
Program Verification: Lecture 1

José Meseguer

Computer Science Department
University of Illinois at Urbana-Champaign

1



Program Verification: What and Why

What is Program Verification? Why is it needed?

• testing can show errors but not their absence

• software errors in critical systems can cause major disasters

• mathematics can be used to state program properties and to
prove a program correct for all inputs

• we then say that the program has been verified correct

2



By Hand vs. Tool-Assisted Verification

One can reason mathematically about a program and prove it
correct; this can be done even with pencil and paper.

This is the most important task; it cannot be replaced by machines
for many reasons, including the fact that the choice of what
properties to prove can be an ethical choice.

However, to err is human, and it is a fact of life that even very
experienced professionals make programming mistakes and can
similarly make mistakes in:

• specification, i.e., in modeling a system mathematically (system
specification) and/or in stating the properties to be verified
(property specification); and

• proof, i.e., in the actual proof of correctness.

3



By Hand vs. Tool-Assisted Verification (II)

Tools that mechanize the deduction process can greatly help in
avoiding proof mistakes and, to some extent, specification mistakes:

• tools supporting executable specification can help in debugging
system specifications; and

• proof assistants and other property verification tools (for
example, model checkers) can ensure proof correctness.

• proof checkers and other certification methods can verify that
the proofs carried out by verification tools are correct, so the
tools themselves need not be trusted.

4



Limitations of Program Verification

Exagerated claims about what can be achieved through program
verification are dangerous: they can lead to a dangerous
overconfidence in a system’s correctness.

We have only limited ways of convincing ourselves that we have
given the right specification: there can be mistakes in the
specification and in capturing the informal requirements.

Even with the right specification, all we can prove at best is the
correctness of a mathematical abstraction, never of the system
running in the real world.

All we can say at best is that if the compiler and the hardware
design are correct, and the hardware behaves according to its
specifications, then the program will execute correctly.

5



Limitations of Program Verification (II)

Of all the above preconditons for correct execution the first
two—compiler correctness and correctness of the hardware
design—deal after all with properties reducible to mathematical
abstractions and can therefore be included within the program
verification project.

This is because a compiler is just another program; and because a
hardware design, as opposed to a hardware physical
implementation, is just an abstraction that can be mathematically
described just as software can, and at that level of abstraction the
software/hardware distinction evaporates.

6



Limitations of Program Verification (III)

The biggest and most irreducible if is whether the hardware will
happen to behave according to its specifications. And this for at
least two reasons:

• those specifications assume normal operating conditions which
can be violated by a wide range of accidental causes such as:
defects in the materials or in the fabrication process, cosmic
rays, changes in temperature, power outages, floods,
earthquakes, etc.

• the engineering design rules are ultimately based on
physico-mathematical models of the physical world which are,
and always will be, both aspectual and fallible approximations
of reality.

7



Limitations of Program Verification (IV)

In spite of the above-mentioned limitations, program verification is
one of the best engineering ways that we have of gaining high
confidence in the correctness of critical systems; and of designing
and building high quality systems.

And this for the exact same reason why using mathematical models
is our best way to know what we are doing in science and
engineering.

Due to pragmatic and economic reasons connected with the
labor-intensive nature of program verification, it is often not
feasible to fully verify all systems down to the hardware design, or
even to fully verify the software.

8



Limitations of Program Verification (V)

The fact of life is that not all systems are equally critical.
Therefore it is a question of good judgement, and at times also an
ethical question, to decide how much effort should be spent in
program verification.

At one end of the spectrum we have testing, as a weak form of
program validation. At the other end of the spectrum we have
testing plus full program verification, say down to the hardware
design.

In the middle we have a wide range of methods of partial program
verification such as, for example, symbolic simulation, model
checking, and runtime verification. The key point is that even a
modest amount of program verification can go a long way in
increasing software quality.

9



Formal Methods: their Cost and Assurance

Assurance

Effort

6

-
Testing

Exec.
Spec.

Run-Time
Verif. &

Monitoring

Search
&

Bounded
Model

Checking

Model

Checking

Theorem

Proving

10



Deterministic vs. Concurrent

Programs come in many different languages and styles. This in fact
impacts both the level of difficulty and the verification techniques
suitable in each case.

A first useful distinctions is deterministic vs. concurrent:

• deterministic programs are programs such that for each input
they either yield a single answer or loop; they run on sequential
computers, but sometimes they can be parallelized;

• concurrent programs may yield many different answers, or no
answer at all, in the sense of being reactive systems constantly
interacting with their environment; they usually run
simultaneously on different processors.

11



Imperative vs. Declarative

A second useful distinction is imperative vs. declarative:

• imperative programs are those of most conventional languages;
they involve commands changing the state of the machine to
perform a task;

• declarative programs give a mathematical axiomatization of a
problem, as opposed to low-level instructions on how to solve
it; they can be based on different logical systems.

Of course, the deterministic vs. concurrent and the imperative vs.
declarative are orthogonal distinctions: all four combinations are
possible.

12



The Declarative Advantage

For program reasoning and verification purposes, declarative
programs have the important advantage of being already a piece of
mathematics. Specifically:

• a declarative program P in a language based on a given logic is
typically a logical theory in that logic.

• the properties that we want to verify are satisfied by P can be
stated in another theory Q; and

• the satisfaction relation that needs to be verified is a semantic
implication relation P |= Q stating that any model of P is also
a model of Q.

13



The Imperative Program Verification Game

By contrast, imperative programs are not expressed in the language
of mathematics, but in a conventional programming language like
C, C++, Java, or whatever, with all kinds of idiosyncrasies.

Therefore, the first thing that needs to be done in order to reason
about programs in an imperative programming language L is to
define the mathematical semantics of L.

This we can even be done in informal mathematics; but due to the
high complexity of conventional languages, tool assistance and
formal executable specifications are very helpful to axiomatize the
semantics of a language L as a logical theory TL.

14



The Imperative Program Verification Game (II)

Then, given a program P in L, the properties we wish to verify
about P can typically be expressed as a logical theory Q(P ),
involving somehow the text of P .

In the imperative case the satisfaction relation can again be
understood as a semantic implication between two theories, namely,
the axiomatization of the language and the desired properties:
TL |= Q(P ).

15



The Equational/Rewriting Logic Framework

A very good and nontrivial question is what logic to use as the
framework logic for program verification. There are various choices
with different tradeoffs.

In this course we will use equational logic to axiomatize the
semantics of declarative deterministic programs, and rewriting logic
to axiomatize the semantics of (declarative or imperative)
concurrent programs.

To axiomatize the properties satisfied by such programs we will
allow more expressive logics, such as full first-order logic plus
inductive principles, or modal and temporal logics (for concurrent
programs).

16



The Equational/Rewriting Logic Framework (II)

The above choices have the following advantages:

1. suitable subsets of equational and rewriting logic are efficiently
executable, giving rise, respectively, to a declarative
deterministic functional language, and a declarative concurrent
language;

2. equational logic is very well suited to give executable
axiomatizations of deterministic languages, including
imperative deterministic languages;

3. rewriting logic is likewise very well suited to give executable
axiomatization of (declarative or imperative) concurrent
languages;

4. therefore, we can specify all the four kinds of programs in an
executable way within the combined framework.

17



Initiality and Induction

Yet another key advantage is that equational and rewriting logic
theories have initial models. That is, theories in these logics have
an intended or standard mathematical model, (also called initial)
which is the one corresponding to our computational intuitions.

Inductive reasoning principles, such as the different induction
schemes, are then sound principles to infer other properties
satisfied by the standard model of a theory.

The two crucial satisfaction relations for declarative, resp.
imperative, program verification, namely, P |= Q, resp.
TL |= Q(P ), should be understood as inductive satisfaction
relations, corresponding to the initial model of P , resp. of TL.

18



Maude

Maude is a high-performance declarative language based on
rewriting logic that is very well suited for concurrent specification
and programming.

Since equational logic is a sublogic of rewriting logic, Maude has a
functional programming sublanguage.

We will use Maude and its tools in the course to experiment with
and verify both determinisitc (functional) and concurrent
declarative programs.

We will also use Maude and its tools to give executable
axiomatizations of imperative programming languages and to verify
imperative programs.

19



Course Outline

1. Equational logic and functional programming in Maude.

2. Initiality, induction, and verification of Maude functional
program properties in inductive first-order logic.

3. Rewriting logic and concurrent programming in Maude.

4. Verification of Maude concurrent program properties in both
modal logic and linear temporal logic.

5. Rewriting logic semantics and verification of imperative
program properties in both modal logic and linear temporal
logic.

20



What You Can Get out of this Course

1. basics of functional and concurrent declarative programming in
Maude;

2. basics of equational logic, rewriting logic, inductive theorem
proving, modal logic, linear temporal logic, and model checking;

3. rewriting logic methods for giving formal executable semantics
to imperative programming languages;

4. basic program verification principles and experience for
deterministic and concurrent declarative and imperative
programs.

21



Set Theory Prerequisites

Set theory is the language of modern mathematics. In some
countries, students are introduced to set-theoretic notation in high
school or even earlier. In some others, even some graduate students
in engineering have been cheated out of this very basic training.

As for any part of mathematics, also for logic we will need to use
elementary set theory notions (and corresponding notations)
including:

• set, subset, union, intersection, complement, etc.

• functions, injective, surjective, bijective, etc.

22



Set Theory Prerequisites (II)

• ordered pairs and cartesian products

• sets of functions from one set to another

• binary operations on a set

• relations, including reflexive, symmetric, and transitive
relations

• equivalence relations, quotient sets, and partitions

23



Set Theory Prerequisites (III)

This is not a remedial course on elementary set theory; it is a
course on program verification. Therefore, all the above set theory
notions and notations will be assumed known by all the students.

Elementary set theory is not rocket science. It is indeed quite
elementary, so if you were cheated out of this most basic
mathematical training up to now, you can pick it up in a short
time.

In fact, you must pick it up very soon in order for you to be able to
follow the course.

24



Set Theory Prerequisites (IV)

To help you in this task, in case you need it, the following things
may be useful and may help you focus your efforts:

1. Begin by studying Chapters 1–5 of J. Meseguer, Set Theory
and Algebra in Computer Science A Gentle Introduction to
Mathematical Modeling. Then do the exercises in homework 1.

25



Other Suggested Readings

Besides the suggested catching up reading on set theory, to help
you with the course itself:

1. Browse through Chapters 1, 2, and 3 of “All About Maude,”
and get Maude itself up and running on your machine by
downloading it from the Maude web page
(http://maude.cs.uiuc.edu).

2. Part II of Set Theory and Algebra in Computer Science A
Gentle Introduction to Mathematical Modeling can also be
quite helpful to study the algebra and term rewriting ideas
covered in the course.

3. As additional reading, you can also benefit from Peter
Ölveczky’s book on Formal Modelign and Analysis of
Distributed Systems.

26


