
CS 476 Homework #4 Due 10:45am on 9/19

Note: Answers to the exercises listed below, as well as the Maude code for Problem 2, should be emailed by the
above deadline to clarage2@illinois.edu.

1. In the slides for Lecture 5, given an equational theory (Σ, E) the joinability relation t ↓~E t′ is defined by the
equivalence:

t ↓~E t′ ⇔ (∃w) (t→∗~E w ∧ t′ →∗~E w).

That is, t ↓~E t′ holds iff t and t′ can both be rewritten to a common term w (the modulo case for t ↓ ~E/B
t′ is

defined in Lecture 5 in the same way, but we will stick to the case without axioms in this exercise).

Prove the Church-Rosser Theorem (also stated in Lecture 5) in the following form:

If (Σ, E) is a kind-complete and order-sorted equational theory such that the rules ~E are confluent and sort-
decreasing, then for any two Σ-terms t, t′ whose sorts are in the same connected component we have the
equivalence:

t =E t′ ⇔ t ↓~E t′.

Hint: Use induction on the length of the proof of t =E t′.

Note that, under the assumption of confluence and sort-decreasingness, the Church Rosser Theorem reduces
the very difficult problem of proving t =E t′ to the much easier problem of checking that t and t′ can both
be rewritten to a common term w. Furthermore, if ~E is not only confluent and sort decreasing but also
terminating, the problem of checking whether t =E t′ holds becomes even easier: we just reduce t and t′ to
their respective normal forms by ~E, say, t!~E and t′!~E , and then compare t!~E and t′!~E for syntactic equality. If
they are syntactically equal, then t =E t′. Otherwise, t =E t′ is not provable. Of course, you can just do this
in Maude by typing:

red t == t′ .

So, under the assumptions of confluence, sort decreasingness and termination for ~E, Maude becomes not just
a theorem prover for E-equality, but actually a decision procedure for E-equality. All this should motivate you
to prove the above Church-Rosser Theorem: it is not some theoretical curiosity: it is a fundamental theorem
reducing equational reasoning to rewriting and easily mechanizable in Maude.

2. This problem is a good example of the motto:

Declarative Programming = Mathematical Modeling

Specifically, of how you can define an executable mathematical model of multisets of natural numbers and an
algebra of useful functions on multisets which at the same time is an implementation of that data structure
and that algebra of functions.

Since your mathematical model should be specified by an equational theory without extra-logic features,

No use should be made of the owise attribute in equations. Likewise, no use should be made of the
built-in equality predicate == in any equations.
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The owise attribute is very convenient for programming purposes, since fewer equations are needed, but it is
not essentially needed. So is the built-in equality predicate ==. But by using either of them you are not giving
a full mathematical definition. Here you are asked to give a full mathematical definition of all the functions
involved, which should at the same time be a correct program.

Multisets of natural numbers are defined as expected using a binary associative and commutative multiset union
constructor , . Although , has mt as its identity element, the operator , will only be declared associative
and commutative, so that the identity property of the empty multiset mt has to be defined by explicit equation(s).
You are asked to write equations defining the following additional properties and functions:

(a) the property that mt is an identity element for ,

(b) an equality predicate on numbers

(c) multiset difference between two multisets

(d) the containment predicate ⊆ on multisets

(e) the membership relation ∈ of a number in a multiset

(f) an equality predicate between multisets

(g) intersection of multisets

(h) a function removing all occurrences of a number in a multiset

(i) cardinality of a multisets (counting repetitions)

(j) a function computing how many different naturals appear in a multiset.

Given a number n and a multiset U , define the multiplicity of n in U , denoted mult(n,U), as the number of
occurrences of n in U . For example, mult(3, (1, 2, 2, 3, 3, 3, 3, 7)) = 4.

Since notions of set difference, containment, membership, intersection, and removing a number must take
account of multiplicities, we can specify precisely what these functions should do in terms of multiplicities:

• the multiplicity of any number n in the multiset difference U minus V should be mult(n,U)−mult(n, V ),

• we should have U ⊆ V true iff for each n we have mult(n,U) ≤ mult(n, V ),

• n ∈ U should be true iff mult(n,U) 6= 0,

• the multiplicity of any number n in the multiset intersection U ∩V should be min(mult(n,U),mult(n, V )),

• the multiplicity of n in rem(m,U) should be 0 if n = m and mult(n,U) otherwise.

Multiset cardinality counting repetitions is the obvious function, e.g., |3, 3, 4, 4, 4, 5, 5, 5, 5, 5| = 10. Instead,
the number of distinct elements is [3, 3, 4, 4, 4, 5, 5, 5, 5, 5] = 3. Finally, a multiset equality predicate has the
obvious meaning: two multisets are equal iff their canonical forms are equal as terms modulo associativity and
commutativity.

Now that the meaning of all these functions has been clarified, you are asked to define the equality property of
mt and all the functions listed in the module below by writing their appropriate equational definitions modulo
the associativity and commutativity axioms of multiset union. Example tests are included for your convenience,
and you should further test your definitions with other examples.

Hints:

• The built-in module NAT is included for your convenience because: (i) it supports decimal notation and
also Peano notation: 3 can be written both as 3 and as s(s(s(0))), which is very convenient: you can for
example define the equality predicate between naturals just using the Peano notation; (ii) it imports the
BOOL module, so you have at your disposal all the Boolean operations, which can be useful when defining
some of the predicates; and (iii) BOOL itself imports the if-then-else-fi operator, which again can be helpful
when defining some functions.

• The order in which the functions are introduced gives you a hint that some functions earlier in the list
may be useful as auxiliary functions for defining other functions later down the list.
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• Programming modulo axioms of associativity and commutativity is very powerful and allows writing
very short programs. For example, the identity property of mt and the nine functions in this example
can be defined with just 30 equations. However, with this power comes also the risk of losing sufficient
completeness: you may forget some cases in your equations if you are not careful.

fmod MULTISET-ALGEBRA is

protecting NAT .

sort Mult .

subsort Nat < Mult .

op mt : -> Mult [ctor] . *** empty multiset

op _,_ : Mult Mult -> Mult [ctor assoc comm] . *** multiset union

op _~_ : Nat Nat -> Bool [comm] . *** equality predicate on naturals

op _\_ : Mult Mult -> Mult . *** multiset difference

op _C=_ : Mult Mult -> Bool . *** multiset containment

op _in_ : Nat Mult -> Bool . *** multiset membership

op _~_ : Mult Mult -> Bool [comm] . *** equality predicate on multisets

op _/\_ : Mult Mult -> Mult . *** multiset intersection

op rem : Nat Mult -> Mult . *** removes N everywhere in U

op |_| : Mult -> Nat . *** cardinality with repetitions

op [_] : Mult -> Nat . *** number of distinct elements

vars N M : Nat . vars U V W : Mult .

*** write here your equations for the identity of mt and all the functions above

endfm

red 5 ~ 12 . *** should be false

red 15 ~ 15 . *** should be true

red (3,3,4,4,4,2,2,9) \ (3,3,3,4,2,7) . *** should be 2,4,4,9

red (3,3,4,4,4,2,2,9) C= (3,3,3,4,2,7) . *** should be false

red (3,3,4,4,2,2,9) C= (3,3,3,4,4,2,2,2,7,9) . *** should be true

red 3 in (3,3,4,4,7) . *** should be true

red 9 in (3,3,4,4,7) . *** should be false

red (3,3,4,4,4,2,2,7) ~ (3,3,3,4,2,7) . *** should be false

red (3,3,3,4,2,2,7) ~ (3,3,3,4,2,2,7) . *** should be true

red (3,3,3,4,4,4,2,2,7,9) /\ (3,3,3,3,4,4,2,7,7) . *** should be 2,3,3,3,4,4,7

red rem(2,(3,3,2,2,2,4,4,4)) . *** should be 3,3,4,4,4

red | 3,3,4,4,4,2,2,9 | . *** should be 8

red [ 3,3,4,4,4,2,2,9 ] . *** should be 4

You can retrieve this module as a “skeleton” on which to give your answer from the course web page. Also,
send a file with your module to clarage2@illinois.edu.
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