
Program Verification: Lecture 10

José Meseguer

Computer Science Department
University of Illinois at Urbana-Champaign

1

Termination

We need methods to check termination of an equational theory
(Σ, E). This means proving that the rewriting relation −→E⃗ (or,
more generally, −→E⃗/B for (Σ, E ∪B)) is well-founded.

The key observation is that, if we exhibit a well-founded ordering >

on terms such that

(♣) t −→E⃗ t′ ⇒ t > t′,

then we have obviously proved termination, since nontermination of
−→E⃗ would make the order > non-well-founded.

2

Reduction Orderings

To show (♣) we need to consider an, infinite number of rewrites
t −→E⃗ t′. We would like to reduce this problem to checking (♣)

only for the oriented equations in E⃗. We need:

Definition: A well-founded ordering > on ∪s∈STΣ(V) is called a
reduction ordering iff it satisfies the following two conditions:

• strict Σ-monotonicity: for each f ∈ Σ, whenever
f(t1, . . . , tn), f(t1, . . . , ti−1, t

′
i, ti+1, . . . , tn) ∈ TΣ(V) with

ti > t′i, then, f(t1, . . . , tn) > f(t1, . . . , ti−1, t
′
i, ti+1, . . . , tn)

• closure under substitutuion: if t > t′, then, for any substitution
θ : V −→ TΣ(V) we have, tθ > t′θ.

> is called a simplification order if, furthermore, f(t1, . . . , tn) > ti,
1 ≤ i ≤ n.

3

Reduction Orderings (II)

Theorem 1: For (Σ, E) an equational theory, E⃗ is terminating iff
there exists a reduction order > s.t. ∀(u = v) ∈ E, u > v.

Proof: (⇒) follows from: (i) E⃗ terminating makes −→+

E⃗
irreflexive

and well-founded order, (ii) the Context Lemma (Lecture 7) implies
−→+

E⃗
strictly monotonic, and (iii) the Substitution Lemma

(Lecture 8) implies −→+

E⃗
closed under substitutions.

To see (⇐), need to prove t →E⃗ t′ ⇒ t > t′. By t →E⃗ t′, there is a
position p, equation (u = v) ∈ E, and substitution θ s.t. t = t[uθ]p,
and t′ = t[vθ]p. We reason by induction on the length |p| of p. Base
Case: p = ϵ, i.e., t = uθ > vθ = t′, by > substit. closed. Induction
Step: p = i.q has length n+ 1, with t = f(w1, . . . , wi, . . . , wn),
t′ = f(w1, . . . , w

′
i, . . . , wn), with wi →E⃗ w′

i at position q. By Ind.
Hyp. wi > w′

i, and by strict monotonicity t > t′. q.e.d.

4

Recursive Path Ordering (RPO)

The recursive path ordering (RPO) is based on the idea of giving
an ordering on the function symbols in Σ, which is then extended
to a reduction ordering on all terms. Since if Σ is finite the number
of possible orderings between function symbols in Σ is also finite,
checking whether a proof of termination exists this way can be
automated.

The intuitive idea that functions that are more complex should be
bigger in the ordering (for example: _*_ > _+_ > s > 0) tends to
work quite well, and can often yield a reduction ordering contaning
the equations. Furthermore each symbol f in Σ is given a status
τ(f) equal to either: τ(f) = lex (π) (lexicographic), or τ(f) = mult

(multiset). τ(f) indicates how the arguments of f should be
compared in the order.

5

RPO (II)

Given a finite signature Σ = ((S,<), F,G), plus an ordering > and
a status function τ on its symbols F , the recursive path ordering
>rpo on ∪s∈STΣ(V) is defined recursively as follows. u >rpo t iff:

u = f(u1, . . . , un), and either:

1. ui ≥rpo t for some 1 ≤ i ≤ n, or

2. t = g(t1, . . . , tm), u >rpo tj for all 1 ≤ j ≤ m, and either:

• f > g, or

• f = g and ⟨u1, . . . , un⟩ >τ(f)
rpo ⟨t1, . . . , tn⟩

where the extension of >rpo to an order >
τ(f)
rpo on lists of terms is

explained below.

6

RPO (III)

The extension of >rpo to an order >
τ(f)
rpo on lists of terms is defined

as follows:

• If f has n arguments and τ(f) = lex (π) with π a permutation
on n elements, then ⟨u1, . . . , un⟩ >τ(f)

rpo ⟨t1, . . . , tn⟩ iff there
exists i, 1 ≤ i ≤ n such that for j < i uπ(j) = tπ(j), and
uπ(i) > tπ(i).

• if τ(f) = mult , then ⟨u1, . . . , un⟩ >τ(f)
rpo ⟨t1, . . . , tn⟩ iff we have

{u1, . . . , un} >mult
rpo {t1, . . . , tn}

where, given any order > on a set A, it extension to an order >mult

on the set Mult(A) of multisets on A is the transitive closure of the
relation >mult

elt defined by M ∪ {a} >mult
elt M ∪ S iff (∀x ∈ S) a > x,

where S can be ∅.

7

RPO (IV)

It can be shown (for detailed proofs see the Terese and
Baader-Nipkow books cited later) that any RPO order > on a
finite signature Σ is a simplification order. By Theorem 1, we can
therefore use it to prove termination of E⃗, by just checking that
u > v for each (u → v) ∈ E⃗.

Consider for example the usual equations for natural number
addition: n+ 0 = n and n+ s(m) = s(n+m). We can prove that
they are terminating by using the RPO associated to the ordering
+ > s > 0 with τ(f) = lex (id) for each symbol f . Indeed, it is then
trivial to check that n+ 0 >rpo n and n+ s(m) >rpo s(n+m).

8

Termination Modulo Axioms B

To prove that the rewrite relation →E⃗/B is terminating, we need a
reduction order that is compatible with the axioms B. That is, if
u > t, u =B u′ and t =B t′, then we must also have u′ > t′. This
means that > defines also an order on the set, ∪s∈STΣ/B(X). For
example, RPO is compatible with commutativity axioms if we
specify τ(f) = mult for each commutative symbol f .

To make RPO compatible with associative and commutative
symbols it has been generalized to the AC.RPO order by a method
of flattening AC symbols. E.g., for f AC, f(f(a, b), f(c, d)) flattens
to f(a, b, c, d). In his Ph.D. thesis,a Albert Rubio has further
generalized AC.RPO to the A ∨ C.RPO order, where some
symbols can be associative and/or commutative.

aA. Rubio, “Automated Deduction with Constrained Clauses,” Ph.D. thesis,
Universitat Politècnica de Catalunya, 1994.

9

Proving Termination with A ∨ C.RPO

The Maude Termination Assistant (MTA) can prove termination
modulo A ∨ C axioms using an A ∨ C.RPO reduction order.

To prove a functional module FOO (preceded by: set include
BOOL off .) A ∨ C.RPO-terminating:

1. Choose a number nf for each f ∈ Σ (f > g iff nf > ng) using
Maude’s metadata attribute to specify nf and lex in FOO.

2. Load functional module FOO in Maude; then load mta.maude.

3. Give the command (check-AvCrpo FOO .) that will check
whether each u = v in FOO satisfies u >A∨C.rpo v. It will reply:
Module is terminating by AvC-RPO order or display those
u = v in FOO not provable with chosen order >.

MTA proves module LIST+MSET is AC.RPO-terminating:

10

Proving Termination with A ∨ C.RPO (II)
set include BOOL off .

fmod LIST+MSET is
sorts Element List MSet . subsorts Element < List .
subsorts Element < MSet .
op a : -> Element [ctor metadata "1"] .
op b : -> Element [ctor metadata "2"] .
op c : -> Element [ctor metadata "3"] .
op nil : -> List [ctor metadata "4"] .
op _;_ : List List -> List [metadata "5 lex(2 1)"] .
op _;_ : List Element -> List [ctor metadata "5 lex(2 1)"] .
op _,_ : MSet MSet -> MSet [ctor assoc comm metadata "4"] .
op null : -> MSet [ctor metadata "3"] .
op l2m : List -> MSet [ctor metadata "5"] .
vars L P Q : List . var M : MSet . var E : Element .
eq L ; (P ; Q) = (L ; P) ; Q . eq L ; nil = L .
eq nil ; L = L . eq M , null = M . eq l2m(nil) = null .
eq l2m(E) = E . eq l2m(L ; E) = l2m(L) , E .

endfm

11

Polynomial Orderings

Another general method of defining suitable reduction orderings is
based on polynomial orderings. In its simplest form we can just use
polynomials on several variables whose coefficients are natural
numbers. For example,

p = 7x3
1x2 + 4x2

2x3 + 6x2
3 + 5x1 + 2x2 + x4 + 11

is one such polynomial. Note that a polynomial p whose biggest
indexed variable is n (in the above example n = 4) defines a
function pN≥k

: Nn
≥k −→ N≥k (where k ≥ 3 and

N≥k = {n ∈ N | n ≥ k}), just by evaluating the polynomial on a
given tuple of numbers, each of them greater or equal to k. For p

the polynomial above we have for example, pN≥3
(3, 3, 3) = 386.

12

Polynomial Orderings (II)

Note also that we can order the set [Nn
≥k → N≥k] of functions from

Nn
≥k to N≥k by defining f > g iff for each (a1, . . . an) ∈ Nn

≥k

f(a1, . . . an) > g(a1, . . . an). This order on functions is well-founded,
since if we have an infinite descending chain of functions

f1 > f2 > . . . fn > . . .

by choosing any (a1, . . . an) ∈ Nn
≥k we would get a descending chain

of positive numbers

f1(a1, . . . an) > f2(a1, . . . an) > . . . fn(a1, . . . an) > . . .

which is impossible.

13

Polynomial Orderings (III)

The method of polynomial orderings then consists in assigning to
each function symbol f : s1 . . . sn −→ s in Σ a polynomial pf
involving exactly the variables x1, . . . , xn (all of them, and only
them must appear in pf). If f is subsort overloaded, we assign the
same pf to all such overloadings. Also, to each constant symbol b
we likewise associate a positive number pb ∈ N≥k.

Suppose that in our set E of equations we have used variables
Y = vars(E) (such variables need not be numbered at all). Then
our assignment of a polynomial pf on variables x1, . . . , xn to each
function symbol of n arguments, and a number pa to each constant
a extends to a function:

14

Polynomial Orderings (IV)

p_ : TΣu(Y) −→ N[Y]

where Σu(Y) is the unsorted version of Σ(Y), N[Y] denotes the
polynomials with natural number coefficients in the variables Y ,
and where p_ is defined inductively as follows:

• pb = pb

• py = y for each y ∈ Y

• pf(t1,...,tn) = pf{x1 7→ pt1 , . . . , xn 7→ ptn}

15

Polynomial Orderings (V)

Note that the the polynomial interpretation p induces a
well-founded ordering >p on the terms of TΣ(Y) as follows:

t >p t′ ⇔ ptN≥k
> pt′N≥k

where if Y = vars(E) and |Y | = m, linearly ordering Y we
interpret ptN≥k

and pt′N≥k
as functions in [Nm

≥k → N≥k]. The
relation >p is clearly an irreflexive and transitive relation on terms
in TΣ(X) ⊆ TΣu(X), therefore a strict ordering, and is clearly
well-founded, because otherwise we would have an infinite
descending chain of polynomial functions in [Nm

≥k → N≥k], which is
impossible.

16

Polynomial Orderings (VI)

We now need to check that this ordering is furthermore: (i) strictly
Σ-monotonic, and (ii) closed under substitution. Condition (i)
follows from + and ∗ strictly monotonic on N≥k, plus each function
symbol f : s1 . . . sn −→ s in Σ the polynomial pf involving exactly
the variables x1, . . . xn (pf does not drop any variables and all
coefficients are non-zero). Therefore, pfN≥k

, viewed as a function of
n arguments, is strictly monotonic in each of its arguments.
Condition (ii) follows from the following general property of the p_

function, left as an exercise, (where vars(t) = {y1, . . . , yn}):

p(t{y1 7→u1,...,yn 7→un}) = pt{y1 7→ pu1 , . . . , yn 7→ pun}.

This then easily yields that if t >p t′ then
t{y1 7→ u1, . . . , yn 7→ un} >p t′{y1 7→ u1, . . . , yn 7→ un}, as desired.

17

Polynomial Orderings (VII)

Therefore, polynomial interpretations of this kind define reduction
orders and can be used to prove termination. One can also easily
show them to be simplification orders. Consider for example the
single equation f(g(x)) = g(f(x)) in an unsorted signature having
also a constant a. Is this equation terminating? We can prove that
it is so by, e.g., the following polynomial interpretation:

• pf = x1
3

• pg = 2x1

• pa = 3

since we have the following strict inequality of functions:
((2x)3)N≥k

> (2(x3))N≥k
, showing that f(g(x)) >p g(f(x)).

18

Polynomial Termination Modulo Axioms

Some polynomial interpretations are compatible with certain
axioms. For example, a symmetric polynomial, i.e., such that
p(x, y) = p(y, x) is compatible with commutativity and can
therefore be used to interpret a commutative symbol. For example,
2x+ 2y is symmetric. Similarly, a polynomial p(x, y) which is
symmetric (p(x, y) = p(y, x)) and furthermore satisfies the
associativity equation p(x, p(y, z)) = p(p(x, y), z) can be used to
interpret an associative-commutative symbol. As shown by
Bencheriffa and Lescanne the polynomials satisfying associativity
and commutativity axioms have a simple characterization: they
must be of the form a xy + b(x+ y) + c with ac+ b− b2 = 0.

19

Proving Polynomial Termination with MTA

The MTA tool can be used to prove polynomial termination of a
module FOO using linear polynomials. That is, we associate to each
n-argument operator f ∈ Σ a linear polynomial of the form:

pf = a1x1 + . . .+ anxn + an+1

where ai ̸= 0 for 1 ≤ i ≤ n. For constants c ∈ Σ we require
pc = a1 ≥ 3.
Using the metadata attribute, we express each pf as the string
”a1 . . . an+1”.
To prove polynomial termination we: (1) load FOO into Maude with
metadata annotations; then load mta.maude; then (2) give the
command: (check-poly FOO .) MTA then replies with either
Module is terminating by polynomial order or the list of
equations failing the given order. Let us see an example:

20

Proving Polynomial Termination with MTA (II)
set include BOOL off .

fmod LIST+MSET is
sorts Element List MSet . subsorts Element < List .
subsorts Element < MSet .
op a : -> Element [ctor metadata "3"] .
op b : -> Element [ctor metadata "3"] .
op c : -> Element [ctor metadata "3"] .
op nil : -> List [ctor metadata "2"] .
op _;_ : List List -> List [metadata "2 1 1"] .
op _;_ : Element List -> List [ctor metadata "2 1 1"] .
op _,_ : MSet MSet -> MSet [ctor assoc comm metadata "1 1 1"] .
op null : -> MSet [ctor metadata "2"] .
op l2m : List -> MSet [ctor metadata "1 1"] .
vars L P Q : List . var M : MSet . var E : Element .
eq (L ; P) ; Q = L ; (P ; Q) . eq L ; nil = L .
eq nil ; L = L . eq M , null = M . eq l2m(nil) = null .
eq l2m(E) = E . eq l2m(E ; L) = E , l2m(L) .

endfm

21

Proving Polynomial Termination with MTA (III)

For an assoc comm (or assoc comm id:) symbol f , recall that the
corresponding polynomial pf must itself be assoc comm and
therefore must have the form: axy + b(x+ y) + c with
ac+ b− b2 = 0. But since in MTA pf must be linear, this forces
a = 0 and b = b2. Therefore, pf = 1x+ 1y + c. That is why we
have declared:

op _,_ : MSet MSet -> MSet [ctor assoc comm metadata "1 1 1"] .

Note that if f is only assoc (or assoc id:) it is OK for pf to be
assoc comm, since in particular pf is assoc. Therefore, for an
assoc symbol f we must also choose pf = 1x+ 1y + c.

Note: We do not need to worry about pf satisfying id: axioms:
MTT automatically generates a semantically equivalent module
where id: axioms become rules, so pf need only be assoc comm.

22

The MTT Tool

The Maude Termination Tool (MTT) is a tool that can be used to
prove the operational termination of Maude functional modules.

Functions in such modules may be declared with axioms like
associativity and commutativity; and also with evaluation
strategies (see the Maude Manual, Section 4.4.7), indicating what
arguments of a function symbol should be evaluated before
applying equations for that symbol. For example, in an
if_then_else_fi the first agument should be evaluated before
equations for it are applied; and in a “lazy list cons” _;_ the first
argument is evaluated, but not the second.

23

The MTT Tool (II)

Features such as sorts, subsorts, and evaluation strategies may be
essential for the termination of a Maude module. That is, ignoring
them may result in a nonterminating module.

To preserve these features somehow, while still allowing using
standard termination backend tools, the MTT implements the
transformations of (Σ, E) first into an unsorted conditional theory
(Σ◦, E◦), and then (Σ◦, E◦) is transformed into an unsorted
unconditional theory (Σ•, E•).

If the module declares evaluation strategies, they are also
transformed; but at the end evaluation strategies can either be used
directly by a termination tool like Mu-Term, or a further theory
transformation can eliminate such strategies.

24

The MTT Tool (III)

The course web page indicates how the MTT is part of Maude’s
Formal Environment (MFE).

Once a Maude module has been entered into the MTT (the module
should not import any built-in modules like, e.g., NAT), the user can
perform the theory transformation (Σ, E) 7→ (Σ•, E•) in one of
three increasingly simpler modes: (1) Complete; (2) No Kinds; and
(3) No Sorts. In case (2) kinds are ignored; and in case (3) both
kinds and sorts are ignored. There is a tradeoff between simplicity
of the transformation and its tightness. Sometimes a simpler
transformation works better, and sometimes a more complete one is
essentially needed.

25

The MTT Tool (IV)

The choice of transformation can be made by clicking the
appropriate buttons (a screenshot will show this). But one also
needs to choose which backend termination tool for unsorted and
uncondional specifications will be used. One among the CiME,
MU-TERM, and AProVE termination tools can be chosen.

Then one can click on the Check bar to check the specification with
the chosen tool. Some of these tools offer choices for different
settings. So, we can try to prove termination using three different
transformation variants, and then with one of three backend tools,
sometimes customizing the particular tool choices. This maximizes
the chances of obtaining a successful termination proof.

26

The MTT Tool (V)

What the MTT tool then proves is that the original Maude
functional module is terminating. The correctness of such a proof is
based on:

• the correctness of the theory transformationsa and

• the correctness of the chosen tools, that sometimes output a
justification of how they proved termination.

A screeshot of a tool interaction is given in the next page.
aSee F. Durán, S. Lucas an J. Meseguer, “Methods for Proving Termination of

Rewriting-based Programming Languages by Transformation.” Electron. Notes
Theor. Comput. Sci. 248: 93-113 (2009)

27

28

Termination is Undecidable

All the termination tools try to prove that a set of oriented
equations E⃗, conditional or unconditional, is terminating by
applying different proof methods; for example by trying to see if
particular orderings can be used to prove the equations terminating.

But these termination proof methods are not decision procedures:
in general, termination of a set of equations (even if they are
unconditional) is undecidable. This is so because a Turing machine
can be specified as a term rewriting system (TRS) (see Ölveczky’s,
and Baader and Nipkow’s books in next slide) and the halting
(=termination) problem is undecidable for Turing machines.
However, there are some TRS classes (e.g., ground TRSs) for which
termination is decidable (see Baader and Nipkow’s book in next
slide).

29

Where to Go from Here

Besides RPO and polynomials, other orderings and termination
methods can be used to prove termination. Good sources include:

TeReSe, “Term Rewriting Systems,” Cambridge U. P., 2003.

Baader and Nipkow, “Term Rewriting and All That”, Cambridge
U.P., 1998.

N. Dershowitz and J.-P. Jouannaud, “Rewrite Systems,” in J. van
Leeuwen, ed., “Handbook of Theoretical Computer Science,”
Elsevier, 1990.

E. Ohlebusch, “Advanced Topics in Term Rewriting Systems,”
Springer Verlag, 2002.

P. Ölveczky, “Designing Reliable Distributed Systems,” Springer
Verlag, 2017.

30

Exercises

Ex.10.1 Prove that if > is well-founded, then its multiset extension
>mult is also well-founded.

Ex.10.2. Prove that if > is a well-founded relation on a set A of
elements, then, given two multisets, M,N with elements in A,
M >mult N holds iff:

• M and N can be decomposed as: M = S ∪ {a1, . . . , ak}, k ≥ 1,
ai ∈ A, and M = S ∪ U1 ∪ . . . ∪ Uk (where M and some of the
Ui could be ∅),

• {a1, . . . , ak} ∩ (U1 ∪ . . . ∪ Uk) = ∅, and

• ∀x ∈ Ui, ai > x, 1 ≤ i ≤ k.

Ex.10.3. Prove that any RPO order is a simplification order.

31

