Approximation Algovithms-III (Randomized Rounding)
SA Tisfiability.
Given:- 1) Set af variables $x_{1}, x_{2}, \ldots, x_{n}$
2) Set of clauses $c_{1}, c_{2}, \ldots, c_{n}$.

$$
C_{i}=\left(x_{i} \vee 7 x_{i+1} \vee \cdots\right)
$$

Cooal:-D Find an as signment that maxims \#clauses satisfied.
Randomized Alg;

$$
\begin{aligned}
& u_{i}=\begin{array}{ccc}
T & w \cdot p- & \frac{1}{2} \\
F & w \cdot p & \frac{1}{2}
\end{array} \\
& P_{r}\left[C_{r} \text { is satisfied }\right]=1-\left(\frac{1}{2}\right)^{l / q}=1-2^{-l_{l}}
\end{aligned}
$$

Cu contains la literals.

$$
E[\# \text { clauses satsfred }]=\sum_{c_{2}}\left(1-2^{-l_{1}}\right)
$$

if e very clause contains atlearst 3 litenct
if e very clause contains at learst 3 litent then in expectution $7 / 8$ clauses are

SARIStiability ILP
$z_{j}=\frac{1}{0}$ if otherwise C_{j} is satisfied $\}_{e}^{m}$

$$
\begin{array}{lll}
y_{i}=1 & \text { if } & x_{i}=T \\
0 & \text { if } & x_{i}=F
\end{array}
$$

$$
\left\{\begin{array}{c}
h^{2} \\
b_{n} \\
z+y
\end{array}\right.
$$

$$
\begin{aligned}
& \frac{\text { LLP }}{\angle P} \quad \operatorname{man} \sum_{j} z_{j} \\
& P_{j}=\text { vaviable thet } \\
& \begin{array}{l}
\text { acou in } c_{i} \\
\text { without neg }
\end{array} \\
& \text { without ney }
\end{aligned}
$$

$$
\begin{aligned}
& y_{i} \in\{0,1\} \\
& 0 \leqslant y_{i} \leqslant 1 . \quad \forall i \in(n)
\end{aligned}
$$

Ala

Ala

1) Solve SAT-LP. Let $3^{+} y^{\sigma}$ be the opT sad
2) Rand $3^{\circ} 4 y^{\alpha}$ total
\longrightarrow set $x_{i}=T$ with probabil y_{i}^{*} $=F$ with probabi: $1-y_{i}^{*}$

$$
\begin{aligned}
& \mathrm{Pr} \text { [Clause } c_{j} \text { is unsatisfied.] }
\end{aligned}
$$

$$
\begin{aligned}
& =\left\{\frac{1}{l_{r}}\left\{\left|P_{j}\right|-\sum_{i \in \beta_{j}} y_{i}^{\alpha}+\sum_{i \in N)} y_{i}^{\alpha}\right\}\right\}^{l_{j}} \\
& =\left\{\frac{1}{l_{j}}\left\{\underline{\left|P_{i}\right|}-\sum_{i \in P_{j}} y_{i}^{*}+\left|N_{j}\right|-\sum_{i \in N_{j}}\left(1-y_{i}^{0}\right)\right\}\right\}_{n}^{P^{i}}
\end{aligned}
$$

$$
\begin{aligned}
& \left(x_{1}\right) \text { ters - IENS •Jj } \\
& =\left\{\frac{1}{l_{i}}\left\{l_{j}-\left(\sum_{i \in p_{j}} y_{i}^{*}+\sum_{i \in N_{j}}\left(1-\psi_{i}^{*}\right)\right)\right\}\right\}^{l_{i}} \\
& \leqslant\left\{\frac{1}{l_{i}}\left(l_{j}-z_{j}^{*}\right)\right\}^{l_{j}} \\
& =\left(1-\frac{3_{j}^{4}}{l_{j}}\right)^{l_{j}} \\
& \operatorname{Pl}\left[c_{j} \text { is satrfied }\right]=\left(1-\left(1-\frac{3_{j}^{A}}{l_{j}}\right)^{l_{j}}\right)
\end{aligned}
$$

E[\# claveses sali<fiod]

$E[\# C$ lases satified $]$

$$
\begin{aligned}
\geqslant & \sum_{j} b \cdot 3_{j}^{\alpha} \\
= & b=\max _{j}\left(1-\left(1-x_{i}\right)^{\frac{j}{j}}\right) \\
\geqslant & =\frac{\sum_{j} 3_{j}^{\alpha}}{O P T}
\end{aligned} \quad\left\{1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}}\right\}
$$

$A_{1}=$ solution corvespondirg to unbiased randirg
$A_{2}=$ solution va biased

$$
\begin{aligned}
& \geqslant \mathbb{E}\left[\frac{1}{2} \cdot \# \text { clayes sotssiod }+\frac{1}{2} \# \text { claw }_{b_{4}} A\right.
\end{aligned}
$$

$$
E[\text { claces sut stiel }] \geqslant 3 / 4 \cdot \int_{j} 3_{j}^{+}
$$

$$
\begin{aligned}
& \geqslant \frac{1}{2}\left\{\sum_{j} j_{j}^{d}\left(1-2^{-l_{j}}\right)+\sum 3_{j}^{d} \cdot\left(1-\left(1-x_{i}\right)^{l_{j}}\right)\right\} \\
& =\sum_{j} 3_{j}^{*} \cdot\left\{\frac{\left(1-2^{l_{j}}\right)+\left(1-\left(1-\frac{1}{i}\right)^{l_{i}}\right.}{2}\right) \\
& f(1)=\frac{1 / 2+1}{2}=3 / 4 \\
& f(2)=\frac{3 / 4+3 / 4}{2}=3 / 4 \\
& f(3)=\frac{7 / 8+\geqslant(1-1 / e)}{2} \geqslant 3 / 4
\end{aligned}
$$

$$
\geqslant 3 / 4.0 \mathrm{PT}
$$

SET-CovEP Given:-ri) Set U $e_{1}, e_{2} \ldots, e_{n}$ elemm
2)Sets $s_{1}, s_{2} \cdots s_{m} s_{i} \leqslant U$
3) weights ω_{i} for setsi

Goal: Chobie $T=\left\{s_{i_{i}} S_{L_{2}} \ldots, s_{i_{17}}\right\}$

$$
\text { S.t. } \quad \bigcup_{S \in T} S=U
$$

$\&$ minimize $\sum_{s \in T} \omega_{s}$.
setconer
-ILP

$$
x_{S}=1 \text { if set } S \in T
$$

SET-CONER
LP

$$
\begin{aligned}
& \sum_{s} x_{s} \cdot w_{s} \\
& \sum_{s: ~} x_{s} \geqslant 1 \quad \forall e \in U \\
& x_{s} \in\{0,1\} \\
& 0 \leq x_{s} \leqslant 1
\end{aligned}
$$

ALG

ALG

$$
0 \leq x_{s} \leq 1
$$

1) Solve SET-cover LP. Ret $\chi^{\text {at }}$ be the ${ }_{n}$ Depealedels for t iteration optimum sol
2) Round x^{*}.
3) Select set sew us w. P af all $x_{\text {iteration }}^{0}$

$$
\mathbb{E}\left[\begin{array}{l}
\text { cos tor } g \text { the sol } n]
\end{array} \sum_{s} w_{s} \cdot u_{s}^{\sigma}\right.
$$

Pick an element e.

$$
\begin{aligned}
& \operatorname{Pe}[e \text { is not covered }] \\
& =\left(\prod_{s: e \in s}\left(1-\eta_{s}^{\prime}\right)^{k}\right)^{k}\{s \mid e \in s\}=k \\
& \quad \leqslant\left(\frac{1}{k} \sum_{s e c s}\left(1-n_{s}^{\gamma}\right)\right)^{k} \quad(G M \leqslant A m) \\
& =\left(1-\sum_{s: \operatorname{ees}} \frac{n_{s}^{d}}{k}\right)^{k} \\
& \quad \leqslant\left(1-\frac{1}{k}\right)^{k} \leqslant(1 / e)^{t}=\frac{1}{e^{t}}
\end{aligned}
$$

$\operatorname{Pr}[\exists e \in U$ that is not coveved $]$
$\leqslant \sum_{e \in U} \operatorname{Pr}[e$ is not conveded $] / \operatorname{lin}_{\text {boun }}$

$$
\leqslant \frac{n}{e^{t}}
$$

Approrimation fucto = E. OPT
Algorith ashald be succesfal with probacilin $r \varepsilon \Rightarrow$

$$
\frac{n}{e^{t}} \leq \varepsilon \Rightarrow t \in o\left(\lg ^{\prime \prime} t\right)
$$

Appuximation fur $=0\left(\lg \frac{v}{\varepsilon}\right)$
More onlR 4 TSP?

