Lecture 23: Recap: Alternation, Polynomial Time Hierarchy, and Parallel Computation

Date: November 14, 2023.

Alternation Turing Machine (ATM) is exactly like a (multi-tape) nondeterministic Turing machine, except that there is a "type" associated with each state. That is, the formal specification of the machine includes a function type: \(Q \rightarrow \{\land, \lor\} \), where \(Q \) is the set of states.

A configuration \(\alpha \) is an and-configuration, if type(\(q \)) = \(\land \), where \(q \) is the state of \(\alpha \). Similarly, \(\alpha \) is an or-configuration if type(\(q \)) = \(\lor \), where \(q \) is the state of \(\alpha \). On input \(x \), for configurations \(\alpha \) and \(\beta \), we say \(\alpha \xrightarrow{1} \beta \), the the machine can take one step from \(\alpha \) to \(\beta \).

Acceptance: We will only consider ATMs where every computation on an input \(x \) halts. The configurations \(\alpha \) of such an ATM are labeled accepting if:

- \(\alpha \) is a halting, accepting configuration,
- \(\alpha \) is an or-configuration and for some \(\beta \) such that \(\alpha \xrightarrow{1} \beta \), \(\beta \) is (inductively) labeled accepting.
- \(\alpha \) is an and-configuration and every configuration \(\beta \) such that \(\alpha \xrightarrow{1} \beta \), \(\beta \) is (inductively) labeled accepting.

An input \(x \) is accepted by ATM \(M \), if the initial configuration of \(M \) on \(x \) is labeled accepting. The language recognized by \(M \) (\(L(M) \)) is the set of all inputs it accepts.

Time-bounded ATMs: An ATM \(M \) is said to be \(T(n) \)-time bounded if on any input \(x \), all computations of \(M \) on \(x \) halt in \(\leq T(|x|) \) steps. \(\text{ATIME}(T(n)) \) is the collection of all decision problems/languages \(A \) such that there is a \(T(n) \)-time bounded ATM \(M \) such that \(L(M) = A \).

Space-bounded ATMs: An ATM \(M \) is said to be \(S(n) \)-space bounded if on any input \(x \), the total number of worktape cells used in any computation of \(M \) on \(x \) is at most \(S(|x|) \). \(\text{ASPACE}(S(n)) \) is the collection of all decision problems/languages \(A \) such that there is a \(S(n) \)-space bounded ATM \(M \) such that \(L(M) = A \).

Alternating Complexity Classes

\[
\begin{align*}
\text{ALOGSPACE} & = \text{ASPACE}(\log n) \\
\text{APTIME} & = \bigcup_k \text{ATIME}(n^k) \\
\text{APSPACE} & = \bigcup_k \text{ASPACE}(n^k) \\
\text{AEXPTIME} & = \bigcup_k \text{ATIME}(2^{n^k})
\end{align*}
\]

Theorem 1. The following relationships hold. For items other than (a), we assume that \(T(n) \geq n \) and \(S(n) \geq \log n \).

(a) \(\text{ATIME}(T(n)) \subseteq \text{ASPACE}(T(n)) \) and \(\text{ASPACE}(S(n)) \subseteq \text{ATIME}(2^{O(S(n))}) \).

(b) \(\text{ATIME}(T(n)) \subseteq \text{DSPACE}(T(n)) \) and \(\text{NSPACE}(S(n)) \subseteq \text{ATIME}(S(n)^2) \)

(c) \(\text{ASPACE}(S(n)) \subseteq \text{DTIME}(2^{O(S(n))}) \) and \(\text{DTIME}(T(n)) \subseteq \text{ASPACE}(\log T(n)) \)

Corollary 2. The following equivalences hold: \(\text{ALOGSPACE} = \text{P} \), \(\text{APTIME} = \text{PSPACE} \), \(\text{APSPACE} = \text{EXP} \), \(\text{AEXPTIME} = \text{EXPSPACE} \).

\[
\text{ASPACE}(\log n) \subseteq \text{P}.
\]

\[
\text{DTIME}(n^k) \subseteq \text{ASPACE}(\alpha(\log n)) = \text{ASPACE}(\log n^k)
\]

\[
1 \text{P} \subseteq \text{ASPACE}(\log n^k)
\]
RE — Existential projected Rec languages.

REC

NP — Existential projected Polytime languages.

\[
\begin{align*}
\Sigma^0_1 & = \Sigma_1^0 \cap \Pi_2^0 \\
\Sigma^0_2 & = \Sigma^0_1 \\
\Sigma^1_2 & = \Pi^0_1 \\
\Pi^0_2 & = \Sigma^0_1 \\
\Pi^0_1 & = \Sigma^0_1 \\
\Pi^1_2 & = \Pi^0_1 \\
\Sigma^0_2 & = \Sigma^0_2 \\
\Sigma^1_2 & = \Sigma^1_2 \\
\end{align*}
\]

\[
\begin{align*}
A \in \Sigma^0_k \iff & \exists y \in \text{REREC} \\
A = \exists x \left(\forall y_1 \ldots y_k \right) R(x, y_1 \ldots y_k)^2 \\
A \in \text{NP} \iff & \exists R \in \text{REC. and } c \text{ s.t.} \\
A = \exists x \left(\exists y_1 \forall y_2 \right. \\
& \left. |y_1| \leq |x|^{c} \text{ and } R(x, y_1)^3 \right)
\end{align*}
\]
Bounding Alternations: A Σ_k-machine is an ATM such that (a) the initial state is an or-state, and (b) on any input, every computation path, has at most $k - 1$ switches between or-configurations and and-configurations.

A Π_k-machine is an ATM such that (a) the initial state is an and-state, and (b) on any input, every computation path, has at most $k - 1$ switches between or-configurations and and-configurations.

By convention Σ_0 and Π_0-machines are deterministic TMs.

Polynomial Hierarchy:

\[
\Sigma_p^p = \{L(M) \mid M \text{ is a polynomial-time-bounded } \Sigma_k \text{-machine}\},
\]

\[
\Pi_p^p = \{L(M) \mid M \text{ is a polynomial-time-bounded } \Pi_k \text{-machine}\}.
\]

Thus, $\Sigma_0^p = P$, $\Sigma_1^p = NP$, and $\Pi_1^p = co-NP$.

Proposition 3. The following identities hold.

\[
\Pi_p^p = \{A \mid A \in \Sigma_k^p \},
\]

\[
\Sigma_k^p \cup \Pi_k^p \subseteq \Sigma_{k+1}^p \cap \Pi_{k+1}^p
\]

\[
P \not\subset PSPACE = \text{APTIME}
\]

Oracle Machines: For a language B, and complexity class C, we define

\[
P^B = \{L(M^B) \mid M \text{ is a deterministic oracle TM such that } M^B \text{ runs in polynomial time}\},
\]

\[
NP^B = \{L(M^B) \mid M \text{ is a nondeterministic oracle TM such that } M^B \text{ runs in polynomial time}\},
\]

\[
P^C = \bigcup_{B \in C} P^B.
\]

\[
NP^C = \bigcup_{B \in C} NP^B.
\]

Theorem 4. Let $NP_1 = NP$ and $NP_{k+1} = NP^{NP_k}$. Then $\Sigma_k^p = NP_k$ for $k \geq 1$.

Theorem 5. $A \in \Sigma_k^p$ if and only if there is a (deterministic) polynomial time computable predicate R and constant c such that

\[
A = \{x \mid \exists y_1 \forall y_2 \cdots Q y_k. (\bigwedge_{i=1}^k |y_i| \leq |x|^c) \land R(x, y_1, \ldots, y_k)\}
\]

where Q is \exists if k is odd, and is \forall if k is even.

Bounding Time and Alternation: For an ATM M, let M^m_k be the same machine as M, except on an input x, if a computation takes more than m steps or has more than k alternations between “and” and “or” configurations, M^m_k halts the computation. The last configuration of such an abnormally terminated computation is accepting if it is an and-configuration, and is rejecting if it is an or-configuration.

Define $H_k = \{(M, x, 0^m) \mid M^m_k \text{ accepts } x\}$

Theorem 6. H_k is Σ_k^p-complete.
PRAM - Time, # processors.

NC - polynomially many processors in poly logarithmic time.
Boolean Circuits: A *Boolean circuit* C with n inputs is a directed acyclic graph with n vertices of in-degree 0, a single vertex of out-degree 0, and whose internal vertices are all labeled with \land, \lor, or \neg. A vertex labeled with \land, \lor, or \neg computes the logical and, or, or negation of its inputs, respectively. We assume that vertices labeled with \land or \lor have two children and vertices labeled with \neg have one child. On input $x \in \{0, 1\}^n$, the output of C is given by the value of the vertex of out-degree 0 and is denoted by $C(x)$.

The *size* of C is the number of gates in C. The *depth* of C is the length of the longest path from an input vertex to the output vertex.

Solving Problems using Families of Circuits: A *family of circuits* $\{C_n\}_{n \in \mathbb{N}}$ of size $S(n)$ is a collection of Boolean circuits where for all n, C_n has n inputs and size at most $S(n)$. A language L is in SIZE($S(n)$) if there is a family of Boolean circuits $\{C_n\}_{n \in \mathbb{N}}$ of size $S(n)$ such that for all $x \in \{0, 1\}^n$, $x \in L$ iff $C_n(x) = 1$.

Proposition 7. There is a language $L \in$ SIZE($O(1)$) which is undecidable.

Theorem 8. Let L be an arbitrary language. Then $L \in$ SIZE($O(n^{2^n})$).

Uniform Circuit Classes: A family of Boolean circuits $\{C_n\}_{n \in \mathbb{N}}$ is *logspace-uniform* if there is a logspace-bounded Turing machine that outputs the circuit C_n on input 0^n.

NC: A language L is in NCi if there exists a logspace uniform family of circuits $\{C_n\}_{n \in \mathbb{N}}$ where C_n has poly(n) size, $O((\log n)^i)$ depth, and for all $x \in \{0, 1\}^n$, $x \in L$ iff $C_n(x) = 1$.

$$NC = \bigcup_{i \geq 0} NC^i.$$

We will prove

Proposition 9. NC \subseteq P.

Open Problem: Is NC = P?