
CS 476 Homework #3 Due 10:45am on 9/12

Note: Answers to the exercises listed below should be emailed as a pdf file to Ben Clarage at the following ad-
dress: clarage2@illinois.edu by the (hard) deadline mentioned above. They should be in typewritten form (latex
formatting preferred).

1. Note that we can think of a relation R ⊆ A×B as a “nondeterministic function from A to B.” That is, given
an element a ∈ A, we can think of the result of applying R to a, let us denote it R{a}, as the set of all b’s such
that (a, b) ∈ R. Unlike for functions, the set R{a} may be empty, or may have more than one element.

Note that the powerset P(B) allows us to view the “non-deterministic mapping” a 7→ R{a} as a function from
A to P(B). More precisely, we can define1 R{ } as the function:

R{ } : A 3 a 7→ {b ∈ B | (a, b) ∈ R} ∈ P(B).

But since this can be done for any relation R ⊆ A×B, the mapping R 7→ R{ } is then a function:

{ } : P(A×B) 3 R 7→ R{ } ∈ [A→P(B)].

One can now ask an obvious question: are the notions of a relation R ∈ P(A × B) and of a function f ∈
[A→P(B)] essentially the same? That is, can we go back and forth between these two supposedly equivalent
representations of a relation? But note that the idea of “going back and forth” between two equivalent
representations is precisely the idea of a bijection.

Prove that the function { } : P(A×B) 3 R 7→ R{ } ∈ [A→P(B)] is bijective.

2. Consider the following skeleton of a functional module for (binary) trees and (non-empty) lists of natural num-
bers. For your convenience, it imports the module NAT in the Maude prelude, which has all the usual numerical
functions and predicates on numbers that you might need, as well as the Booleans and if_then_else-fi that
are also available.

fmod LIST+TREE is protecting NAT .

sorts NeList Tree .

subsort Nat < NeList .

subsort Nat < Tree .

op _._ : Nat NeList -> NeList [ctor] .

op _#_ : Tree Tree -> Tree [ctor] .

vars N M : Nat . vars T T1 T2 : Tree . vars L L1 L2 : NeList .

op _@_ : NeList NeList -> NeList . *** list append

*** include your equations defining _@_ here

op rev : NeList -> NeList . *** list reverse

1Note that the function R{ } is closely related to the function

R[ ] : P(A) 3 A′ 7→ {b ∈ B | a ∈ A′∧ ∈ (a, b) ∈ R} ∈ P(B)

defined in STACS, namely, by the equation: R{a} = R[{a}]. We are using a different notation (R{ } and R[ ]) to distinguish them.

1



*** include your equations defining rev here

op sort : NeList -> NeList . *** list sort

*** include your equations defining sort here

op add : NeList -> Nat . *** adds numbers in list

*** include your equations defining add here

op trev : Tree -> Tree . *** tree reverse

*** include your equations defining trev here

op add : Tree -> Nat . *** adds numbers in tree

*** include your equations for add here

op t2l : Tree -> NeList . *** converts tree into list

*** include your equations defining t2l here

op l2t : NeList -> Tree . *** converts lists to trees

*** include your equations defining l2t here

endfm

Note that natural numbers are a subsort of both non-empty lists and binary trees. Except for the imported
module NAT, only the data, that is, the constructor terms, of this module are defined. What you are asked to
do is to define the following functions on such data:

• _@_ appends to non-empty lists

• rev reverses a non-empty list

• sort sorts a non-empty list

• add adds all the numbers in a non-empty list (using the addition function in NAT as an auxiliary function)

• trev reverses a binary tree with numbers as leaves; geometrically, it returns the mirror image of the
original tree.

• add adds all the numbers in the leaves of a binary tree (using the addition function in NAT as an auxiliary
function)

• t2l converts a tree into a (non-empty) list, preserving the left-to-right order in which the numbers appear
in the tree into the left-to-right order in which they appear in the resulting list.

• l2t converts a (non-empty) list into a tree, preserving the left-to-right order in which the numbers appear
in the list into the left-to-right order in which they appear in the resulting tree.

Even giving this left-to-right order-preservation requirement, the l2t is not completely determined by such
a requirement: more than one definition is possible (although one option seems the easiest to define and
the most natural). That is, several trees may reasonably represent the same list preserving the left-to-right
order of elements. You can give any definition you wish, provided the left-to-right order of elements is
preserved.

Notes. (1) For defining some functions, the if_then_else-fi operator may be useful. (2) If needed, you can
also define some auxiliary functions beyond those listed above. For example, this may be helpful to define the
sort function. (3) It may help you in testing your functions to also test that they have the right properties. One
way you can test your functions this way is to use some equalities that express properties between functions as
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a method to generate test cases by instantiating each equalitie’s variables with concrete data elements in various
ways. For example, the following equalities should evaluate to true for any concrete instance (test case):

rev(t2l(T)) == t2l(trev(T)) .

sort(sort(Q:NeList)) == sort(Q:NeList) .

add(t2l(T)) == add(T) .

add(L) == add(l2t(L)) .

t2l(l2t(L)) == L .

where _==_ is Maude’s built-in equality predicate, which will evaluate to true if the equality holds for a
concrete, ground instance of the variables T, L or Q:NeList and to false otherwise. Of course the above
equations are just examples: you can think of other similar equalities between functions, or between a function
and itself, that you can use to generate test cases in the same manner.

You can retrieve from the course web page this module as a “skeleton” on which to fill in your answers. Also,
send a file with your solution module and your test cases to clarage2@illinois.edu.
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