
CS 476 Homework #5 Due 10:45am on 9/26

Note: Answers to the exercises listed below in typewritten form (latex formatting preferred) as well as code
solutions should be emailed by the above deadline to clarage2@illinois.edu.

1. Consider the following module (available in the course web page) of lists with a list append functions that is
associative and has an identity, but where associativity and identity are explicitly defined by equations:

(fmod LIST-EXAMPLE is

sorts Element NeList List .

subsorts Element < NeList < List .

op a : -> Element [ctor] .

op b : -> Element [ctor] .

op c : -> Element [ctor] .

op nil : -> List [ctor] .

op _;_ : List List -> List .

op _;_ : Element NeList -> NeList [ctor] .

eq (L:List ; P:List) ; Q:List = L:List ; (P:List ; Q:List) .

eq L:List ; nil = L:List .

eq nil ; L:List = L:List .

endfm)

The main goal of this exercise is to make you familiar with how, with the help of various Maude-based tools,
you can prove that a module satisfies the following executability conditions: sort-decreasingness, confluence,
and sufficient completeness. Another goal of this exercise is to let you see how, thanks to subsorts, an operator
like _;_ can be both a constructor with the typing _;_ : Element NeList -> NeList [ctor] and a defined
symbol, defined by the above three equations, with the typing _;_ : List List -> List .

This module is enclosed in parentheses only because you will need to enter it this way to the Church-Rosser
Checker and the SCC Tool. There is no need for such parentheses otherwise.

First of all you should prove that this module is confluent. Assuming termination, you just need to prove
that it is locally confluent, and for that it is enough to show that its critical pairs can be joined, which can be
automatically checked by Maude’s Church-Rosser Checker (CRC) Tool. Furthermore, the CRC tool also checks
the sort decreasingness of the rules automatically at the same time that it checks local confluence. Finally, you
can prove that this module is sufficiently complete using the SCC tool. You are asked to check that:

• LIST-EXAMPLE is confluent and sort decreasingness (the same command checks both properties) using the
Maude Church-Rosser Checker, which is part of the Maude Formal Environment (MFE) also available in
the course web page.

• LIST-EXAMPLE is sufficiently complete using the Maude SCC Tool,1 which is also part of MFE.

Note: As already mentioned, the outer parentheses around LIST-EXAMPLE are only needed when using the
MFE. Email you code for all the checks and screenshots of the tool interactions to clarage2@illinois.edu.

As mentioned above, a moral of this example is that subsorts and subsort overloading are very powerful, since
they allow us in this example to tighten the typing of the general “list append” operator exactly where we
want it to get a “cons-like” constructor operator. A second moral is that the essential distinction between

1The use of the SCC Tool is explained in the CS 476 Lecture 9, pages 15–21. Those slides illustrate the use of SCC as a standalone
tool, but SCC is currently part of the MFE. That is why LIST-EXAMPLE should be entered to the MFE inside parentheses and the user
interaction with the SCC through the MFE is slightly different than that in the standalone mode shown in slides.

1



“cons” and “append” as two different functions in the standard treatment of lists evaporates in an order-sorted
setting. A third moral is that, by making “cons” a constructor and “append” a defined function, we can make
the list constructor free (i.e., no equations ever apply to terms built only with operators and constants having
the ctor declaration, which is the case in this example). Note that only in an order-sorted setting is it possible
for the same overloaded operator to be a constructor for some typing and a defined symbol for another typing.

2. The above exercise was a relatively easy exercise to help you become familiar with some of the Maude tools
and learn how you can check key executability conditions for a functional module. In this second exercise you
are asked to actually prove yourself that the module LIST-EXAMPLE in Exercise 1 is in fact locally confluent by:

• Considering all possible overlaps2 between the three rules in the module (including overlaps of a rule with
a renamed version of itself).

• Computing for such overlaps the corresponding critical pairs.

• Checking that each such critical pair can be joined by rewriting with the rules of LIST-EXAMPLE.

Of course, to compute each critical pair you must perform a unification. You can do that by hand yourself;
but it may be convenient for you to know that Maude can perform any desired order-sorted unification for you
using the unify command (see Section 13.4 of the Maude 3.3.1 manual).

Another thing that Maude can do for you is to check the joinability of a critical pair u = v. All you need to
do is to: (i) enter the module LIST-EXAMPLE into Maude, and (ii) for each critical pair u = v whose variables
should be declared on the fly, e.g., L:List, E:Element, etc., execute the command:

red u == v .

so that if you get the result true you have shown that the critical pair u = v is joinable.

If you use Maude to help you in these two ways, you should include a screenshot of the answers you get from
Maude for each problem you ask Maude about.

Note. Rememeber that when computing critical pairs, the two rules used (which could be the same rule)
should not share any variables. You can accomplish this by a bijective renaming of variables. For example,
mapping each variable, e.g., L or P to respective new variables L’ or P’.

2You do not need to consider trivial overlaps of a rule with itself at the top position ϵ. For example, the rule L:List ; nil = L:List

overlaps at the top position with a renamed version of itself, say, Q:List ; nil = Q:List, with unifier {L : List 7→ Q : List}. But this
yields the trivial critical pair ⟨Q : List, Q : List⟩, which is trivially joinable. However, you must consider all overlaps of a rule with a
renamed version of itself at non-top positions. Such overlaps are not trivial and give rise to critical pairs that are not obviously joinable:
their joinability has to be checked.

2


