CS 476 Homework #10 Due 10:45am on 10/31

Note: Answers to the exercises listed below and all Maude code and screenshots of tool interactions should be
emailed to clarage2@illinois.edu.

1. In this problem you are asked to define a sorting algorithm for lists of natural numbers, not with equations,
but with (transition) rules that rewrite a list to another list with the same multiset of elements but “closer” to
the sorted version of the list. If L is the initial state, there should be a single final state, namely, the sorted
version of L. You then can just compute such a sorted version of L by typing in Maude:

rewrite L .

However, since the passing from a list L to its sorted version is a deterministic process having a single answer,
as a sanity check to test your rules, you should check that they are correct by checking that you always get a
single final state for each initial state L. To help you do that, some sample search commands have also been
included.

Write your solution by specifying the (possibly conditional) rule or rules needed to sort a list in the system
module below, so that for each list L the single final state will the its sorted version.

Note. Remark that all operators in this module are constructors. This is because no equations are used at all,
so that all terms in the module are already in normal form by the (non-existent) equations. All computations
are performed by the rule or rules that you are asked to specify, not by equations (except, perhaps, for the use
made of some equations in NAT for checking an equational condition in a rule).

Hint. A single conditional rule is enough to solve this problem.

mod SORTING is
protecting NAT .
sort List
subsort Nat < List .
op nil : -> List [ctor]
op _;_ : List List -> List [ctor assoc id: nil]

vars N M : Nat . vars L Q : List
*** include here your rule or rules
endm

***x testing by search that your rule or rules are DETERMINISTIC (yield a single final result)

search 5 ; 4 ; 3 ;2 ;1 ,; 0=>!1L. **x* SINGLE solution should be 0 ; 1 ; 2 ; 3 ; 4 ; 5
search 3 ; 4 ; 3 ;5 ;1 ; 0=>!'L. **xx SINGLE solution should be O ; 1 ; 3 ; 3 ; 4 ; 5
search 3 ; 4 ; 3 ;5 ;1 ; 4=>!1. *x*% SINGLE solution should be 1 ; 3 ; 3 ; 4 ; 4 ; 5
search 3 ; 4 ; 3 ; 4 ; 1 ; 4 =>!1L. ***x SINGLE solution should be 1 ; 3 ; 3 ; 4 ; 4 ; 4
*** testing that your rules yield the correct result

rewrite 5 ; 4 ; 3 ; 2 ;1 ; 0 . **xx should be O ; 1 ; 2 ; 3 ; 4 ; 5



rewrite 3 ; 4 ; 3 ;5 ; 1 ; 0. **xx should be 0 ; 1 ; 3 ; 3 ; 4 ; 5
rewrite 3 ; 4 ; 3 ;5 ; 1 ; 4 . *¥x*% should be 1 ; 3 ; 3 ; 4 ; 4 ; 5
rewrite 3 ; 4 ; 3 ; 4 ; 1 ; 4 . *¥x* should be 1 ; 3 ; 3 ; 4 ; 4 ; 4

For Extra Credit. You can earn 50% extra credit in Problem 1 if you correctly solve the following variant of
the above sorting problem using a different representation of the natural numbers with 0 and 1 as constructors
and with + as ACU constructor with 0 as unit element (also called “neutral” element when additive notation,
as here, is used). The point is that in this representation of numbers you can solve the problem with a single
unconditional rule. Furthermore, you do not need to define any auxiliary functions or anything: you just need
to write the appropriate rewrite rule. The key point is that, in this representation of the natural numbers, you
do not need to restrict the application of the sorting rule by checking a condition: the rule’s lefhand side can
do that thanks to the remarkable expressive power of rewriting modulo ACU.

mod SORTING-UNCONDITIONAL is
sorts Nat List
subsort Nat < List .
ops 0 1 : -> Nat [ctor]

op _*+_ : Nat Nat -> Nat [ctor assoc comm id: 0]
op nil : -> List [ctor]
op _;_ : List List -> List [ctor assoc id: nil]

vars N M : Nat . vars L Q : List

*x* include here your UNCONDITIONAL rule
endm

*x** testing by search that your rule is DETERMINISTIC (has a single final result)

search (1 + 1+ 1);(1 +1) ;1 ; 0=>!1L.
**%* SINGLE solution should be 0 ; 1 ; (1 + 1);(1 +1 + 1)

search (1 + 1+ 1);(1 +1);@+1+1);1; 0=>I1L.
*%* SINGLE solution should be 0 ; 1 ; (1 + 1);(1 +1 + 1);(1 +1+ 1)

**x* testing that your rule yields the correct result
rewrite (1 + 1 + 1);(1 +1) ;1 ; 0. %k should be 0 ; 1 ; (1 + 1);(1 + 1 + 1)

rewrite (1 +1 + 1);1+1);1+1+1);1; 0.
*xx should be 0 ; 1 ; (1 + 1);(1 + 1+ 1);(1 +1+ 1)

These two, closely related examples illustrate the expressiveness of concurrent rewriting as a general semantic
framework for concurrency: the single sorting rule (conditional in the first case, and unconditional in the second
representation) can be applied in parallel in different places of a list to achieve the parallel sorting of the list.

. Consider the following example. It is a desugared version of an object-oriented specification of a dining philoso-
phers protocol that you can retrieve from the course web page:

fmod NAT/4 is
protecting NAT .
sort Nat/4 .
op [_] : Nat -> Nat/4 .
op p : Nat/4 -> Nat/4 .
vars N M : Nat
ceq [N] = [N rem 4] if N >= 4 .



eq p([0]) = [3]
ceq p([s(N)]1) = [N] if N < 4 .
endfm

mod DIN-PHIL is
protecting NAT/4 .
sorts 0id Cid Attribute AttributeSet Configuration Object Msg .
sorts Phil Mode .
subsort Nat/4 < 0id .
subsort Attribute < AttributeSet
subsort Object < Configuration .
subsort Msg < Configuration .
subsort Phil < Cid .

op __ : Configuration Configuration -> Configuration
[ assoc comm id: none ]
op _,_ : AttributeSet AttributeSet -> AttributeSet
[ assoc comm id: null ]
op null : -> AttributeSet .

op none : -> Configuration .

op mode‘:_ : Mode -> Attribute [ gather ( & ) ]

op holds‘:_ : Configuration -> Attribute [ gather ( & ) ]
op <_:_|_> : 0id Cid AttributeSet -> Object .

op Phil : -> Phil .

ops t h e : -> Mode .

op chop : Nat/4 Nat/4 -> Msg [comm]

op init : -> Configuration .

op make-init : Nat/4 -> Configuration .

vars N M K : Nat .
vars C C1 C2 C3 : Configuration .

ceq init = make-init([N]) if s(N) := 4 .
ceq make-init([s(N)])
= < [s(N)] : Phil | mode : t , holds : none > make-init([N]) (chop([s(N)I,[N]))
if N < 4 .
ceq make-init([0]) =
< [0] : Phil | mode : t , holds : none > chop([0],[N]) if s(N) := 4 .

rl [t2h] : < [N] : Phil | mode : t , holds : none > =>
< [N] : Phil | mode : h , holds : none > .
crl [pickl] : < [N] : Phil | mode : h , holds : none > chop([N], [M])
=> < [N] : Phil | mode : h , holds : chop([N],[M]) > if [M] = [s(N)]
rl [pickr] : < [N] : Phil | mode : h , holds : chop([N],[M]) >
chop([N], [K]) =>
< [N] : Phil | mode : h , holds : <chop([N],[M]) chop(IN],[K]) > .
rl [h2e] : < [N] : Phil | mode : h , holds : chop([N], [M])
chop([N],[K]) > => < [N] : Phil | mode : e ,
holds : chop([N], [M]) chop([N],[K]) > .
rl [e2t] : < [N] : Phil | mode : e , holds : chop([N], [M])
chop([N],[K]) > => chop([N], [M]) chop([N], [K])
< [N] : Phil | mode : t , holds : none > .
endm

There are four philosophers, that you can imagine eating in a circular table. Initially they are all in thinking



mode (t), but they can go into hungry mode (h), and after picking the left and right chopsticks (they eat
Chinese food) into eating mode (e), and then can return to thinking.

The identities of the philosophers are natural numbers modulo 4. Such numbers, as well as a predecessor
function p on them, are defined in the NAT/4 functional module. In the circular table contiguous philosophers
are arranged in increasing order from left to right (but wrapping around to 0 at 4). The chopsticks are
numbered, with each chopstick indicating the two philosophers next to it. Therefore, when no philosopher has
yet picked up a chopsitick, each philosopher will have a chopstick on his/her right and another on his/her left.

Of course, all this is a metaphor due to Edsger Dijsktra: philosophers model processes and chopsticks model
resources to be safely shared among them, and the metaphor describes how a flexible form of mutual exclusion
can be achieved.

Prove, by giving appropriate search commands from the initial state init, the following properties:

(a) (contiguous mutual exclusion): it is never the case that two contiguous philosophers are eating simulta-
neously.

(b) (mutual non-exclusion): it is however possible for two philosophers to eat simultaneously.
(c) (three exclusion): it is impossible for three philosophers to eat simultaneously.
(d) (deadlock) the system can deadlock.

Deadlock is a bad property for any mutual exclusion protocol, since such protocols should never terminate.
There are of course deadlock-free versions of a dining philosophers protocol. The point of this version is to
illustrate that a given protocol design may not be what we want; but we can find out about both its good
properties and its design errors by model cheking: here properties (a)—(c) are good ones, since conflicting
access to resources (holding the same chopstick) is avoided and yet several processes can use such resources
simultaneously (here two processes at a time); but the model checking analysis uncovers a design flaw, namely,
the lack of deadlock freedom, which is property (d).

For Extra Credit. Call a search command constrained if it has the form:
search init =># u s.t. C .

where u is a constructor pattern, C is a constraint, i.e., condition, and # can be 1, +, * or !. That is, the command
uses the constrained constructor pattern u | C. Otherwise, the search command is called unconstrained. Of
course, unconstrained search commands are simpler and more efficient. You can get 50% extra credit on
Problem 3 if you can verify all properties (a)—(d) using three unconstrained search commands and only one
constrained search command.



