NP-completeness
Categorije problems \rightarrow Tractalele
${ }^{\rightarrow}$ decision-problems
ANSLUER: "YES"" "NO"
max-flow: $\rightarrow \exists f$ of cupacity F ?
min-cut $\rightarrow 3$ cut S of sile k ?
$P=\{$ Set of problems solvalle in polynomial time?
ey:-D $\max _{\text {puths ef }}$ flow, min-ut, that to puths et..
$N P=\{$ set of problens "veritiable" in Polynomial time?
I polynomial size proof/certisicate \& a polynomial time-dgorithm to vevify the solutions t "TES" instance.
CNF-SAT.

CNF-SAT.
Given :-D 1 set of vaviables $x_{1}, x_{2}, \cdots, x_{n}$ 2) Set of clauses $c_{1}, c_{2}, \cdots, c_{m}$.

$$
c_{3}=\left(x_{i_{1}} \vee 7 x_{i_{2}} \cup x_{3} \vee \ldots\right)
$$

C_{i} is satisfied if

$$
n_{i_{1}}=T \text {, or } x_{i_{2}}=F \text { or } \cdot \cdot
$$

Question:- \exists Assignment to the 1 variables such that all douses are satisfied.
Non-det euministic Alg

1) Guess $\left.\begin{array}{l}u_{1}=T \text { or } F \\ x_{2}: \text { Tor } F \\ x_{n}: T \text { or } F\end{array}\right\} \begin{aligned} & \text { poly-sise } \\ & \text { proof }\end{aligned}$

$$
P=N P ?
$$

Reductions: Reduction l is a mapping from instances of decision problem A to instances of decision problem B st.

$$
A(I)=" Y E S^{\prime \prime} \Leftrightarrow B(R(I))=" Y E S^{\prime}
$$

Poly-time Reductions (Earp Reductions)
A poly-time AlG that maps any instore I of A to I^{\prime} of B, s.r

$$
\begin{aligned}
A(I)= & " Y E S^{\prime \prime} \Leftrightarrow B\left(I^{\prime}\right)={ }^{\prime}+E S^{\prime} \\
& A \leqslant p B
\end{aligned}
$$

Claim: of if 3 poly-time alg for B, then 3 pols-time alg for A.

$R=$ polytime dy

$$
\left|I^{\prime}\right| \equiv \operatorname{Poly}(|I|)
$$

$$
\begin{aligned}
= & \left.P_{o l} l| | I \mid\right)+P_{d y}\left(\left|I^{\prime}\right|\right) \\
= & P_{0} l y(|I|)+P_{0} l y\left(P_{\Delta} \mid y(I)\right) \\
A \leqslant P B & \in P_{\Delta} l y(|I|)
\end{aligned}
$$

Nfhard: \rightarrow Rroblem π is $N P$ hard if \forall problem $A \in N P, \quad A \leqslant p \pi$

NP-complete:- problem A is $N P$-complete

1) $A \in N P$
2) A is NP-hard.

Thm: \rightarrow cook-hevin Thm CNF-SAT is NP-complete.

$$
\begin{aligned}
& \text { CNF-SAT } \leqslant p \text { Hamillon. } \leqslant_{p} 1+P \\
& \text { cychs } \leq T S P
\end{aligned}
$$

K-clique: :-b

Given:-D 1) Undivected Graph $G=(V, E)$
2) intege $K \in V_{1}$

Question:-D \exists clique of size k in G.

$$
C N F-S A T \leqslant P S-S A T
$$

Thm:-p K-claqu is nP-complete $\| k-\operatorname{lin} \in N P$ (obvious)
2) 3-SNT $\leqslant p$ K-dique

We need a poly-time alg that maps everve instave I of 3-SAT io $I^{\prime} g$ k clime

$$
\begin{aligned}
c_{1} & =x_{1} v 7 x_{2} v u_{2} \\
c_{2} & =u_{2} v x_{3} v x_{4}
\end{aligned}
$$

I is satisfiable $\Longleftrightarrow \quad$ I' has a cliqu of sise m.
$\Rightarrow I$ is sotisfiable.
For each clavse $\left(v\right.$. pick a literal $l_{i \in} l_{r}$ that Solisfies $(v$

$$
G\left[l_{1} \cup l_{2} \cup \ldots \cup l_{m}, E\right]=\text { cliqu }
$$

E I' has a climulaf sibe m
\Rightarrow C has one vertex from each Clacse set ${ }^{-}$
\Rightarrow suy le is chosen form (vinC Sut le to appropriate value to sotists Cr

IS: Given:-D Und. Graph $G:(V, E)$ intege $k \in[|U|]$
Question: $\rightarrow \exists \frac{I S}{L}$ of sise k

$$
\begin{array}{r}
S \underline{v} v \quad \text { s.t } \forall u, v \in S \\
(u, v) \notin E
\end{array}
$$

Thm: IS is NP-complete.

1) IS $\in N P$ (ohvious)
2) $k-c$ lique $\leqslant P$ IS

$$
\begin{aligned}
& I \text { of } K \text {-cline } \Longleftrightarrow \frac{I^{\prime}}{G} \text { of Is } \\
& (G, E) \underline{K}, k
\end{aligned}
$$

Hamiltonian-Gychs:-1
Given:-p 1) Directed Graph $G=(v, E)$
2) \exists cycle $($ in G that visits each pout exactly once

Thm:-0 HC is no-complute

1) $H C \in N P$
2) $3 S A T \leqslant p H$

$$
\begin{aligned}
& \left(n_{1}^{e}, n_{2}, \ldots, u_{n}\right)=\text { vaviall } \\
& \left(c_{1}, c_{2}, \ldots, l_{m}\right)=\text { clans }
\end{aligned}
$$

Clawse-gadats

$$
\begin{aligned}
& C_{r} \rightarrow V_{i, 3 r} \\
& \left.\begin{array}{l}
v_{i, 3 r} \\
v_{i, 3 r+1} \rightarrow C_{2}
\end{array}\right\} \text { if } \mathrm{Tx}_{\text {in }} \mathrm{C}_{2} \text { occurs }
\end{aligned}
$$

I has a satifyng assignmant $\Leftrightarrow$$I^{\prime}$ has a
\Rightarrow Straight forward.
E Let C be a HC in I'
if C enteres C_{0} throy $v_{i, 3 v}$ thm it must leare c_{2} to $v_{i, 3 v+1}$ 4 synuetres

