
CS 476 Homework #9 Due 10:45am on 10/24

Note: Answers to the exercises listed below in typewritten form (latex formatting preferred) as well as code solutions
should be emailed by the above deadline to clarage2@illinois.edu.

1. Consider the following three Maude functional modules for reversing lists: one whose reverse function inducts
on the left of a string, a similar module that inducts on the right of the string and a third module that actually
inducts on both sides of the string:

set include BOOL off .

fmod LIST-REV-L is

sorts Nat NeList List .

subsorts Nat < NeList < List .

op 0 : -> Nat [ctor metadata "0"] .

op s : Nat -> Nat [ctor metadata "1"] .

op nil : -> List [ctor metadata "2"] .

op _ _ : List List -> List [assoc metadata "3"] .

op _ _ : NeList NeList -> NeList [ctor assoc metadata "3"] .

op rev : List -> List [metadata "4"] .

var n : Nat . var L : List .

eq L nil = L .

eq nil L = L .

eq rev(nil) = nil .

eq rev(n) = n .

eq rev(n L) = rev(L) n .

endfm

set include BOOL off .

fmod LIST-REV-R is

sorts Nat NeList List .

subsorts Nat < NeList < List .

op 0 : -> Nat [ctor metadata "0"] .

op s : Nat -> Nat [ctor metadata "1"] .

op nil : -> List [ctor metadata "2"] .

op _ _ : List List -> List [assoc metadata "3"] .

op _ _ : NeList NeList -> NeList [ctor assoc metadata "3"] .

op rev : List -> List [metadata "4"] .

var n : Nat . var L : List .

eq L nil = L .

eq nil L = L .

eq rev(nil) = nil .

eq rev(n) = n .

eq rev(L n) = n rev(L) .

endfm
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set include BOOL off .

fmod LIST-REV-G is

sorts Nat NeList List .

subsorts Nat < NeList < List .

op 0 : -> Nat [ctor metadata "0"] .

op s : Nat -> Nat [ctor metadata "1"] .

op nil : -> List [ctor metadata "2"] .

op _ _ : List List -> List [assoc metadata "3"] .

op _ _ : NeList NeList -> NeList [ctor assoc metadata "3"] .

op rev : List -> List [metadata "4"] .

var n : Nat . vars L L’ : List .

eq L nil = L .

eq nil L = L .

eq rev(nil) = nil .

eq rev(n) = n .

eq rev(L L’) = rev(L’) rev(L) .

endfm

Do the following:

(a) Assuming in the terminology of Lecture 14, pg. 13 that these three functional modules are admissible,
prove that they are each comparable to the other two. No hand-waving blather will count as a “proof.”

Note. Since admissiblity is assumed, you do not have to check it for each module, although this is an
easy automatic check with the Maude tools. In particular, an RPO termination order has already been
defined for each module using the metadata attribute. All you are asked to do is to prove comparability
between each module and the other two.

(b) Prove that these three modules are semantically equivalent with the help of the NuITP. Explain why
exactly your proof ensures semantic program equivalence. That is, on what theorem are you basing your
claim that your proof using the NuITP does indeed prove semantic equivalence.

Warning. You should use the latest version of the NuITP, Alpha 23 of October 13, 2023 available in the
NuITP web page. This version corrects several bugs in the previous version and adds some new features
(but such new features are not needed for this homework: the Manual for the NuITP Alpha 21 documents
and illustrates with examples all the features that you may need). Be aware that caching issues in your
browser may make it appear as if the Alpha 23 isn’t there: just refresh your browser a couple of times
to see the link for it.

(c) Prove with the help of the NuITP Alpha 23 that the above three modules (that is, their canonical term
algebras) satisfy the inductive theorem:

rev(rev(L)) = L.

Explain why (based on what theorem(s)) your proof shows that the three modules satisfy this property.

Make sure to send to clarage2@illinois.edu screenshots of all your NuITP interactions for parts (b) and
(c) of this problem, as well as a proof script for them (i.e., a list of the commands that you have given to the
NuITP: see an example of a proof script in Problem 2 below)

Warning. Note that one of the typings for _ _ is not a constructor. Therefore, do not be surprised if the
NuITP will rejects a generator set that you have defined if it contains a term of the form u v whose least sort
is LIst.

Extra Credit. Parts (b) and (c) of this problem can be proved together by giving only three commands
(besides set commands to enter goals and genset commands defining generator sets, which do not count as
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inference steps in the proof) to the NuITP, of which only one of them is a gsi! command. You can get 50%
extra credit on this problem if you can prove parts (b) and (c) with just three inference step commands of
which only one is a gsi! command.

2. Recall the following NATURAL-ARITH functional module from Lecture 16:

set include BOOL off .

fmod NATURAL-ARITH is

sorts Nat NzNat .

subsort NzNat < Nat .

op 0 : -> Nat [ctor metadata "1"] .

op s : Nat -> NzNat [ctor metadata "2"] .

op _+_ : Nat Nat -> Nat [metadata "3"] .

op _*_ : Nat Nat -> Nat [metadata "4"] .

op _*_ : NzNat NzNat -> NzNat [metadata "5"] .

op _^_ : NzNat Nat -> NzNat [metadata "6"] . *** exponentiation

vars n m k : Nat . vars n’ k’ m’ : NzNat .

eq n + 0 = n .

eq n + s(m) = s(n + m) .

eq n * 0 = 0 .

eq n * s(m) = n + (n * m) .

eq n’ ^ 0 = s(0) .

eq n’ ^ s(m) = n’ * (n’ ^ m) .

endfm

In Lecture 16 this module was used to illustrate the internalize and conquer proof heuristic. To make your life
easier, a proof script allowing you to reproduce the proofs of all the results proved for this module is included
below:

set module NATURAL-ARITH .

genset SIND for Nat is 0 ;; s(N:Nat) .

set goal ((0 + Y:Nat = Y:Nat) /\ (s(X:Nat) + Y:Nat) = s(X:Nat + Y:Nat)) .

apply gsi! to 0 on $2:Nat .

internalize .

set goal X:Nat + (Y:Nat + Z:Nat) = (X:Nat + Y:Nat) + Z:Nat .

apply gsi! to 0 on $3:Nat .

internalize as assoc .

set goal (X:Nat + Y:Nat = Y:Nat + X:Nat) .

apply gsi! to 0 on $1:Nat .

internalize as comm .

set goal X:Nat * (Y:Nat + Z:Nat) = (X:Nat * Y:Nat) + (X:Nat * Z:Nat) .

3



apply gsi! to 0 on $2:Nat .

internalize .

set goal ((0 * Y:Nat = 0) /\ (s(X:Nat) * Y:Nat) = (Y:Nat + (X:Nat * Y:Nat))) .

apply gsi! to 0 on $2:Nat .

internalize .

set goal (Y:Nat + Z:Nat) * X:Nat = (Y:Nat * X:Nat) + (Z:Nat * X:Nat) .

apply gsi! to 0 on $2:Nat .

internalize .

set goal X:Nat * (Y:Nat * Z:Nat) = (X:Nat * Y:Nat) * Z:Nat .

apply gsi! to 0 on $3:Nat .

internalize as assoc .

set goal (X:Nat * Y:Nat = Y:Nat * X:Nat) .

apply gsi! to 0 on $2:Nat .

internalize as comm .

set goal (X:NzNat ^ (Y:Nat + Z:Nat) = (X:NzNat ^ Y:Nat) * (X:NzNat ^ Z:Nat)) .

apply gsi! to 0 on $2:Nat .

The goal of this problem is to give you the chance to have fun and experience the power of the internalize and
conquer heuristic by doing the following:

(a) After having entered NATURAL-ARITH into Maude and having loaded the NuITP Alpha 23 into Maude,
run the above proof script on the NuITP, so that you get exactly to the point after the proof of the last
goal for the property for the exponentiation function.

(b) Continue from that point and prove the following two additional properties of exponentiation, taking
advantage as much as possible of the internalize and conquer proof heuristic:

(X:NzNat ^ (Y:Nat * Z:Nat) = (X:NzNat ^ Y:Nat) ^ Z:Nat) .

set goal (X:NzNat ^ Y:Nat) ^ Z:Nat = (X:NzNat ^ Z:Nat) ^ Y:Nat .

Make sure to send to clarage2@illinois.edu a screenshot of all your NuITP interactions for part (b)
of this problem as well as a proof script for it (that is, the, hopefully short, proof script that is the
continuation of the above proof script).

Extra Credit. Part (b) of this problem can be accomplished by giving only four commands (besides set
commands to enter goals, which do not count as inference steps) to the NuITP, of which only one of them
is a gsi! comand. You can get 50% extra credit on this problem if you can prove part (b) with just four
commands, of which only one of them is a gsi! command.
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