w.r.t. constructors Ω , since $\mathbb{T}_{\Sigma/E\cup B} \cong \mathbb{C}_{\Sigma,E/B}$, and by Ex.12.2 we know that $Thm(\mathbb{T}_{\Sigma/E}) = Thm(\mathbb{C}_{\Sigma,E/B})$, in this case $IndThm(\Sigma, E)$ are the equational properties satisfied by the equational program $\operatorname{fmod}(\Sigma, E \cup B)$ endfm. Thus, the notion of inductive theorem is a crucial concept in program verification.

Inductive Theorems of an Equational Theory (Σ, E) (II)

By definition, given a Σ -equation u = v, we write $E \models_{ind} u = v$, or $(\Sigma, E) \models_{ind} u = v$, and say that u = v is an inductive theorem or an inductive consequence of E iff $(u = v) \in IndThm(\Sigma, E)$.

But since $IndThm(\Sigma, E) = Thm(\mathbb{T}_{\Sigma/E})$ and $\mathbb{T}_{\Sigma/E} \models E$, we have an inclusion $Thm(E) \subseteq IndThm(\Sigma, E)$, and therefore an implication:

$$E \models u = v \Rightarrow E \models_{ind} u = v$$

In general, however, the converse implication does not hold: there are theories (Σ, E) and Σ -equations u = v such that $\mathbb{T}_{\Sigma/E} \models u = v$ but $E \not\models u = v$, so that, by Soundness and Completeness, $E \not\vdash u = v$. Let us see some examples.

Can have $\mathbb{T}_{\Sigma/E} \models u = v$ but $E \not\vdash u = v$

Consider the unsorted signature $\Sigma = \{0, s, _+_\}$ with $E = \{x + 0 = x, x + s(y) = s(x + y)\}$. We have already proved that \vec{E} is confluent and terminating. It is well-known and easy to prove (it will be done in a later lecture) that $+_{\mathbb{C}_{\Sigma,E/B}}$ is associative and commutative. Therefore, $\mathbb{T}_{\Sigma/E} \models x + y = y + x$, and $\mathbb{T}_{\Sigma/E} \models (x + y) + x = x + (y + z)$. However,

$$E \not\vdash x + y = y + x$$
 and $E \not\vdash (x + y) + z = x + (y + z)$

since, by the Church-Rosser Theorem, $x + y =_E y + x$ iff $(x + y)!_{\vec{E}} = (y + x)!_{\vec{E}}$, and $(x + y) + z =_E x + (y + z)$ iff $((x + y) + z)!_{\vec{E}} = (x + (y + z))!_{\vec{E}}$. But, those canonical forms are all different, because the terms involved, x + y, y + x, (x + y) + z and x + (y + z) are all in \vec{E} -canonical form: no \vec{E} rules apply to them.

Characterizing the Inductive Theorems of $(\Sigma, E \cup B)$

Can we say something about when $(u = v) \in IndThm(\Sigma, E \cup B)$? **Theorem** (Characterization of Inductive Theorems):

1.
$$(u = v) \in IndThm(\Sigma, E \cup B)$$
 iff
 $\forall \theta \in [X \to T_{\Sigma}], E \cup B \vdash u\theta = v\theta$, where $X = vars(u) \cup vars(v)$.

2. If rules \vec{E} are sort-decreasing, ground confluent, terminating and sufficiently complete w.r.t. Ω modulo B,

$$(u=v) \in IndThm(\Sigma, E \cup B) \iff \forall \rho \in [X \to T_{\Omega}], E \cup B \vdash u\rho = v\rho.$$

Proof Hints: (1) follows from $\mathbb{T}_{\Sigma/E\cup B} \models u = v$, since any assignment $a \in [X \to T_{\Sigma/E}]$ is of the form $a = \theta; [_]_{E\cup B}$ for some $\theta \in [X \to T_{\Sigma}]$. The proof of (2) is a variant of that of (1) using the (ground) Church-Rosser Theorem modulo B, sufficient completeness and the isomorphism $\mathbb{T}_{\Sigma/E\cup B} \cong \mathbb{C}_{\Sigma/\vec{E},B}$.

Inductive Theorems do not Change the Initial Algebra

Theorem (Lemma Internalization Theorem 1) Let (Σ, E) be an equational theory and G a set of Σ -equations such that $(\Sigma, E) \models_{ind} G$. Then, $\mathbb{T}_{\Sigma/E} = \mathbb{T}_{\Sigma/E \cup G}$.

Proof: Since $\mathbb{T}_{\Sigma/E\cup G} \models E$ we have a unique Σ -homomorphism $h: \mathbb{T}_{\Sigma/E} \to \mathbb{T}_{\Sigma/E\cup G}$. And since $\mathbb{T}_{\Sigma/E} \models E \cup G$, we also have a unique Σ -homomorphism $g: \mathbb{T}_{\Sigma/E\cup G} \to \mathbb{T}_{\Sigma/E}$. But then, the initiality of $\mathbb{T}_{\Sigma/E}$ forces $h; g = id_{\mathbb{T}_{\Sigma/E}}$, and the initiality of $\mathbb{T}_{\Sigma/E\cup G}$ forces $g; h = id_{\mathbb{T}_{\Sigma/E\cup G}}$. Therefore, we have an isomorphism: $\mathbb{T}_{\Sigma/E} \cong \mathbb{T}_{\Sigma/E\cup G}$. We will be done of we prove the following lemma:

Lemma Let E, E' be two sets of Σ -equations such that $\mathbb{T}_{\Sigma/E} \cong \mathbb{T}_{\Sigma/E'}$. Then, $\mathbb{T}_{\Sigma/E} = \mathbb{T}_{\Sigma/E'}$.

Inductive Theorems do not Change the Initial Algebra (II)

Proof of the Lemma: $\mathbb{T}_{\Sigma/E}$ and $\mathbb{T}_{\Sigma/E'}$ are uniquely determined by the respective ground equality relations $=_E \cap T_{\Sigma}^2$ and $=_{E'} \cap T_{\Sigma}^2$. We just need to show $(=_E \cap T_{\Sigma}^2) = (=_{E'} \cap T_{\Sigma}^2)$. Since we have a Σ -isomorphism $h: \mathbb{T}_{\Sigma/E} \to \mathbb{T}_{\Sigma/E'}$, and unique Σ -homomorphisms $[_]_E: \mathbb{T}_{\Sigma} \to \mathbb{T}_{\Sigma/E}$, and $[_]_{E'}: \mathbb{T}_{\Sigma} \to \mathbb{T}_{\Sigma/E}$, the initiality of \mathbb{T}_{Σ} forces $[_]_E; h = [_]_{E'}$, i.e., $h_s([t]_E) = [t]_{E'}$ for each $t \in T_{\Sigma,s}, s \in S$. Let $t \in T_{\Sigma,s}$ and $t' \in T_{\Sigma,s'}$ with $t =_E t'$. Then [s] = [s'] and, by horder-sorted Σ -homomorphism and $[t]_E = [t']_E$, we must have $h_s([t]_E) = h_{s'}([t']_E)$, which forces:

$$h_s([t]_E) = [t]_{E'} = [t']_{E'} = h_{s'}([t']_E)$$

giving us the containment $(=_E \cap T_{\Sigma}^2) \subseteq (=_{E'} \cap T_{\Sigma}^2)$. Using the inverse isomorphism h^{-1} we likewise get $(=_{E'} \cap T_{\Sigma}^2) \subseteq (=_E \cap T_{\Sigma}^2)$, giving us $(=_E \cap T_{\Sigma}^2) = (=_{E'} \cap T_{\Sigma}^2)$, as desired. q.e.d. q.e.d.

Equivalence of Equational Theories

Call two equational theories (Σ, E) and (Σ, E') equivalent, denoted $(\Sigma, E) \equiv (\Sigma, E')$ iff (by definition) $E \vdash E'$ and $E' \vdash E$.

Ex.14.1 Prove: (i)
$$(\Sigma, E) \vdash E' \Rightarrow (=_{E'}) \subseteq (=_E) \land (=_E) = (=_{E \cup E'}),$$

(ii) $(\Sigma, E) \equiv (\Sigma, E') \Leftrightarrow (=_E) = (=_{E'}) \Leftrightarrow \mathbf{Alg}_{(\Sigma, E)} = \mathbf{Alg}_{(\Sigma, E')}.$

For example, the sets of equations $E = \{x \cdot (y \cdot z) = (x \cdot y) \cdot z, x \cdot 1 = x = 1 \cdot x, x \cdot x^{-1} = 1, 1 = x^{-1} \cdot x\},\$ and $E' = \{(x \cdot y) \cdot z = x \cdot (y \cdot z), 1 \cdot x = x, x \cdot 1 = x, x \cdot x^{-1} = 1, x^{-1} \cdot x = 1, 1^{-1} = 1, (x^{-1})^{-1} = x, (x \cdot y)^{-1} = y^{-1} \cdot x^{-1}, x \cdot (x^{-1} \cdot y) = y, x^{-1} \cdot (x \cdot y) = y\}\$ define equivalent theories $(\Sigma, E) \equiv (\Sigma, E')$ for the theory of groups. But E' is much better, because $\vec{E'}$ is confluent and terminating. Therefore, by the Church-Rosser Theorem we can decide whether any Σ -equality u = v is a theorem of group theory by checking whether $u!_{\vec{E'}} = v!_{\vec{E'}}$.

Inductive Equivalence of Equational Theories

Call two equational theories (Σ, E) and (Σ, E') inductively equivalent, denoted $(\Sigma, E) \equiv_{ind} (\Sigma, E')$ iff (by definition) $(\Sigma, E) \models_{ind} E'$ and $(\Sigma, E') \models_{ind} E$.

Ex.14.2 Prove:

 $(i)(\Sigma, E) \models_{ind} E' \Rightarrow (=_{E'} \cap T_{\Sigma}^2) \subseteq (=_E \cap T_{\Sigma}^2) \land (=_E \cap T_{\Sigma}^2) = (=_{E \cup E'} \cap T_{\Sigma}^2)$ $(ii)(\Sigma, E) \equiv_{ind} (\Sigma, E') \Leftrightarrow (=_E \cap T_{\Sigma}^2) = (=_{E'} \cap T_{\Sigma}^2) \Leftrightarrow \mathbb{T}_{\Sigma/E} = \mathbb{T}_{\Sigma/E'}.$ $\mathbf{Ex.14.1 \text{ and } \mathbf{Ex.14.2 give us}$ $(\Sigma, E) \equiv (\Sigma, E') \Rightarrow (\Sigma, E) \equiv_{ind} (\Sigma, E'). \text{ But in general}$ $(\Sigma, E) \equiv_{ind} (\Sigma, E') \text{ does not imply } (\Sigma, E) \equiv (\Sigma, E').$

For example, in pg. 5 we saw that for $\Sigma = \{0, s, _+_\}$ and $E = \{x + 0 = x, x + s(y) = s(x + y)\}, \mathbb{T}_{\Sigma/E} \models x + y = y + x.$ Thus, by the Lemma Internalization Theorem 1 and **Ex**.14.2 we have $(\Sigma, E) \equiv_{ind} (\Sigma, E \cup \{x + y = y + x\}).$ But we saw in pg. 5 that $E \nvDash x + y = y + x,$ and therefore $(\Sigma, E) \not\equiv (\Sigma, E \cup \{x + y = y + x\}).$ Semantic Equivalence of Equational Programs

In Program Verification a fundamental question is:

When are two different programs semantically equivalent? The most obvious answer for admissible equational programs fmod (Σ, E) endfm and fmod (Σ, E') endfm is:

When they compute the same recursive functions,

which mathematically just means: when $\mathbb{C}_{\Sigma/\vec{E}} = \mathbb{C}_{\Sigma/\vec{E'}}$.

For example, we shall prove that for $\Sigma = \{0, s, _+_\},\$ $E = \{x + 0 = x, x + s(y) = s(x + y)\}$ and $E' = \{0 + x = x, s(x) + y = s(x + y)\}, \text{fmod } (\Sigma, E) \text{ endfm and}$ fmod (Σ, E') endfm are equivalent equational programs: both compute the addition function on natural numbers $+_{\mathbb{N}}$.

Let us give a more precise definition.

Admissible and Comparable programs

Call fmod $(\Sigma, E \cup B)$ endfm admissible iff (i) Σ is *B*-preregular, with non-empty sorts, (ii) \vec{E} is sort-decreasing, and ground confluent and terminating modulo *B*, and (iii) it is sufficiently complete w.r.t. a constructor subsignature Ω .

Call $(\Sigma, E \cup B)$ satisfying (i)–(ii) ground convergent modulo B.

Given a constructor subsignature $\Omega \subseteq \Sigma$, let Ω^+ denote the signature that extends Ω by adding all non-constructor operator typings that are subsort-overloaded with some operator in Ω . Call two admissible equational programs fmod $(\Sigma, E \cup B)$ endfm and fmod $(\Sigma, E' \cup B')$ endfm, both with constructors Ω , comparable iff: (i) $E = E_0 \uplus E_{\Omega^+}$ and $E' = E'_0 \uplus E_{\Omega^+}$, with $E_{\Omega^+} \Omega^+$ -equations, and each rule in $\vec{E_0} \cup \vec{E'_0}$ is of the form $f(u_1, \ldots, u_n) \to v$, with f in $\Sigma \setminus \Omega^+$, and (ii) $B = B_0 \uplus B_{\Omega^+}$ and $B' = B'_0 \uplus B_{\Omega^+}$, with B_{Ω^+} $A \lor C \lor U \Omega^+$ -axioms, and $B_0 \cup B'_0 A \lor C (\Sigma \setminus \Omega^+)$ -axioms.

Semantic Equivalence of Equational Programs (II)

Two admissible and comparable programs fmod $(\Sigma, E \cup B)$ endfm and fmod $(\Sigma, E' \cup B')$ endfm are called semantically equivalent, denoted fmod $(\Sigma, E \cup B)$ endfm \equiv_{sem} fmod $(\Sigma, E' \cup B')$ endfm iff $\mathbb{C}_{\Sigma/\vec{E},B} = \mathbb{C}_{\Sigma/\vec{E'},B'}$.

Since the axioms in $B_0 \cup B'_0$ are $A \vee C$ $(\Sigma \setminus \Omega^+)$ -axioms, for any $u, v \in T_{\Omega^+}, u =_B v$ (resp. $u =_{B'} v$) forces $u =_{B_{\Omega^+}} v$. Therefore, the unique Σ -homomorphisms $[_!_{\vec{E}/B}]_B : \mathbb{T}_{\Sigma} \to \mathbb{C}_{\Sigma/\vec{E},B}$ and $[_!_{\vec{E}'/B'}]_{B'} : \mathbb{T}_{\Sigma} \to \mathbb{C}_{\Sigma/\vec{E'},B'}$ can be described more precisely as $[_!_{\vec{E}/B}]_{B_{\Omega^+}} : \mathbb{T}_{\Sigma} \to \mathbb{C}_{\Sigma/\vec{E},B}$ and $[_!_{\vec{E'}/B'}]_{B_{\Omega^+}} : \mathbb{T}_{\Sigma} \to \mathbb{C}_{\Sigma/\vec{E'},B'}$.

Ex.14.3. Prove that for admissible and comparable fmod $(\Sigma, E \cup B)$ endfm and fmod $(\Sigma, E' \cup B')$ endfm, fmod $(\Sigma, E \cup B)$ endfm \equiv_{sem} fmod $(\Sigma, E' \cup B')$ endfm iff $\forall t \in T_{\Sigma}, t!_{\vec{E}/B} =_{B_{\Omega^+}} t!_{\vec{E'}/B'}$. I.e., if Maude's red command gives the same result for both modulo B_{Ω^+} .

Semantic Equivalence of Equational Programs (III)

Note that $\mathbb{C}_{\Sigma/\vec{E},B} = \mathbb{C}_{\Sigma/\vec{E'},B'}$ and the Lemma in pg. 2 force $\mathbb{T}_{\Sigma/E\cup B} = \mathbb{T}_{\Sigma/E'\cup B'}$. Therefore, by **Ex**.14.2, fmod $(\Sigma, E \cup B)$ endfm $\equiv_{sem} \text{ fmod } (\Sigma, E' \cup B')$ endfm implies $(\Sigma, E \cup B) \equiv_{ind} (\Sigma, E' \cup B')$. But the converse implication does not hold in general.

For example, for $\Sigma = \{a, b, c\}$, $E = \{a = b\}$, and $E' = \{b = a\}$, of course $(\Sigma, E) \equiv (\Sigma, E')$ and therefore $(\Sigma, E) \equiv_{ind} (\Sigma, E')$; but although \vec{E} and $\vec{E'}$ are both convergent, they have different constructors $\Omega = \{b, c\}$ and $\Omega' = \{a, c\}$, so that $\mathbb{C}_{\Sigma/\vec{E}} \neq \mathbb{C}_{\Sigma/\vec{E'}}$. Therefore, fmod $(\Sigma, E \cup B)$ endfm $\not\equiv_{sem}$ fmod $(\Sigma, E' \cup B')$ endfm.

Theorem (Program Equivalence Theorem) For admissible and comparable fmod $(\Sigma, E \cup B)$ endfm and fmod $(\Sigma, E' \cup B')$ endfm, fmod $(\Sigma, E \cup B)$ endfm \equiv_{sem} fmod $(\Sigma, E' \cup B')$ endfm iff $(\Sigma, E \cup B) \models_{ind} (E'_0 \setminus E_0) \cup (B' \setminus B).$ Semantic Equivalence of Equational Programs (IV)

Proof: To see (\Rightarrow) , note that sematic equivalence forces $\mathbb{T}_{\Sigma/E\cup B} = \mathbb{T}_{\Sigma/E'\cup B'}$, which forces $(\Sigma, E\cup B) \models_{ind} (E'_0 \setminus E_0) \cup (B' \setminus B).$

To prove the (\Leftarrow) implication, by **Ex**.14.3. we just need to show that $\forall t \in T_{\Sigma}, t!_{\vec{E}/B} =_{B_{\Omega^+}} t!_{\vec{E}'/B'}$. But note that $(\Sigma, E \cup B) \models_{ind} (E'_0 \setminus E_0) \cup (B' \setminus B)$ forces $(\Sigma, E \cup B) \models_{ind} E' \cup B'$, and by **Ex**.14.2.(*i*) this then forces $t!_{\vec{E}/B} =_{E \cup B} t!_{\vec{E}'/B'}$, which by the Church-Rosser property then forces $t!_{\vec{E}/B} =_{B_{\Omega^+}} (t!_{\vec{E}'/B'})!_{\vec{E}/B}$. But note that, by sufficient completeness, $t!_{\vec{E}'/B'}$ is an Ω -term, and since $\vec{E} = \vec{E}_0 \uplus \vec{E}_{\Omega^+}$, this means that no rule in \vec{E}_0 can apply to $t!_{\vec{E}'/B'}$, and since $\vec{E}_{\Omega^+} \subseteq \vec{E'}$, no rule in \vec{E}_{Ω^+} can apply to $t!_{\vec{E}'/B'}$ either. This forces $(t!_{\vec{E}'/B'})!_{\vec{E}/B} = t!_{\vec{E}'/B'}$, yielding $t!_{\vec{E}/B} =_{B_{\Omega^+}} t!_{\vec{E}'/B'}$, as desired. q.e.d.

Internalizing Lemmas in Equational Programs

Theorem (Lemma Internalization Theorem 2) Let fmod $(\Sigma, E \cup B)$ endfm be an admissible program with constructors Ω satisfying the extra requirements on E and B allowing it to be comparable to other programs, and let G be a finite set of Σ -equations such that $(\Sigma, E \cup B) \models_{ind} G$. If the equations G can be oriented (left-to right or right to left) as sort-decreasing rules $\vec{G'}$ of the form $f(u_1, \ldots, u_n) \to w$ with f in $\Sigma \setminus \Omega^+$ and so that rules $\vec{E} \cup \vec{G'}$ are terminating modulo B, then fmod $(\Sigma, E \cup G' \cup B)$ endfm (with G and G' differing only in orientation) is admissible and fmod $(\Sigma, E \cup B)$ endfm \equiv_{sem} fmod $(\Sigma, E \cup G' \cup B)$ endfm.

Proof: We will be done if we prove that $(\Sigma, E \cup G' \cup B)$ is locally ground confluent modulo B, since this makes fmod $(\Sigma, E \cup G' \cup B)$ endfm admissible and comparable with fmod $(\Sigma, E \cup B)$ endfm and, thanks to the Program Equivalence Theorem, yields fmod $(\Sigma, E \cup B)$ endfm \equiv_{sem} fmod $(\Sigma, E \cup G' \cup B)$ endfm.

Let $t, u, v \in T_{\Sigma}$ be such that $u_{\vec{E} \cup \vec{G'}/B} \leftarrow t \rightarrow_{\vec{E} \cup \vec{G'}/B} v$. We need to show that $u \downarrow_{\vec{E} \cup \vec{G'}/B} v$. This will hold if we prove $u \downarrow_{\vec{E}/B} v$. But since $(\Sigma, E \cup B) \models_{ind} G$, **Ex**.14.2.(*i*) forces $u =_{E \cup B} v$, which, since \vec{E} is gound convergent modulo B, forces $u \downarrow_{\vec{E}/B} v$, as desired. q.e.d.

Theorem (Lemma Internalization Theorem 3) Let fmod $(\Sigma, E \cup B)$ endfm be an admissible program with constructors Ω satisfying the extra requirements on E and B to be comparable to other programs, and let G be a finite set of $A \vee C$ axioms for binary operators $\Sigma_0 \subseteq \Sigma \setminus \Omega^+$ general enough to declare G axioms for all operators subsort-overloaded to those in Σ_0 , and making Σ $(B \cup G)$ -preregular. If $(\Sigma, E \cup B) \models_{ind} G$ and the rules \vec{E} are terminating modulo $B \cup G$, then fmod $(\Sigma, E \cup B \cup G)$ endfm is admissible and comparable to fmod $(\Sigma, E \cup B)$ endfm, and fmod $(\Sigma, E \cup B)$ endfm \equiv_{sem} fmod $(\Sigma, E \cup B \cup G)$ endfm.

Internalizing Lemmas in Equational Programs (II)

Proof: Reasoning as in the proof of the Lemma Internalization Theorem 2, we will be done if we prove that the rules \vec{E} are locally ground confluent modulo $B \cup G$. Let $t, u, v \in T_{\Sigma}$ be such that $u_{\vec{E}/B\cup G} \leftarrow t \rightarrow_{\vec{E}/B\cup G} v$. We need to show that $u \downarrow_{\vec{E}/B\cup G} v$. This will hold if we prove $u \downarrow_{\vec{E}/B} v$. But since $(\Sigma, E \cup B) \models_{ind} G$, **Ex**.14.2.(*i*) forces $u =_{E \cup B} v$, which, since \vec{E} is ground confluent modulo *B*, forces $u \downarrow_{\vec{E}/B} v$, as desired. q.e.d.

Exercises

Ex.14.4. Prove in detail the theorem characterizing the inductive theorems of a theory (Σ, E) stated in pg. 6 of this lecture.

Ex.14.5. Consider the equational theory (Σ, E) defined by the functional module:

```
fmod PEANO-p is
sorts NzNat Nat . subsorts NzNat < Nat .
op 0 : -> Nat [ctor] .
op s : Nat -> NzNat [ctor] .
op p : NzNat -> Nat .
eq p(s(N:Nat)) = N:Nat .
endfm
```

which defines the predecessor function **p**. Do the following:

1. Prove that (Σ, \vec{E}) is sort-decreasing, confluent, terminating, and sufficiently complete w.r.t. $\Omega = \{0, s\}$ by either using tools in Maude's Formal Environment, or giving a hand proof.

- 2. Prove that $E \not\vdash s(p(y:NzNat)) = y:NzNat$.
- 3. Prove that $(\Sigma, E) \models_{ind} s(p(y:NzNat)) = y:NzNat$ by applying Part (2) of the theorem characterizing the inductive theorems of a theory (Σ, E) stated in pg. 6 of this lecture.