Program Verification: Lecture 11

José Meseguer

Computer Science Department University of Illinois at Urbana-Champaign

Unsorted Homomorphisms

Given unsorted Σ -algebras $\mathbb{A} = (A, \underline{\hspace{1em}})$ and $\mathbb{B} = (B, \underline{\hspace{1em}})$, a Σ -homomorphism h from \mathbb{A} to \mathbb{B} , written $h : \mathbb{A} \to \mathbb{B}$, is a function $h : A \to B$ that preserves the operations Σ , i.e.,

- for each constant $a: \epsilon \to s$ in Σ , $h(a_{\mathbb{A}}) = a_{\mathbb{B}}$ (preservation of constants)
- for each $f: s: \mathbb{N}$, $s \to s$ in Σ , $n \ge 1$, and each $(a_1, \ldots, a_n) \in A^n$, we have $h(f_{\mathbb{A}}(a_1, \ldots, a_n)) = f_{\mathbb{B}}(h(a_1), \ldots, h(a_n))$ (preservation of (non-constant) operations).

Example of Unsorted Homomorphism

Ex.11.1. The natural numbers \mathbb{N} , and the natural numbers modulo k, \mathbb{N}_k (for any $k \geq 1$) are all $\Sigma_{\text{NAT-MIXFIX}}$ -algebras (Lecture 3, pages 3–4). Prove in detail that (for any $k \geq 1$) we have a $\Sigma_{\text{NAT-PREFIX}}$ -homomorphism:

$$res_k: \mathbb{N} \longrightarrow \mathbb{N}_k$$

where res_k sends each number to its residue after dividing by k. For example, $res_7(23) = 2$, and $res_5(23) = 3$.

Note that $\Sigma_{\text{NAT-MIXFIX}} = \{0, s, +, *\}$. So you have to prove the $\Sigma_{\text{NAT-PREFIX}}$ -homomorphism property of res_k for 0 and for the operations $\{s, +, *\}$.

Examples of Unsorted Homomorphisms (II)

Ex.11.2. Recall (Lecture 3, pgs. 6–8) the powerset algebra $\mathbb{P}(A) = (\mathcal{P}(A), \underline{\hspace{0.5cm}}_{\mathbb{P}(A)})$ over the Boolean signature Σ_{BOOL} . Let A and B be any sets, and let $f: A \longrightarrow B$ be any function. Prove in detail that the function:

$$f^{-1}[\underline{\hspace{0.1cm}}]: \mathcal{P}(B) \to \mathcal{P}(A)$$

defined for any $B' \subseteq B$ by: $f^{-1}[B'] = \{a \in A \mid f(a) \in B'\}$, is a Σ_{BOOL} -homomorphism $f^{-1}[_] : \mathbb{P}(B) \to \mathbb{P}(A)$. Consider also a function $g : B \longrightarrow C$. Prove that we have the identity $(f;g)^{-1}[_] = g^{-1}[_]; f^{-1}[_]$, and therefore that $g^{-1}[_]; f^{-1}[_] : \mathcal{P}(C) \longrightarrow \mathcal{P}(A)$ is also a Σ_{BOOL} -homomorphism from $\mathbb{P}(C)$ to $\mathbb{P}(A)$.

Many-Sorted Homomorphisms

Given (many-sorted) Σ -algebras $\mathbb{A} = (A, \underline{\hspace{0.1cm}} \mathbb{A})$ and $\mathbb{B} = (B, \underline{\hspace{0.1cm}} \mathbb{B})$, a Σ -homomorphism h from \mathbb{A} to \mathbb{B} , written $h : \mathbb{A} \longrightarrow \mathbb{B}$, is an S-indexed family of functions $h = \{h_s : A_s \to B_s\}_{s \in S}$ such that:

- for each constant $a: \epsilon \to s$, $h_s(a_{\mathbb{A}}^{nil,s}) = a_{\mathbb{B}}^{nil,s}$ (preservation of constants)
- for each $f: w \to s$ with $w = s_1 \dots s_n$, $n \ge 1$, and each $(a_1, \dots, a_n) \in A^w$, we have $h_s(f_{\mathbb{A}}^{w,s}(a_1, \dots, a_n)) = f_{\mathbb{B}}^{w,s}(h_{s_1}(a_1), \dots, h_{s_n}(a_n))$ (preservation of (non-constant) operations).

Examples of Many-Sorted Homomorphisms

Ex.11.3. Recall the module NAT-LIST in Lecture 2, and the two $\Sigma_{\text{NAT-LIST}}$ -algebras, let us call them \mathbb{A} and \mathbb{B} , defined on pages 4–5 of Lecture 4, namely $\mathbb{A} = \text{lists}$ of natural numbers and $\mathbb{B} = (\text{finite})$ sets of natural numbers. Show that there cannot be any $\Sigma_{\text{NAT-LIST}}$ -homomorphim $h: \mathbb{A} \longrightarrow \mathbb{B}$.

Ex.11.4. For Σ the signature in picture 4.1, consider the first family of algebras for it described in point 1, pages 5–6 of Lecture 4, namely n-dimensional vector spaces on the rational, the real, or the complex numbers. Let us be specific and fix the reals. Let \mathbb{A} be the 3-dimensional real vector space, and \mathbb{B} the 2-dimensional real vector space. What is then a Σ -homomorphism $h: \mathbb{A} \longrightarrow \mathbb{B}$? Prove that any such homomorphism h can be completely described by a 2×3 matrix M_h with real coefficients, so that applying to a

3-dimensional vector \vec{v} the homomorphims h, that is, computing $h(\vec{v})$ exactly corresponds to computing the matrix multiplication $\vec{v} \circ M_h$. Generalize this to \mathbb{A} and \mathbb{B} real vector spaces of arbitrary finite dimensions n and m. Generalize it further to rational, resp. complex, vector spaces of any pair of finite dimensions n and m.

Now generalize this even further to characterize by means of matrices all Σ -homomorphims between Σ -algebras in cases 2–3 in page 6 of Lecture 4. Give for each of these cases specific examples of $h: \mathbb{A} \longrightarrow \mathbb{B}$ showing how this works and how h is thus applied to specific elements in the corresponding algebra \mathbb{A} .

Order-Sorted Homomorphisms

For $\Sigma = ((S, <), F, \Sigma)$ an order-sorted signature, and \mathbb{A} and \mathbb{B} order-sorted Σ -algebras, a Σ -homomorphism h from \mathbb{A} to \mathbb{B} , written $h : \mathbb{A} \to \mathbb{B}$, is an S-indexed family of functions $h = \{h_s : A_s \to B_s\}_{s \in S}$ such that:

- $h: \mathbb{A} \to \mathbb{B}$ is a many-sorted (S, F, Σ) -homomorphism; and
- if [s] = [s'] and $a \in A_s \cap A_{s'}$, then $h_s(a) = h_{s'}(a)$ (agreement on data in the same connected component)

Examples of Order-Sorted Homomorphisms

Ex.11.5. Consider the order-sorted signature Σ of the NAT-LIST-II exampe in Lecture 2, the two algebras on such a signature, let us call them \mathbb{A} and \mathbb{B} , defined on page 8 of Lecture 4, with \mathbb{A} case (1), and \mathbb{B} case (2). Show that there is exactly one order-sorted Σ -homomorphim $h: \mathbb{A} \to \mathbb{B}$. Describe such a homomorphism h in complete detail. Show that there cannot be any other Σ -homomorphims $h': \mathbb{A} \to \mathbb{B}$ with $h \neq h'$.

What is a Pocket Calculator?

Consider a pocket calculator for expressions on the signature $\Sigma = \{0, 1, \underline{\quad} + \underline{\quad}, \underline{\quad} * \underline{\quad} \}$, evaluated on the integers $\mathbb{Z} = (\mathbb{Z}, \underline{\quad} \mathbb{Z})$.

Q: What is a pocket calculator as a computable function?

A: A function, say, $\underline{\mathbb{Z}}: T_{\Sigma} \to \mathbb{Z}$. Call it evaluation in \mathbb{Z} .

Q: What is the recursive definition of $\underline{\mathbb{Z}}: T_{\Sigma} \to \mathbb{Z}$?

A: It is defined by the recursive equations: $0_{\mathbb{Z}} = 0$, $1_{\mathbb{Z}} = 1$, $(t + t')_{\mathbb{Z}} = t_{\mathbb{Z}} +_{\mathbb{Z}} t'_{\mathbb{Z}}$, $(t * t')_{\mathbb{Z}} = t_{\mathbb{Z}} *_{\mathbb{Z}} t'_{\mathbb{Z}}$.

Q: What is the essential property of the function $\underline{\hspace{0.1cm}}_{\mathbb{Z}}: T_{\Sigma} \to \mathbb{Z}$?

A: It is a Σ -homomorphism $_{\mathbb{Z}}: \mathbb{T}_{\Sigma} \to \mathbb{Z}$ because, for example, $(0_{\mathbb{T}_{\Sigma}})_{\mathbb{Z}} = (0)_{\mathbb{Z}} = 0_{\mathbb{Z}} = 0, \quad (t +_{\mathbb{T}_{\Sigma}} t')_{\mathbb{Z}} = (t + t')_{\mathbb{Z}} = t_{\mathbb{Z}} +_{\mathbb{Z}} t'_{\mathbb{Z}}.$

What is a Pocket Calculator? (II)

In the same way we also have pocket calculators for the ground terms of $\Sigma = \{0, 1, \underline{\quad} *\underline{\quad} \}$, evaluated on the natural numbers $\mathbb{N} = (\mathbb{N}, \underline{\quad} \mathbb{N})$, the natural numbers modulo $k \geq 1$, $\mathbb{N}_k = (\mathbb{N}_k, \underline{\quad} \mathbb{N}_k)$, or the rational numbers $\mathbb{Q} = (\mathbb{Q}, \underline{\quad} \mathbb{Q})$.

More generally, we shall see shortly, that for Σ a sensible order-sorted signature and any order-sorted Σ -algebra $\mathbb{A} = (A, \underline{\hspace{0.2cm}} \mathbb{A})$ there is a unique pocket calculator evaluating the terms T_{Σ} in \mathbb{A} , that is, a unique Σ -homomorphism $\underline{\hspace{0.2cm}}_{\mathbb{A}} : \mathbb{T}_{\Sigma} \to \mathbb{A}$, defined by the recursive equations:

- $(a)_{\mathbb{A}} = a_{\mathbb{A}}$ for each constant a in Σ , and
- $f(t_1, \ldots, t_n)_{\mathbb{A}} = f_{\mathbb{A}}(t_{1\mathbb{A}}, \ldots, t_{n\mathbb{A}})$ for each $f: s_1 \ldots s_n \to s$ in Σ .

Term Algebras on Sensible Signatures

If a signature is sensible, then different terms denote different things. In the argot of algebraic specifications, this is expressed by saying that the term algebra \mathbb{T}_{Σ} has no confusion.

Furthermore, the term algebra \mathbb{T}_{Σ} is in some sense minimal, since it has only the elements it needs to have to be an algebra: the constants, and the terms needed so that the operations can yield a result; that is why this minimality is expressed saying that it has no junk.

The key intuition of why there is a unique pocket calculator $_{\mathbb{A}}: \mathbb{T}_{\Sigma} \to \mathbb{A}$ for any Σ -algebra \mathbb{A} , is that: (i) no junk ensures uniqueness of $_{\mathbb{A}}$, and (ii) no confusion ensures the existence of $_{\mathbb{A}}$.

No Pocket Calculators for Term Algebras on Non-sensible Signatures

The intuition that no confusion ensures the existence of $\underline{\mathbb{T}}_{\Sigma} \to \mathbb{A}$ suggests that confusion/ambiguity in \mathbb{T}_{Σ} , i.e., Σ non-sensible, will prevent/block the existence of $\underline{\mathbb{T}}_{\Sigma} \to \mathbb{A}$. Let us see an example.

For example, $_{\mathbb{K}} : \mathbb{T}_{\Sigma} \to \mathbb{K}$ cannot be defined for Σ the non-sensible signature we showed in pg. 16 of Lecture 4 and the Σ -algebra $\mathbb{K} = (K, _{\mathbb{K}})$ with: $K_A = \{a\}, K_B = \{b\}, K_C = \{c\}, K_D = \{d, d'\},$ and with $f_{\mathbb{K}}^{A,B}(a) = b, f_{\mathbb{K}}^{A,C}(a) = c, g_{\mathbb{K}}^{B,D}(b) = d,$ and $g_{\mathbb{K}}^{C,D}(c) = d'.$ Indeed, there in no Σ -homomorphism $h : \mathbb{T}_{\Sigma} \longrightarrow \mathbb{K}$ at all, since $h_D(g(f(a)))$ must be either d or d'. But if $h_D(g(f(a))) = d$, then h fails to preserve the operation $g : C \longrightarrow D$, and if $h_D(g(f(a))) = d'$, then h fails to preserve the operation $g : B \longrightarrow D$.

Initiality of the Term Algebra \mathbb{T}_{Σ} when Σ Sensible

In summary, the claim is that, if Σ is sensible, then for any Σ -algebra \mathbb{A} there is a unique pocket calculator for \mathbb{A} , i.e., a unique Σ -homomorphism $\underline{\hspace{0.5cm}}_{\mathbb{A}}: \mathbb{T}_{\Sigma} \longrightarrow \mathbb{A}$. This is called the initiality property of \mathbb{T}_{Σ} . This unique Σ -homomorphism $\underline{\hspace{0.5cm}}_{\mathbb{A}}$ is the obvious evaluation function, mapping each term t to the result of evaluating it in \mathbb{A} . As already mentioned, $\underline{\hspace{0.5cm}}_{\mathbb{A}}$ is defined inductively as follows:

- for a constant a we define $(a)_{\mathbb{A}} = a_{\mathbb{A}}$, and
- for a term $f(t_1, \ldots, t_n)$ we define $(f(t_1, \ldots, t_n))_{\mathbb{A}} = f_{\mathbb{A}}((t_1)_{\mathbb{A}}, \ldots, (t_n)_{\mathbb{A}}).$

Let us prove it in detail.

Theorem. If Σ is a sensible order-sorted signature, then \mathbb{T}_{Σ} satisfies the initiality property.

Proof of the Initiality Theorem

Proof: For \mathbb{A} any Σ -algebra Let us first prove the uniqueness of \mathbb{A} , and then its existence.

Proof of uniqueness. Let us suppose that we have two different homomorphisms $h, h' : \mathbb{T}_{\Sigma} \to \mathbb{A}$. We can prove that h = h' by induction on the depth of the terms.

For terms of depth 0 let a be a constant in $T_{\Sigma,s}$. That means that there is a sort $s' \leq s$ with an operator declaration $a: nil \longrightarrow s'$ and therefore, by h and h' being Σ -homomorphisms we must have $h_s(a) = h'_s(a) = a_{\mathbb{A}}^{nil,s'}$.

Proof of the Initiality Theorem (II)

Assume that the equality h = h' holds for terms of depth less or equal to n, and let $f(t_1, \ldots, t_n) \in T_{\Sigma,s}$ have depth n+1. That means that there is an operator declaration $f: s_1 \ldots s_n \to s'$ with $s' \leq s$ and $t_i \in T_{\Sigma,s_i}$, $1 \leq i \leq n$. Again, by h and h' being Σ -homomorphisms we must have:

$$h_s(f(t_1, \dots, t_n)) =$$

$$= f_{\mathbb{A}}^{s_1 \dots s_n, s'}(h_{s_1}(t_1), \dots, h_{s_n}(t_n)) \quad (h \text{ homomorphism and } s' \leq s)$$

$$= f_{\mathbb{A}}^{s_1 \dots s_n, s'}(h'_{s_1}(t_1), \dots, h'_{s_n}(t_n)) \quad (\text{induction hypothesis})$$

$$= h'_s(f(t_1, \dots, t_n)) \quad (h' \text{ homomorphism and } s' \leq s).$$

Proof of the Initiality Theorem (III)

Proof of Existence. Before defining $__{\mathbb{A}}$, recall the notation $T_{\Sigma}^{\circ} =_{def} \bigcup_{s \in S} T_{\Sigma_s}$. Likewise, for $\mathbb{A} = (A, __{\mathbb{A}})$ a Σ -algebra define $A^{\circ} =_{def} \bigcup_{s \in S} A_s$. Recall also from STACS that $[T_{\Sigma}^{\circ} \rightharpoonup A^{\circ}]$ denotes the set of partial functions from T_{Σ}° to A° . Define the subset $[T_{\Sigma}^{\circ} \rightharpoonup A^{\circ}]_{S} \subseteq [T_{\Sigma}^{\circ} \rightharpoonup A^{\circ}]$ as follows:

$$[T_{\Sigma}^{\circ} \rightharpoonup A^{\circ}]_{S} =_{def} \{ h \in [T_{\Sigma}^{\circ} \rightharpoonup A^{\circ}] \mid \forall s \in S, \forall t \in T_{\Sigma,s} \ (t,a) \in h \Rightarrow a \in A_{s} \}$$

that is, $[T_{\Sigma}^{\circ} \rightharpoonup A^{\circ}]_{S}$ is the subset of sort-preserving partial functions from T_{Σ}° to A° . One such function in $[T_{\Sigma}^{\circ} \rightharpoonup A^{\circ}]_{S}$ is:

$$\underline{\quad}_{\mathbb{A}}^{0} =_{def} \{(a, a_{\mathbb{A}}) \mid (\epsilon \to a) \in G\}$$

Now define the function:

$$next: [T_{\Sigma}^{\circ} \rightharpoonup A^{\circ}]_{S} \rightarrow [T_{\Sigma}^{\circ} \rightharpoonup A^{\circ}]_{S}$$

by the lambda expression: $next = \lambda h \in [T_{\Sigma}^{\circ} \rightharpoonup A^{\circ}]_{S}$. $h \uplus s(h)$, where

Proof of the Initiality Theorem (IV)

$$s(h) = \{(f(t_1,\ldots,t_n),f_{\mathbb{A}}(h(t_1),\ldots,h(t_n)) \mid f(t_1,\ldots,t_n) \in T^{\mathbb{O}}_{\Sigma} \setminus dom(h) \wedge t_i \in dom(h), \ 1 \leq i \leq n\}$$

Since in order-sorted algebras overloaded operators agree on common data and Σ is sensible, the result $f_{\mathbb{A}}(h(t_1), \ldots, h(t_n))$ does not depend on the specific typing chosen for f in G and therefore s(h) and next(h) are both indeed partial functions in $[T_{\Sigma}^{\circ} \rightharpoonup A^{\circ}]_{S}$.

Now define

$$\overset{\circ}{-\mathbb{A}} =_{def} \bigcup_{n \in \mathbb{N}} rec(\overset{0}{-\mathbb{A}}, next)(n)$$

Recall from STACS §6.1, Thm 3, that $rec(\underline{}_{\mathbb{A}}^{0}, next)$ is the function

$$rec(\underline{}^0, next) : \mathbb{N} \to [T_{\Sigma}^{\circ} \rightharpoonup A^{\circ}]_S$$

defined by simple recursion from $\underline{\ }_{\mathbb{A}}^{0}$ and next. Note that: (i) $\underline{\ }_{\mathbb{A}}^{\circ}$ is a partial function in $[T_{\Sigma}^{\circ} \rightharpoonup A^{\circ}]$ because $\{rec(\underline{\ }_{\mathbb{A}}^{0}, next)(n)\}_{n \in \mathbb{N}}$ is a

chain in the subset order \subseteq and $[T_{\Sigma}^{\circ} \to A^{\circ}]$ is closed under limits of chains (see STACS §7.5); (ii) furthermore, $__{\mathbb{A}}^{\circ}$ belongs to $[T_{\Sigma}^{\circ} \to A^{\circ}]_{S}$ because for each $n \in \mathbb{N}$, $rec(__{\mathbb{A}}^{0}, next)(n)$ does so; and (iii) $__{\mathbb{A}}^{\circ}$ is a total function $__{\mathbb{A}}^{\circ}: T_{\Sigma}^{\circ} \to A^{\circ}$, since $next(__{\mathbb{A}}^{\circ}) = __{\mathbb{A}}^{\circ}$.

Now define the S-sorted function:

$$\underline{A} = \{\underline{A}|_{T_{\Sigma,s}} : T_{\Sigma,s} \to A_s\}_{s \in S}$$

This is our desired Σ -homomorphism $\underline{\hspace{0.1cm}}_{\mathbb{A}}: \mathbb{T}_{\Sigma} \to \mathbb{A}$ because for each $n \in \mathbb{N}$, $rec(\underline{\hspace{0.1cm}}_{\mathbb{A}}^0, next)(n)$ (viewed as an S-sorted partial function) is a partial Σ -homomorphism, i.e., by construction it satisfies the Σ -homomorphism requirements for all terms in $dom(rec(\underline{\hspace{0.1cm}}_{\mathbb{A}}^0, next)(n))$, i.e., for all constants a in Σ and for all $f(t_1, \ldots, t_n) \in T_{\Sigma}^{\circ}$ of tree depth n or less. q.e.d.

The Pocket Calculator of a Canonical Term Algebra

Ex.11.6. Recall the canonical term algebra

 $\mathbb{C}_{\Sigma/E,B} = (C_{\Sigma/E,B}, \underline{\mathbb{C}_{\Sigma/E,B}})$, defined in page 17 of Lecture 6 for a functional fmod $(\Sigma, E \cup B)$ endfm, where Σ is B-preregular and satisfies the Unique Termination, Sufficient Completeness and Sort Preservation requirements.^a What is the pocket calculator of $\mathbb{C}_{\Sigma/E,B}$?

By the Initiality Theorem, it is the unique Σ -homomorphism $__{\mathbb{C}_{\Sigma/E,B}}: \mathbb{T}_{\Sigma} \longrightarrow \mathbb{C}_{\Sigma/E,B}$. Prove that, as an S-sorted function on S-sorted sets, $__{\mathbb{C}_{\Sigma/E,B}}: T_{\Sigma} \to C_{\Sigma/E,B}$ is exactly the S-sorted function: $\{T_{\Sigma,s} \ni t \mapsto [t!_{E/B}] \in C_{\Sigma/E,B,s}\}_{s \in S}$ (what Maude's red command implements!!), which we used in defining $\mathbb{C}_{\Sigma/E,B}$.

^aWhich of course can be checked by checking sort-decreasingness, local confluence and termination of \vec{E} modulo B, and sufficient completeness w.r.t. the constructors Ω .

More on Homomorphisms

Ex.11.7. Prove that homomorphisms compose. That is, if $h: \mathbb{A} \to \mathbb{B}$ and $g: \mathbb{B} \to \mathbb{C}$ are Σ -homomorphisms, then $h; g = \{h_s; g_s\}_{s \in S}$ is a Σ -homomorphism $h; g: \mathbb{A} \to \mathbb{C}$.

Ex.11.8. Prove that identities are homomorphisms. That is, given a Σ -algebra $\mathbb{A} = (A, \underline{\hspace{1em}} \mathbb{A})$, the family of identity functions $id_A = \{id_{A_s}\}$ is a Σ -homomorphim $id_A : \mathbb{A} \to \mathbb{A}$.

More on Homomorphisms (II)

A Σ -homomorphim $h: \mathbb{A} \to \mathbb{B}$ is called an isomorphim if there is another Σ -homomorphism $g: \mathbb{B} \to \mathbb{A}$ such that $h; g = id_A$ and $g; h = id_B$. We then may use the notation $g = h^{-1}$ and $h = g^{-1}$. We call a Σ -homomorphism $h: \mathbb{A} \to \mathbb{B}$

- injective (resp. surjective) if for each sort $s \in S$ the function h_s is injective (resp. surjective)
- a monomorphism if for any pair of Σ -homomorphisms $g, q: \mathbb{C} \to \mathbb{A}$, if g; h = q; h then g = q
- an epimorphism if for any pair of Σ -homomorphisms $g, q : \mathbb{B} \to \mathbb{C}$, if h; g = h; q then g = q.

More on Homomorphisms (III)

For example, if \mathbb{N}_{bin} , resp. \mathbb{N}_{dec} , denote the natural numbers with 0, successor, and addition in binary, resp. decimal, representation, we have an obvious binary-to-decimal isomorphism $b2d: \mathbb{N}_{bin} \to \mathbb{N}_{dec}$ preserving all operations, whose inverse is the decimal-to-binary isomorphism, $d2b: \mathbb{N}_{bin} \to \mathbb{N}_{dec}$. Of course, $d2b; b2d = id_{\mathbb{N}_{dec}}$, and $b2d; d2b = id_{\mathbb{N}_{bin}}$.

For \mathbb{N}_n the residue classes modulo n, the reminder function $\mathbb{N} \xrightarrow{rem_n} \mathbb{N}_n$ is a surjective homomorphism for Σ containing, say, 0, 1, $+, \times$.

Similarly, for \mathbb{Z}_{dec} the integers in decimal notation, the inclusion $j: \mathbb{N}_{dec} \hookrightarrow \mathbb{Z}_{dec}$ is an injective homomorphism preserving all shared operations: $0, 1, +, \times$, etc.

Theorem: All Initial Algebras Are Isomorphic

Proof: Suppose I and J are Σ -algebras and both satisfy the initiality property of having a unique Σ -homomorphism to any other Σ -algebra. In particular, we have unique homomorphisms,

$$h: \mathbb{I} \longrightarrow \mathbb{J} \qquad g: \mathbb{J} \longrightarrow \mathbb{I}$$

and therefore a composed homomorphism

$$\mathbb{I} \xrightarrow{h} \mathbb{J} \xrightarrow{g} \mathbb{I}$$

but we also have the identity homomorphism $id_{\mathbb{I}}$, which by uniqueness forces $h; g = id_{\mathbb{I}}$. Interchanging the role of \mathbb{I} and \mathbb{J} we also get, $g; h = id_{\mathbb{I}}$. q.e.d.

Exercises

Ex.11.9. Show that a homomorphism is injective iff it is a monomorphism. Prove that every surjective homomorphism is an epimorphism. Construct an epimorphism that is not surjective.

Ex.11.10. Show that any many-sorted Σ -homomorphism that is surjective and injective is an isomorphism.

Construct an order-sorted homomorphism that is surjective and injective but is not an isomorphism. Give a sufficient condition on the poset (S, \leq) (more general of course than being a discrete poset, since that is the many-sorted case) so that h is an isomorphism iff h is surjective and injective.

Exercises (II)

Ex.11.11. Prove that an algebra \mathbb{J} initial iff it is isomorphic to an initial algebra \mathbb{I} .

Ex.11.12. Show that the natural numbers in Peano notation (zero and successor) and in base 2 are isomorphic Σ -algebras (both initial) for Σ the signature with one sort Natural and zero and successor operations.