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Unsorted Homomorphisms

Given unsorted Σ-algebras A = (A,_A) and B = (B,_B), a
Σ-homomorphism h from A to B, written h : A → B, is a function
h : A → B that preserves the operations Σ, i.e.,

• for each constant a : ε → s in Σ, h(aA) = aB (preservation of
constants)

• for each f : s n. . . s → s in Σ, n ≥ 1, and each (a1, . . . , an) ∈ An,
we have h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an)) (preservation
of (non-constant) operations).
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Example of Unsorted Homomorphism

Ex.11.1. The natural numbers N, and the natural numbers modulo
k, Nk (for any k ≥ 1) are all ΣNAT-MIXFIX-algebras (Lecture 3, pages
3–4). Prove in detail that (for any k ≥ 1) we have a
ΣNAT-PREFIX-homomorphism:

resk : N −→ Nk

where resk sends each number to its residue after dividing by k.
For example, res7(23) = 2, and res5(23) = 3.

Note that ΣNAT-MIXFIX = {0, s,+, ∗}. So you have to prove the
ΣNAT-PREFIX-homomorphism property of resk for 0 and for the
operations {s,+, ∗}.
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Examples of Unsorted Homomorphisms (II)

Ex.11.2. Recall (Lecture 3, pgs. 6–8) the powerset algebra
P(A) = (P(A),_P(A)) over the Boolean signature ΣBOOL. Let A

and B be any sets, and let f : A −→ B be any function. Prove in
detail that the function:

f−1[_] : P(B) → P(A)

defined for any B′ ⊆ B by: f−1[B′] = {a ∈ A | f(a) ∈ B′}, is a
ΣBOOL-homomorphism f−1[_] : P(B) → P(A). Consider also a
function g : B −→ C. Prove that we have the identity
(f ; g)−1[_] = g−1[_]; f−1[_], and therefore that
g−1[_]; f−1[_] : P(C) −→ P(A) is also a ΣBOOL-homomorphism
from P(C) to P(A).
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Many-Sorted Homomorphisms

Given (many-sorted) Σ-algebras A = (A,_A) and B = (B,_B), a
Σ-homomorphism h from A to B, written h : A −→ B, is an
S-indexed family of functions h = {hs : As → Bs}s∈S such that:

• for each constant a : ε → s, hs(a
nil,s
A ) = anil,sB (preservation of

constants)

• for each f : w → s with w = s1 . . . sn, n ≥ 1, and each
(a1, . . . , an) ∈ Aw, we have
hs(f

w,s
A (a1, . . . , an)) = fw,s

B (hs1(a1), . . . , hsn(an)) (preservation
of (non-constant) operations).
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Examples of Many-Sorted Homomorphisms

Ex.11.3. Recall the module NAT-LIST in Lecture 2, and the two
ΣNAT-LIST-algebras, let us call them A and B, defined on pages 4–5
of Lecture 4, namely A = lists of natural numbers and B = (finite)
sets of natural numbers. Show that there cannot be any
ΣNAT-LIST-homomorphim h : A −→ B.

Ex.11.4. For Σ the signature in picture 4.1, consider the first family
of algebras for it described in point 1, pages 5–6 of Lecture 4,
namely n-dimensional vector spaces on the rational, the real, or the
complex numbers. Let us be specific and fix the reals. Let A be the
3-dimensional real vector space, and B the 2-dimensional real
vector space. What is then a Σ-homomorphism h : A −→ B? Prove
that any such homomorphism h can be completely described by a
2× 3 matrix Mh with real coefficients, so that applying to a
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3-dimensionsl vector ~v the homomorphims h, that is, computing
h(~v) exactly corresponds to computing the matrix multiplication
~v ◦Mh. Generalize this to A and B real vector spaces of arbitrary
finite dimensions n and m. Generalize it further to rational, resp.
complex, vector spaces of any pair of finite dimensions n and m.

Now generalize this even further to characterize by means of
matrices all Σ-homomorphims between Σ-algebras in cases 2–3 in
page 6 of Lecture 4. Give for each of these cases specific examples
of h : A −→ B showing how this works and how h is thus applied to
specific elements in the corresponding algebra A.
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Order-Sorted Homomorphisms

For Σ = ((S,<), F,Σ) an order-sorted signature, and A and B
order-sorted Σ-algebras, a Σ-homomorphism h from A to B,
written h : A → B, is an S-indexed family of functions
h = {hs : As → Bs}s∈S such that:

• h : A → B is a many-sorted (S, F,Σ)-homomorphism; and

• if [s] = [s′] and a ∈ As ∩As′ , then hs(a) = hs′(a) (agreement
on data in the same connected component)
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Examples of Order-Sorted Homomorphisms

Ex.11.5. Consider the order-sorted signature Σ of the NAT-LIST-II
exampe in Lecture 2, the two algebras on such a signature, let us
call them A and B, defined on page 8 of Lecture 4, with A case (1),
and B case (2). Show that there is exactly one order-sorted
Σ-homomorphim h : A → B. Describe such a homomorphism h in
complete detail. Show that there cannot be any other
Σ-homomorphims h′ : A → B with h 6= h′.
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What is a Pocket Calculator?

Consider a pocket calculator for expressions on the signature
Σ = {0, 1,_ + _,_ ∗ _}, evaluated on the integers Z = (Z,_Z).

Q: What is a pocket calculator as a computable function?

A: A function, say, _Z : TΣ → Z. Call it evaluation in Z.

Q: What is the recursive definition of _Z : TΣ → Z?

A: It is defined by the recursive equations: 0Z = 0, 1Z = 1,
(t+ t′)Z = tZ +Z t′Z, (t ∗ t′)Z = tZ ∗Z t′Z.

Q: What is the essential property of the function _Z : TΣ → Z?

A: It is a Σ-homomorphism _Z : TΣ → Z because, for example,

(0TΣ)Z = (0)Z = 0Z = 0, (t+TΣ t′)Z = (t+ t′)Z = tZ +Z t′Z.
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What is a Pocket Calculator? (II)

In the same way we also have pocket calculators for the ground
terms of Σ = {0, 1,_+_,_ ∗_}, evaluated on the natural numbers
N = (N,_N), the natural numbers modulo k ≥ 1, Nk = (Nk,_Nk

),
or the rational numbers Q = (Q,_Q).

More generally, we shall see shortly, that for Σ a sensible
order-sorted signature and any order-sorted Σ-algebra A = (A,_A)
there is a unique pocket calculator evaluating the terms TΣ in A,
that is, a unique Σ-homomorphism _A : TΣ → A, defined by the
recursive equations:

• (a)A = aA for each constant a in Σ, and

• f(t1, . . . , tn)A = fA(t1A, . . . , tnA) for each f : s1 . . . sn → s in Σ.
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Term Algebras on Sensible Signatures

If a signature is sensible, then different terms denote different
things. In the argot of algebraic specifications, this is expressed by
saying that the term algebra TΣ has no confusion.

Furthermore, the term algebra TΣ is in some sense minimal, since
it has only the elements it needs to have to be an algebra: the
constants, and the terms needed so that the operations can yield a
result; that is why this minimality is expressed saying that it has
no junk.

The key intuition of why there is a unique pocket calculator
_A : TΣ → A for any Σ-algebra A, is that: (i) no junk ensures
uniqueness of _A, and (ii) no confusion ensures the existence of _A.
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No Pocket Calculators for Term Algebras on Non-sensible Signatures

The intuition that no confusion ensures the existence of
_A : TΣ → A suggests that confusion/ambiguity in TΣ, i.e., Σ
non-sensible, will prevent/block the existence of _A : TΣ → A. Let
us see an example.

For example, _K : TΣ → K cannot be defined for Σ the non-sensible
signature we showed in pg. 16 of Lecture 4 and the Σ-algebra
K = (K,_K) with: KA = {a}, KB = {b}, KC = {c}, KD = {d, d′},
and with fA,B

K (a) = b, fA,C
K (a) = c, gB,D

K (b) = d, and gC,D
K (c) = d′.

Indeed, there in no Σ-homomorphism h : TΣ −→ K at all, since
hD(g(f(a)) must be either d or d′. But if hD(g(f(a)) = d, then h

fails to preserve the operation g : C −→ D, and if hD(g(f(a)) = d′,
then h fails to preserve the operation g : B −→ D.
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Initiality of the Term Algebra TΣ when Σ Sensible

In summary, the claim is that, if Σ is sensible, then for any
Σ-algebra A there is a unique pocket calculator for A, i.e., a unique
Σ-homomorphism _A : TΣ −→ A. This is called the initiality
property of TΣ. This unique Σ-homomorphism _A is the obvious
evaluation function, mapping each term t to the result of evaluating
it in A. As already mentioned, _A is defined inductively as follows:

• for a constant a we define (a)A = aA, and

• for a term f(t1, . . . , tn) we define
(f(t1, . . . , tn))A = fA((t1)A, . . . , (tn)A).

Let us prove it in detail.

Theorem. If Σ is a sensible order-sorted signature, then TΣ

satisfies the initiality property.
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Proof of the Initiality Theorem

Proof: For A any Σ-algebra Let us first prove the uniqueness of _A,
and then its existence.

Proof of uniqueness. Let us suppose that we have two different
homomorphisms h, h′ : TΣ → A. We can prove that h = h′ by
induction on the depth of the terms.

For terms of depth 0 let a be a constant in TΣ,s. That means that
there is a sort s′ ≤ s with an operator declaration a : nil −→ s′ and
therefore, by h and h′ being Σ-homomorphisms we must have
hs(a) = h′

s(a) = anil,s
′

A .
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Proof of the Initiality Theorem (II)

Assume that the equality h = h′ holds for terms of depth less or
equal to n, and let f(t1, . . . , tn) ∈ TΣ,s have depth n+ 1. That
means that there is an operator declaration f : s1 . . . sn → s′ with
s′ ≤ s and ti ∈ TΣ,si , 1 ≤ i ≤ n. Again, by h and h′ being
Σ-homomorphisms we must have:

hs(f(t1, . . . , tn)) =

= fs1...sn,s
′

A (hs1(t1), . . . , hsn(tn)) (h homomorphism and s′ ≤ s)

= fs1...sn,s
′

A (h′
s1(t1), . . . , h

′
sn(tn)) (induction hypothesis)

= h′
s(f(t1, . . . , tn)) (h′ homomorphism and s′ ≤ s).
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Proof of the Initiality Theorem (III)

Proof of Existence. Before defining _A, recall the notation
T ◦
Σ =def

∪
s∈S TΣs . Likewise, for A = (A,_A) a Σ-algebra define

A◦ =def

∪
s∈S As. Recall also from STACS that [T ◦

Σ ⇀ A◦] denotes
the set of partial functions from T ◦

Σ to A◦. Define the subset
[T ◦

Σ ⇀ A◦]S ⊆ [T ◦
Σ ⇀ A◦] as follows:

[T ◦
Σ ⇀ A◦]S =def {h ∈ [T ◦

Σ ⇀ A◦] | ∀s ∈ S, ∀t ∈ TΣ,s (t, a) ∈ h ⇒ a ∈ As}

that is, [T ◦
Σ ⇀ A◦]S is the subset of sort-preserving partial

functions from T ◦
Σ to A◦. One such function in [T ◦

Σ ⇀ A◦]S is:

_0
A =def {(a, aA) | (ε → a) ∈ G}

Now define the function:

next : [T ◦
Σ ⇀ A◦]S → [T ◦

Σ ⇀ A◦]S

by the lambda expression: next = λh ∈ [T ◦
Σ ⇀ A◦]S . h] s(h), where
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Proof of the Initiality Theorem (IV)

s(h) = {(f(t1, . . . , tn), fA(h(t1), . . . , h(tn)) | f(t1, . . . , tn) ∈ T
◦
Σ\dom(h)∧ti ∈ dom(h), 1 ≤ i ≤ n}

Since in order-sorted algebras overloaded operators agree on
common data and Σ is sensible, the result fA(h(t1), . . . , h(tn)) does
not depend on the specific typing chosen for f in G and therefore
s(h) and next(h) are both indeed partial functions in [T ◦

Σ ⇀ A◦]S .

Now define
_◦

A =def

∪
n∈N

rec(_0
A,next)(n)

Recall from STACS §6.1, Thm 3, that rec(_0
A,next) is the function

rec(_0
A,next) : N → [T ◦

Σ ⇀ A◦]S

defined by simple recursion from _0
A and next . Note that: (i) _◦

A is
a partial function in [T ◦

Σ ⇀ A◦] because {rec(_0
A,next)(n)}n∈N is a
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chain in the subset order ⊆ and [T ◦
Σ ⇀ A◦] is closed under limits of

chains (see STACS §7.5); (ii) furthermore, _◦
A belongs to

[T ◦
Σ ⇀ A◦]S because for each n ∈ N, rec(_0

A,next)(n) does so; and
(iii) _◦

A is a total function _◦
A : T ◦

Σ → A◦, since next(_◦
A) = _◦

A.

Now define the S-sorted function:

_A = {_◦
A|TΣ,s

: TΣ,s → As}s∈S

This is our desired Σ-homomorphism _A : TΣ → A because for each
n ∈ N, rec(_0

A,next)(n) (viewed as an S-sorted partial function) is
a partial Σ-homomorphism, i.e., by construction it satisfies the
Σ-homomorphism requirements for all terms in
dom(rec(_0

A,next)(n)), i.e., for all constants a in Σ and for all
f(t1, . . . , tn) ∈ T ◦

Σ of tree depth n or less. q.e.d.
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The Pocket Calculator of a Canonical Term Algebra

Ex.11.6. Recall the canonical term algebra
CΣ/E,B = (CΣ/E,B ,_CΣ/E,B

), defined in page 17 of Lecture 6 for a
functional fmod (Σ, E ∪B) endfm, where Σ is B-preregular and
satisfies the Unique Termination, Sufficient Completeness and Sort
Preservation requirements.a What is the pocket calculator of
CΣ/E,B?

By the Initiality Theorem, it is the unique Σ-homomorphism
_CΣ/E,B

: TΣ −→ CΣ/E,B . Prove that, as an S-sorted function on
S-sorted sets, _CΣ/E,B

: TΣ → CΣ/E,B is exactly the S-sorted
function: {TΣ,s 3 t 7→ [t!E/B ] ∈ CΣ/E,B,s}s∈S (what Maude’s red
command implements!!), which we used in defining CΣ/E,B .

aWhich of course can be checked by checking sort-decreasingness, local con-
fluence and termination of E⃗ modulo B, and sufficient completeness w.r.t. the
constructors Ω.
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More on Homomorphisms

Ex.11.7. Prove that homomorphisms compose. That is, if
h : A → B and g : B → C are Σ-homomorphisms, then
h; g = {hs; gs}s∈S is a Σ-homomorphism h; g : A → C.

Ex.11.8. Prove that identities are homomorphisms. That is, given a
Σ-algebra A = (A,_A), the family of identity functions
idA = {idAs

} is a Σ-homomorphim idA : A → A.
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More on Homomorphisms (II)

A Σ-homomorphim h : A → B is called an isomorphim if there is
another Σ-homomorphism g : B → A such that h; g = idA and
g;h = idB . We then may use the notation g = h−1 and h = g−1.

We call a Σ-homomorphism h : A → B

• injective (resp. surjective) if for each sort s ∈ S the function hs

is injective (resp. surjective)

• a monomorphism if for any pair of Σ-homomorphisms
g, q : C → A, if g;h = q;h then g = q

• an epimorphism if for any pair of Σ-homomorphisms
g, q : B → C, if h; g = h; q then g = q.
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More on Homomorphisms (III)

For example, if Nbin, resp. Ndec, denote the natural numbers with
0, successor, and addition in binary, resp. decimal, representation,
we have an obvious binary-to-decimal isomorphism
b2d : Nbin → Ndec preserving all operations, whose inverse is the
decimal-to-binary isomorphism, d2b : Nbin → Ndec. Of course,
d2b; b2d = idNdec

, and b2d; d2b = idNbin
.

For Nn the residue classes modulo n, the reminder function
N remn−→ Nn is a surjective homomorphism for Σ containing, say, 0, 1,
+, ×.

Similarly, for Zdec the integers in decimal notation, the inclusion
j : Ndec ↪→ Zdec is an injective homomorphism preserving all shared
operations: 0, 1, +, ×, etc.
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Theorem: All Initial Algebras Are Isomorphic

Proof: Suppose I and J are Σ-algebras and both satisfy the
initiality property of having a unique Σ-homomorphism to any
other Σ-algebra. In particular, we have unique homomorphisms,

h : I −→ J g : J −→ I

and therefore a composed homomorphism

I h−→ J g−→ I

but we also have the identity homomorphism id I, which by
uniqeness forces h; g = id I. Interchanging the role of I and J we
also get, g;h = idJ. q.e.d.
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Exercises

Ex.11.9. Show that a homomorphism is injective iff it is a
monomorphism. Prove that every surjective homomorphism is an
epimorphism. Construct an epimorphism that is not surjective.

Ex.11.10. Show that any many-sorted Σ-homomorphism that is
surjective and injective is an isomorphism.

Construct an order-sorted homomorphism that is surjective and
injective but is not an isomorphism. Give a sufficient condition on
the poset (S,≤) (more general of course than being a discrete
poset, since that is the many-sorted case) so that h is an
isomorphism iff h is surjective and injective.
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Exercises (II)

Ex.11.11. Prove that an algebra J initial iff it is isomorphic to an
initial algebra I.

Ex.11.12. Show that the natural numbers in Peano notation (zero
and successor) and in base 2 are isomorphic Σ-algebras (both
initial) for Σ the signature with one sort Natural and zero and
successor operations.
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