Enumerators

Note: "Shortlex" (or just "standard") order for strings is shorter strings before longer ones, and after that by 'dictionary' order, e.g. for $\{0,1\}^{*}$ it's $[\varepsilon, 0,1,00,01,10,11,000, \cdots]$
a. Let Turing Machine M recognize language L.
i (Sipser 3.6) Why might the following enumerator not enumerate L ? $\mathrm{E}=$ "Ignore the input.

- For each string s of Σ^{*} (in standard order):
- Run M on s. If it accepts, print s."
ii Design an enumerator that enumerates L.
b. Prove that a language is (Turing-)recognizable iff some enumerator enumerates it. (And as a result, we will sometimes use the name "RE", i.e. "recursively enumerable", to refer to the class of recognizable languages.)
c. (Sipser 3.18) Show that a language is decidable iff some enumerator enumerates the language in the standard string order.
d. (Sipser 3.19) Show that every infinite Turing-recognizable language has an infinite decidable subset. (Hint: use the result from the previous problem.)
e. (Sipser 4.30) Let A be a Turing-recognizable language consisting of descriptions of Turing machines, $\left\{\left\langle M_{1}\right\rangle,\left\langle M_{2}\right\rangle, \cdots\right\}$, where every M_{i} is a decider. Prove that some decidable language D is not decided by any decider M_{i} whose description appears in A. (Hint: You may find it helpful to consider an enumerator for A.)
f. (Sipser 4.20) Let A and B be two disjoint languages. Say that language C separates A and B if $A \subseteq C$ and $B \subseteq \bar{C}$. Show that any two disjoint co-Turing-recognizable languages are separable by some decidable language. (A language is co- $R E$ if its complement is $R E$. Hint: First show that every string is in at least one of \bar{A} and \bar{B}.)

