Finite Model Theory
Classical Model Theory

Study of mathematical objects (graphs, algebraic structures) through non-logic.

Gödel's Completeness Theorem If \(\mathcal{T} \) is recursively enumerable and \(\varphi \) is a sentence then the problem of determining if \(\mathcal{T} \models \varphi \) is recursively enumerable.

- The set of valid sentences is recursively enumerable.

Compactness Theorem A set \(\mathcal{T} \) of sentences \(\mathcal{T} \) is unsatisfiable if \(\exists \text{ finite } \mathcal{T}_0 \subseteq \mathcal{T} \) such that \(\mathcal{T}_0 \) is unsatisfiable.

Proof By Skolemization \(\mathcal{T} \) is a set universally quantified sentences.

\[\mathcal{T}^* = \{ \forall \mathcal{V} \left[\forall x_1 \rightarrow t(x_1, \ldots, \forall x_n) \varphi \in \mathcal{T} \right] \}
\]

and \(t, \ldots, t_n \) are ground terms.

\(\mathcal{T} \) is satisfiable iff \(\mathcal{T}^* \) is satisfiable.
T^* unsatisfiable $\implies \exists$ finite $\Delta \subseteq T^*$

that is unsatisfiable.

$T^* = \exists \varphi \in T^*$ \text{ some ground instantiation } \varphi \text{ of } \varphi \in \Delta \exists

T^* is unsatisfiable.

Example

There sentences φ such that $\forall A \; A \not\models \varphi \implies A$ is finite.

$\varphi = \exists x \neq y x = y$

Proposition There is no sentence φ such that (a) every structure satisfying φ is finite, and (b) φ has models of arbitrary size.

Proof Assume φ has finite models of size $\eta_k = \exists x_1 \exists x_2 \ldots \exists x_k \wedge \forall i \forall j \; (x_i = x_j)$

If $A \not\models \eta_k$ then $\nu(A)$ has at least k elements.

$T^* = \exists \varphi \exists \varphi_2 \ldots \exists \eta_k \exists k \subseteq T^*$

Since finite subset of T^* is satisfiable.
If \(\mathcal{T} \) is a countable signature and \(\mathcal{A} \) is a set of \(\mathcal{T} \)-sentences that satisfiable then there is a countable structure \(A \) such that \(A \models \mathcal{T} \).

Proposition There are non-isomorphic structures \(A \) and \(B \) such that
\[\text{Th} (A) = \text{Th} (B) \]

Proof
\[\text{Th} (\mathbb{R}, <) = \text{Th} (\mathbb{Q}, <) \]
\[\text{Th} (\mathbb{R}, 0, 1, +, <) = \text{Th} (\mathbb{Q}, 0, 1, +, <) \]

"Finite Model Theory" Study of first order logic restricted to finite structures

\(\varphi \models_{\mathcal{I}} \) is satisfiable in finite models
- \(\phi | \phi' \) is valid if \(\phi' \) holds in all finite models.

Trakhtenbrot's Theorem The problem of checking if a sentence \(\phi \) is true in all finite structures is coRE-complete.

Proof \(\text{Fin Valid} \in \text{coRE} \)
- To check if \(\phi \) is satisfiable in a finite model: Enumerate all finite models \(\mathcal{A} \) and check if \(\mathcal{A} \models \phi \).

Church-Turing Theorem Validity is RE hard.

\[
\begin{align*}
\text{Input:} & \quad \exists x \forall y \quad S(x, y) \\
\text{Output:} & \quad \forall x \forall y \forall z \quad S(x, z) \land S(y, z) \rightarrow x = y \\
& \quad \forall x \forall S(x, 0)
\end{align*}
\]

MP \(\leq_m \) Validity.
\[\phi_m = (\phi_{\text{not}} \land \phi_{\text{initial}} \land \phi_{\text{const}}) \implies \phi_{\text{accept}} \]

Can’t use these ideas to
\[\overline{MP} \leq \text{Validity} \]

Gödel’s Incompleteness Theorem
\[\text{Th} \left(\mathbb{N}, 0, 1, +, \times, < \right) \text{ is not R.E.} \]
\[\overline{HP} \leq \text{Th} \left(\mathbb{N}, 0, 1, +, \times, < \right) \]
\[\phi_{\langle m, n \rangle} = \phi_{\text{initial}} \land \phi_{\text{const}} \implies \phi_{\text{Halt}}. \]

\[\begin{array}{c}
0 \rightarrow 0 \rightarrow \cdots \\
6
\end{array} \]

Goal: \[\overline{MP} \leq_m \text{FinValidity}. \]

\[\forall x \exists S(x, 0) \]
\[\forall x \forall y \forall z \ S(x, z) \land S(y, z) \implies x = y \]
\[\forall y \ S(m, y) \]
\[\forall y \exists z (y = m) \implies \exists n S(y, x) \]

Finite Models

\[\overline{0} \rightarrow \rightarrow \rightarrow \overline{m} \]

Given \(m \) infinite
\(\Phi_w \) is valid in all finite models iff
Universal TM \(U \) does not accept \(w \).

\[
\Phi_w = \Phi_{\text{finNat}} \land \Phi_{\text{Fin}} \land \Phi_{\text{const}}
\]
\[\rightarrow \quad \exists \text{State}(m, y, \text{acc})
\]

Compactness Theorem does not hold in finite models.

Proposition
There is a set of sentences \(\Pi \)
so that every finite subset \(\Pi_0 \subset \Pi \) has
a finite model but \(\Pi \) does not have
any finite model.

Proof
\(\Pi = \{ \exists \, \forall \} \land \exists \, \forall \) \(\exists \, \forall \) \(\exists \, \forall \)

Definition
Let \(\mathcal{C} \) be some signature.
A homomorphism between \(\mathcal{C} \)-structures
\(\mathcal{A} \) and \(\mathcal{B} \),
\(h : u(\mathcal{A}) \rightarrow u(\mathcal{B}) \)
s.t.

- \(\forall c \in \mathcal{C} \), \(h(c^\mathcal{A}) = c^\mathcal{B} \)
- \(\forall a_1, \ldots, a_n \in u(\mathcal{A}) \) \(f \in \mathcal{C} \),
 \(h(f^\mathcal{A}(a_1, \ldots, a_n)) = f^{\mathcal{B}}(h(a_1), \ldots, h(a_n)) \)
- \(a_1, \ldots, a_n \in \sigma \) and \(\sigma \subseteq \mathbb{C} \).

\((a_1, \ldots, a_n) \in \mathbb{R}^n \) iff \((h(a_1), \ldots, h(a_n)) \in \mathbb{R}^B\).

An isomorphism between \(A \) and \(B \) is a homomorphism \(h \) that is bijective.

We will say \(A \cong B \) (\(A \) is isomorphic to \(B \)) if \(\exists \) isomorphism \(h \) from \(A \) to \(B \).

Proposition: For every finite structure \(A \), \(\exists \) sentence \(\varphi_A \) s.t.

\(\mathcal{M} \models \varphi_A \rightarrow \mathcal{B} \models \varphi_A \rightarrow \mathcal{B} \cong A \).