
CS 476 Homework #7 Due 10:45am on 10/10

Note: Answers to the exercises listed below and the code solution and test cases for Exercise 1 should be emailed
in typewritten form (latex formatting preferred) by the deadline mentioned above to clarage2@illinois.edu.

1. Do the following:

• Define a data type ListQid of lists of Qid-elements. In this exercise you will use both lists and sets, and
you are therefore advised to use a symbol other than _ _ for list concatenation. Use e.g., _:_ or _ ; _

or whatever your favorite list concatenation operator is.

• Define a data type Set-ListQid of sets of lists of quoted identifiers. Then define only those functions
needed to solve the next part of this exercise.

• Define a function

op perm : ListQid -> Set-ListQid .

which takes a list of Qids and returns the set of all permutations of this list. (A permutation of a list is
a list where the elements are the same but are rearranged.) For instance, the set of all permutations of
the list ’a : ’b : ’c (using _:_ as the list concatenation operator) is the set (using _ _ as set union
operator)

(’a : ’b : ’c) (’a : ’c : ’b) (’b : ’a : ’c)

(’b : ’c : ’a) (’c : ’a : ’b) (’c : ’b : ’a)

Hint: This exercise is somewhat harder than previous exercises. One idea to generate all permutations of a
list such as ’a : ’b : ’c is to generate ’a plus all permutations of ’b : ’c and ’b plus all permutations of
’a : ’c and ’c plus all permutations of ’a : ’b. That is, we gradually construct each permutation.

This suggests that the job of actually generating all permutations could be done by an auxiliary function

op p : ListQid ListQid ListQid -> Set-ListQid .

where p(L1, L2,L3) generates the set of all permutations of L1 : L2 : L3 that begin with L1 followed by
a permutation of L2 : L3. It will do so by generating lists which start with L1, followed by an element chosen
from L2, followed by a permutation of L3 concatenated with the remaining elements of L2. But p may also
choose not to pick a given element of L2 as the next element after L1. So you need to think carefully about
how such a function p will work, and how to use the function’s third argument in recursive calls to p.

Last, but not least, you can achieve a very simple and elegant solution of this problem by taking full advantage
of suitable equational axioms like assoc, comm, and id: when defining lists and sets. Using these axioms, it is
possible to solve the above problem with just five equations! This is again another good example of the motto:

Declarative Programming = Mathematical Modeling

Obviously, you are not required to define the above auxiliary function p. You can give a different solution of
your own to solve this problem.

2. Solve Exercise 13.1 in Lecture 13.

Extra Credit. You can get up to 50% extra credit for this exercise (up to a grade of 15 assuming 10 is the
best possible grade for it) if you can give a proof that does not use induction.
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