CS 476 Homework #13 Due 10:45am on 11/28

Note: Answers to the exercises listed below and all Maude code and screenshots of tool interactions should be
emailed to clarage2@illinois.edu.

1. Problem 1. Any subset U € P(N) of the natural numbers defines a Kripke structure Ny =4¢¢ (N, s, o7, ) over
the alphabet IT = {p} having a single state predicate symbol p, where s denotes the successor function viewed
as a transition relation s C N x N, and », is the mapping:

Ny ip—=U

Any subset U € P(N) of the natural numbers is either: (1) a finite set, or (2) an infinite set; and any such
infinite U is either: (2.1) cofinite, i.e., its complement N\ U is finite, or (2.2) infinite and not cofinite, i.e., N\U
is infinite. Write formulas @1, @2, 2.1, p2.2 € LTL({p}) such that for any U € P(N):

(a) U is finite iff V77,0 =rrr 91

(b) U is infinite iff Ny, 0 Errr ¢2

(¢c) U is cofinite iff Ny, 0 Errr @21

(d) U is infinite and not cofinite iff Ni7,0 Errr 2.0

and give a proof of the equivalences (a)—(d).

Give a proof also of the following four equivalences for any U € P(N) and n € N:

U is infinite iff N7, n ELTL p2
U is cofinite iff Ny, n ErrL p2.1

Finally, prove that for any formula ¢ € LTL({p}) the following equivalence holds for any U € P(N):

Nu, 0L ¢ & Ny, 0kpr+ Eo.

2. Problem 2: Dining Philiosophers Revisited. This problem is a variation on the dining philosophers
protocol that you were asked to analyze in Homework 10. It is now viewed in hidsight, with the benefit of now
knowing about temporal logic. Unlike the version in Homework 10, the version that you are now presented
with is (as you will prove) deadlock free. This is achived by adding to the dining room an adjacent library, were,
after having dinner, a philosopher can go to read. The library has also a FIFO queue, so that philosophers can
go back to the dining room following the FIFO order of their entrance in the library (this may remind you of
the QLOCK protocol, event though the queue is used here for a different purpose).

Here is the current specification, which you can retrieve from the course web page. Since some of the aspects
that you will be asked to verify involve fairness issues, the technique explained in Lecture 24 of encoding some
action information in the state is used, so that actions can be recorded. Not everything is thus recorded,
but two crucial philosopher actions, namely, picking up a chopstick, and eating, are recorded in the state to
facilitate stating object fairness properties and, more generally, various fairness properties.



fmod NAT/4 is

protecting NAT .

sort Nat/4 .

op [_] : Nat -> Nat/4 .

op p : Nat/4 -> Nat/4 .

vars N M : Nat .

ceq [N] = [N rem 4] if N >= 4 .

eq p([0]) = [3]

ceq p([s(W)]) = [N] if N < 4 .
endfm

mod DIN-PHIL is

protecting NAT/4 .

sorts 0id Cid Attribute AttributeSet Configuration Object
Msg Queue Phil Mode Action PState .

subsorts Nat/4 < 0id Queue .

subsort Attribute < AttributeSet .

subsorts Object Msg < Configuration .

subsort Phil < Cid .

op [_{_}_1{_} : Configuration Queue Configuration Action -> PState [ctor]
**x state components: library, queue, dining room, and Action record.

op __ : Configuration Configuration -> Configuration

[ctor assoc comm id: none ]
op _,_ : AttributeSet AttributeSet -> AttributeSet

[ctor assoc comm id: null ]
op null : -> AttributeSet [ctor]

op none : -> Configuration [ctor]

op mode‘:_ : Mode -> Attribute [ctor gather ( & ) ]

op holds‘:_ : Configuration -> Attribute [ctor gather ( & ) ]
op <_:_|_> : 0id Cid AttributeSet -> Object [ctor]

op Phil : -> Phil .

op mt : -> Queue [ctor]

op _;_ : Queue Queue -> Queue [ctor assoc id: mt]

ops t h e : -> Mode [ctor]
op chop : Nat/4 Nat/4 -> Msg [comm]

op init : -> PState .

op * : —-> Action [ctor] . *%* action about which no information is recorded
ops picks eats : Nat/4 -> Action [ctor] . ***x picking and eating actions

vars N M K : Nat . var Q : Queue . var A : Action .

vars C C1 C2 C3 : Configuration .

eq init =

[< [0] : Phil | mode : t , holds : none > < [1] : Phil | mode : t , holds : none >
< [2] : Phil | mode : t , holds : none > < [3] : Phil | mode : t , holds : none >
{[0] ; [11 ; [2] ; [3]} chop([31,[2]) chop([2],[1]1) chop([1],[0]) chop([0],[3]1)]1{*} .

rl [t2h] : [< [N] : Phil | mode : t , holds : none > C1 {[N] ; [M] ; Q} Cl{A} =>
[C1 {IM] ; QY < [N] : Phil | mode : h , holds : none > CI{x} .

rl [pick] : [C1 {Q} < [N] : Phil | mode : h , holds : none > chop([N],[M]) CI{A} =>
[C1 {Q} < [N] : Phil | mode : h , holds : chop([N],[M]) > Cl{picks([NI)} .



rl [pick] :
[C1 {Q} < [N] : Phil | mode : h , holds : chop([N],[M]) > chop([N], [K]) CI{A} =>
[C1 {Q} < [N] : Phil | mode : h , holds : chop([N],[M]) chop([N],[K]) > Cl{picks([N])} .

rl [h2e]
[C1 {Q} < [N] : Phil | mode : h , holds : chop([N],[M]) chop([N],[K]) > CI{A} =>
[C1 {Q} < [N] : Phil | mode : e , holds : chop([N],[M]) chop([N],[K]) > Cl{eats([NI)} .

rl [e2t]

[C1 {Q} < [N] : Phil | mode : e , holds : chop([N],[M]) chop([N],[K]) > CI{A} =>

[< [N] : Phil | mode : t , holds : none > C1{Q ; [N]} chop([N],[M]) chop([N], [K]) CI{x} .
endm

There first part of the problem is a sanity check: anything you solved in Homework 10 using search you should
now be able to solve using LTL and LTL" formulas.

Prove, by giving appropriate LT L and LT L™ formulas and model checking them from the initial state init, the
following properties. Specifically, write LTL and LTL™" formulas to get from the Maude LTL Model Checker
answers to the following questions (and when the formula you are using is an LT L™ formula, explain clearly
what that formula is and how you get a proof of it from the Maude LTL Model Checker):

(a) (contiguous mutual exclusion): it is never the case that two contiguous philosophers are eating simulta-
neously.

(b) (mutual non-exclusion): it is however possible for two philosophers to eat simultaneously.
(c) (three exclusion): it is impossible for three philosophers to eat simultaneously.
(d) (deadlock fredom) the system is deadlock-free.

Of course, the point of LTL is that it provides a considerably richer property specification language than that
of the constrained patterns used in modal logic verification with the search command. So, the second part of
this problem is to specify and verify properties that could not be specified in Homework 10. Give appropriate
LTL and LTL" formulas and model check them from the initial state init to verify the following properties,
all of which have to to with non-starvation, i.e., with a philosopher eating infinitely often:

(a) It is always the case that at least one of the philosophers is not starved (eats infinitely often).

(b) It is however possible for some particular philosopher to not to eat infinitely often (starvation).

(c) It is possible for all philosophers to eat infinititely often during the same infinite execution.

For Extra Credit. You can get 50% extra credit on Problem 2 if you can specify a fairness assumption
formula ¢ under which (i.e., under the assumption that that formula holds) you can verify using Maude’s LTL
model checker that:

e Under the assumption ¢, it is always the case that all philosophers eat infinitely often.

Of course, in LTL you cannot even open your mouth unless you have previously specified the relevant state
predicates. To facilitate your task, here is a skeleton that, after entering NAT/4 and DIN-PHIL (the previous
specification above) you can use to define your predicates and formulas.

in model-checker

mod DIN-PHIL-PREDS is
protecting DIN-PHIL .
including SATISFACTION .



subsort PState < State

vars N M K : Nat . var Q : Queue . var A : Action .

vars C C1 C2 C3 C4 : Configuration .
**x* specify here your state predicates

endm

mod CHECK-DIN-PHIL is
inc DIN-PHIL-PREDS
inc MODEL-CHECKER .
inc LTL-SIMPLIFIER .

vars N M K : Nat . var Q : Queue . var A : Action .

vars C C1 C2 C3 C4 : Configuration .
*** specify here your formulas

endm



