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Provable Theorems and Theorems of an Equational Theory (X, F)

For ¥ = ((5, <), G) and order-sorted signature, define the set of
Y-equations in the obvious way (where X has a countably infinite

set X of variables for each sort s € .5):
Y.Eqg={u=v|3s,s €S ueTs(X)sANveTs(X)y Als] =[s]}.

Given any set of Y-equations E C .. Fq, define the set of its

provable theorems as:
PThm(E) ={u=v € ¥X.Eq | u =g v}.
Likewise, for any E C X..Eq, define the set of its theorems as:
Thm(E) ={u=v € X.Eq | VA € Algx gy, A F u=v}.
The Soundness and Completeness Theorems show that we have:

PThm(FE) = Thm(FE).



[Inductive Theorems of an Equational Theory (32, E)]

Given any Y-algebra A, define its set of theorems as:
Thm(A)={u=v e X.Eq| A = u=uv}.

Then, given an equational theory (3, F') define its set of inductive
theorems IndThm(X, E) by the set-theoretic equality:

IndThm(E, E) —def Thm(TE/E)

In particular, when a functional module fmod (3, EF' U B)endfm is
(ground) confluent, terminating and sufficiently complete w.r.t.
constructors 2, since Ty pup = Cs g/p, and by Ex.12.2 we know
that Thm(Tx,g) = Thm(Cs g/p), in this case IndThm(X, E) are
the equational properties satisfied by the equational program

fmod (X, F U B)endfm. Thus, the notion of inductive theorem is a

crucial concept in program verification.



[Inductive Theorems of an Equational Theory (3, F) (II)]

By definition, given a Y-equation u = v, we write E =;,q u = v, or
(X, F) Eind v = v, and say that u = v is an inductive theorem or
an inductive consequence of F iff (u =v) € IndThm(%, F).

But since IndThm(X, E) = Thm(Tx/g) and Ty, g = E, we have an
inclusion Thm(FE) C IndThm(3, E), and therefore an implication:

FEu=v = FEpnu="v

In general, however, the converse implication does not hold: there
are theories (X, F) and Y-equations u = v such that Ty g = u = v
but E = u = v, so that, by Soundness and Completeness,

E 7/ u=wv. Let us see some examples.



[Can have Ty, g = u = v but Eb‘u:v]

Consider the unsorted signature ¥ = {0,s, + _} with
E={x+0=2z,2+ s(y) = s(z +y)}. We have already proved that
E is confluent and terminating. It is well-known and easy to prove
(it will be done in a later lecture) that +c ., is associative and
commutative. Therefore, Ty, g =2 +y =y + x, and

Ts/p = (x+y)+x=x+(y+ z). However,

Efrz+y=y+xz and EV(r+y) +z=x+ (y+2)

since, by the Church-Rosser Theorem, x +y =g y + x iff
(z+y)lz=wW+az)z and (r+y)+2=gx+ (y+ 2) iff
(z+y) +2)z = (r+ (y+2))! 5. But, those canonical forms are all
different, because the terms involved, z + vy, y + x, (x +y) + z and

xr + (y + z) are all in E-canonical form: no FE rules apply to them.



[Characterizing the Inductive Theorems of (X, F U B)]

Can we say something about when (v =v) € IndThm(%, EU B)?

Theorem (Characterization of Inductive Theorems):

1. (u=wv) € IndThm(X%, EU B) iff
VO € [ X — Tx], EU B F uf = v, where X = vars(u)Uvars(v).

2. If rules E are sort-decreasing, ground confluent, terminating

and sufficiently complete w.r.t. 2 modulo B,
(u=w) € IndThm(X, EUB) < Vpe|X — Tg], EUBF up = vp.

Proof Hints: (1) follows from Ty, g p = u = v, since any
assignment a € [X — Tx/g| is of the form a = 0;|_|gup for some
0 € | X — Tx]. The proof of (2) is a variant of that of (1) using the
(ground) Church-Rosser Theorem modulo B, sufficient

completeness and the isomorphism Ty, pup = Cs /BB



Inductive Theorems do not Change the Initial Algebra

Theorem (Lemma Internalization Theorem 1) Let (3, E') be an

equational theory and G a set of Y-equations such that
(3, E) Fina G. Then, TE/E = TE/EUG-

Proof: Since Ty puce = £ we have a unique ¥-homomorphism
h:Ts/g — Tsx/puc. And since Ty/p = E UG, we also have a
unique Y-homomorphism g : Ty/pug — Tx/g. But then, the
initiality of Ty /g forces h; g = idr,,,, and the initiality of Ty, puc
forces g; h = idry,, - Therefore, we have an isomorphism:

Ts/e = Ts/pue. We will be done of we prove the following lemma:

Lemma Let F, E/ be two sets of Y-equations such that

TE/E = TE/E’- Then, TZ/E = TE/E"



[Inductive Theorems do not Change the Initial Algebra (II)]

Proof of the Lemma: Ty, g and Ty /g are uniquely determined
by the respective ground equality relations =g NTZ and =g NTEZ.
We just need to show (=g NTE) = (=g NTE). Since we have a
>-isomorphism h : Ty g — Tyx /g, and unique >.-homomorphisms
| lg:Ts —= Ty g, and |_|g : Ts — Tx/g, the initiality of Tx
forces | _|g;h =[_]g, ie., hs([t|lg) = [t|g for each t € Tx 4,5 € S.
Let t € Ts s and t' € Ty, ¢ with t =g t’. Then [s] = [s'] and, by h
order-sorted >-homomorphism and [t|g = [t']| g, we must have
hs([tlg) = he ([t']g), which forces:

giving us the containment (=g NT&) C (=g NTE). Using the
inverse isomorphism h~! we likewise get (=g NT2) C (=g NTZ),
giving us (=g NTZ) = (=g NTZ), as desired. q.e.d. g.e.d.



Equivalence of Equational Theories

Call two equational theories (3, E') and (X, E’) equivalent, denoted
(X, F) = (X, F') iff (by definition) £+ E’' and E' - E.

Ex.14.1 Prove: (Z) (Z,E) - E = (IE/) C (IE) A (:E) = (ZEUE’);
(it) (X, B) = (5, F) & (=p)=(=p) & Algy g = Algs g

For example, the sets of equations

E={z-(y-2)=(x-y)-z,x-1l=x=1-z,0-27'=11=2"1 2},
and ' ={(z-y) - z2=2-(y-2),l - a=z,2-1=z,2-27! =
Lzt z=11"1 =1 (zYHY =z (z-y) 1=

y Loz bao (a7t -y)=y,27! (z-y) =y} define equivalent
theories (3, E) = (3, E’) for the theory of groups. But E’ is much
better, because E' is confluent and terminating. Therefore, by the
Church-Rosser Theorem we can decide whether any X-equality

u = v is a theorem of group theory by checking whether u! 5 = v! 5



Inductive Equivalence of Equational Theories

Call two equational theories (X, F/) and (3, E’) inductively
equivalent, denoted (X, F) =;,q (X, E') iff (by definition)
(X, F) Eing £ and (3, E') Fing E.

Ex.14.2 Prove:
(i)(Z, E) Fina B' = (=5 NT%) C (=5 NT)AN (=g NT3) = (=pupr NT%)

(i) (X, F) Zina (B, E') & (=g NI3) = (=g NT%) & Ts/p=Ts/p.

Ex.14.1 and Ex.14.2 give us
X, EY= (X, F) = (X, F) =4 (X, E'). But in general
(3, F) =ing (2, F') does not imply (X, E) = (X, E').
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For example, in pg. 5 we saw that for > ={0,s,  + _} and
E={zx+0=x,2+s(y) =s(x+y)}, Ts/g =2 +y=y+x Thus,
by the Lemma Internalization Theorem 1 and Ex.14.2 we have

(X, E) =g B, FU{x+y=y+x}). But we saw in pg. 5 that

Et/ x+y=y+x, and therefore (3, F) # (X, FU{r+y=y+x}).
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Semantic Equivalence of Equational Programs

In Program Verification a fundamental question is:
When are two different programs semantically equivalent?

The most obvious answer for admissible equational programs
fmod (X, F) endfm and fmod (3, E’) endfm is:

When they compute the same recursive functions,

C

which mathematically just means: when C

>/E — “%/E'

For example, we shall prove that for ¥ = {0,s,  + _},
E={x+0=xz,2+s(y) =s(x+y)} and
EF'={04+x==z,s(x)+y=s(z+vy)}, fmod (3, F) endfm and
fmod (X, E’) endfm are equivalent equational programs: both
compute the addition function on natural numbers +y.

Let us give a more precise definition.
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Admissible and Comparable programs

Call fmod (3, F U B) endfm admissible iff (i) ¥ is B-preregular,
with non-empty sorts, (ii) E is sort-decreasing, and ground
confluent and terminating modulo B, and (iii) it is sufficiently

complete w.r.t. a constructor subsignature ().
Call (X, F U B) satisfying (i)—(ii) ground convergent modulo B.

Given a constructor subsignature 2 C X, let QT denote the
signature that extends (2 by adding all non-constructor operator
typings that are subsort-overloaded with some operator in §). Call
two admissible equational programs fmod (X, £ U B) endfm and
fmod (X, £’ U B") endfm, both with constructors §2, comparable iff:
(i) E = EgW Eq+ and E' = E)W Eq+, with Eq+ Q'-equations, and
each rule in EO U E’o is of the form f(uq,...,u,) — v, with f in
¥\ QT and (ii) B = By W B+ and B’ = B W Bq+, with Bg+

AV CVU QFt-axioms, and BoU B}, AV C (X \ Q1)-axioms.
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[Semantic Equivalence of Equational Programs (II)]

Two admissible and comparable programs fmod (X, F U B) endfm
and fmod (3, B’ U B’) endfm are called semantically equivalent,
denoted fmod (X, F U B) endfm =, fmod (3, £’ U B’) endfm iff

C =C

>/E,B >/E' B’

Since the axioms in By U B), are AV C (X \ Q71)-axioms, for any
u,v € To+, u=p v (resp. u=p/ v) forces u =p_, v. Therefore, the
unique ¥-homomorphisms | !z y slB Ty = Cs /B.p and

! y B Ty — Cs /5 g can be described more precisely as

[—!E/B]BQ+ Ty — CE/E,B and [_!E’,/B,]BQJF Ty — CZ/E’,B”

Ex.14.3. Prove that for admissible and comparable fmod (X, F' U B)
endfm and fmod (X, £/ U B") endfm, fmod (X, £ U B) endfm =,
fmod (X, £’ U B’) endfm iff Vt € Ty, t! 5,8 =Bo+ Vg p- Le, if

Maude’s red command gives the same result for both modulo Bao+.
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[Semantic Equivalence of Equational Programs (III)]

Note that CE/E B = CZ/E‘/
Ts/eup = Ts/pup - Therefore, by Ex.14.2, fmod (X, E'U B) endfm
=sem fmod (X, ' U B’) endfm implies (X, F U B) =;,q4 (2, ' U B’).

But the converse implication does not hold in general.

B and the Lemma in pg. 2 force

For example, for ¥ = {a,b,c}, £ = {a = b}, and ' = {b = a}, of
course (X, E) = (X, ') and therefore (3, F) =;nq (2, E'); but
although E and E’ are both convergent, they have different
constructors 2 = {b,c} and " = {a, c}, so that Cy 57 Cyg/p-
Therefore, fmod (3, F U B) endfm #g.,, fmod (3, £’ U B’) endfm.

Theorem (Program Equivalence Theorem) For admissible and
comparable fmod (X, £ U B) endfm and fmod (X, £/ U B’) endfm,
fmod (X, F U B) endfm =, fmod (X, £’ U B’) endfm iff

(3, EUB) Eina (E)\ Eg) U (B’ \ B).

15



[Semantic Equivalence of Equational Programs (IV)]

Proof: To see (=), note that sematic equivalence forces
Ts/rup = Tx/Eup’, Which forces
(3, EUB) Fina (E{\ Eo) U (B"\ B).

To prove the (<) implication, by Ex.14.3. we just need to show
that Vt € T, t! /B TBg+ t!E’/B" But note that

(3, EUB) Eing (E)\ Eo)U(B"\ B) forces (X, FUB) Finq B'UB’,
and by Ex.14.2.(7) this then forces t'g,p =puB tlg g/, Which by
the Church-Rosser property then forces tlz » =5, (t!E//B')!E/B'
But note that, by sufficient completeness, ¢! /B is an {)-term, and

since F = EO H EQ+, this means that no rule in EO can apply to

t'E’/B”
either. This forces (t'E'/B/>'E/B = t.E~,/B,, yielding

and since EQ—l— C E’ no rule in EQ+ can apply to t'E,/B,
t!E/B =B+ t!E'/B/v as desired. q.e.d.

16



Internalizing Lemmas in Equational Programs

Theorem (Lemma Internalization Theorem 2) Let fmod

(3, EU B) endfm be an admissible program with constructors 2
satisfying the extra requirements on £ and B allowing it to be
comparable to other programs, and let G be a finite set of
Y-equations such that (3, FU B) Einqg G. If the equations G can
be oriented (left-to right or right to left) as sort-decreasing rules G’
of the form f(uq,...,u,) — w with f in X\ Q7 and so that rules
EUG' are terminating modulo B, then fmod (3, FE UG’ U B) endfm
(with G and G’ differing only in orientation) is admissible and
fmod (3, F U B) endfm =, fmod (X, F UG’ U B) endfm.

Proof: We will be done if we prove that (3, EUG’" U B) is locally
ground confluent modulo B, since this makes fmod (X, UG’ U B)
endfm admissible and comparable with fmod (3, EF U B) endfm and,

thanks to the Program Equivalence Theorem, yields

17



fmod (3, F U B) endfm =, fmod (X, F UG’ U B) endfm.

Let t,u,v € Tx; be such that u BuG /B t — Bud /B V- We need to
show that u ‘LEUG”/B v. This will hold if we prove u l’E’/B v. But

since (X, F U B) Eing G, Ex.14.2.(7) forces u =gyp v, which, since
E is gound convergent modulo B, forces u | z /g U, s desired. q.e.d.

Theorem (Lemma Internalization Theorem 3) Let fmod

(X, U B) endfm be an admissible program with constructors (2
satisfying the extra requirements on E and B to be comparable to
other programs, and let G be a finite set of AV C axioms for binary
operators Yo C X\ QT general enough to declare G axioms for all
operators subsort-overloaded to those in X, and making >

(B U G)-preregular. If (X, E U B) Eing G and the rules E are
terminating modulo B U G, then fmod (3, F U BU G) endfm is
admissible and comparable to fmod (X, F U B) endfm, and

fmod (3, F U B) endfm =g, fmod (X, F U BUG) endfm.
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Internalizing Lemmas in Equational Programs (II)

Proof: Reasoning as in the proof of the Lemma Internalization
Theorem 2, we will be done if we prove that the rules E are locally
ground confluent modulo B U G. Let t,u,v € Tx;, be such that

U i puG t — /UG V- We need to show that u ¢]§/BUG v. This
will hold if we prove u iE/B v. But since (X, F U B) Einq G,

Ex.14.2.(7) forces u =gup v, which, since E is ground confluent
modulo B, forces u iE/B v, as desired. q.e.d.
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Exercises

Ex.14.4. Prove in detail the theorem characterizing the inductive

theorems of a theory (X, F) stated in pg. 6 of this lecture.

Ex.14.5. Consider the equational theory (X, E/) defined by the
functional module:

fmod PEANO-p is

sorts NzNat Nat . subsorts NzNat < Nat .
op 0 : -> Nat [ctor] .

op s : Nat -> NzNat [ctor] .

op p : NzNat -> Nat .

eq p(s(N:Nat)) = N:Nat .

endfm

which defines the predecessor function p. Do the following:

1. Prove that (%, E) is sort-decreasing, confluent, terminating,
and sufficiently complete w.r.t. 2 = {0, s} by either using tools

in Maude’s Formal Environment, or giving a hand proof.
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. Prove that F t/ s(p(y: NzNat)) = y: NzNat.
. Prove that (3, F) =ing s(p(y: NzNat)) = y: NzNat by applying

Part (2) of the theorem characterizing the inductive theorems
of a theory (X, F) stated in pg. 6 of this lecture.
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