\[\text{NP-completeness} \]

Categorize problems \[\rightarrow \text{non-tractable} \]

\[\rightarrow \text{decision-problems} \]

\[\text{ANSWER: "YES" "NO"} \]

\[\text{max-flow} \rightarrow \exists f \text{ of capacity } F? \]

\[\text{min-cut} \rightarrow \exists \text{ cut } S \text{ of size } k? \]

\[P = \{ \text{set of problems solvable in polynomial time}\} \]

\[\text{eg: max-flow, min-cut, shortest paths etc} \ldots \]

\[\text{NP} = \{ \text{set of problems "verifiable" in polynomial time}\} \]

\[\exists \text{ polynomial size proof/certificate } \]

\[\text{a polynomial time algorithm to verify the solutions to "YES" instances.} \]

\[\text{CNF-SAT.} \]
CNF-SAT.

Given:
1. A set of variables x_1, x_2, \ldots, x_n
2. A set of clauses C_1, C_2, \ldots, C_m.

$$C_i = \left(\overline{x_{i_1}} \lor x_{i_2} \lor \overline{x_{i_3}} \lor \ldots \right)$$

C_i is satisfied if
- $x_{i_1} = T$, or $x_{i_2} = F$ or \ldots

Question: Does there exist an assignment to the variables such that all clauses are satisfied?

Non-deterministic Alg

1. **Guess** $x_1 = T$ or F
 - $x_2 = T$ or F
 - $x_n = T$ or F

Verification Alg

2. For each clause C_i, check whether C_i is satisfied or not.
 - If satisfied, output YES
 - If not, output NO

$P \subseteq \text{NP}$

$p = \text{NP} \cap \text{co-NP}$
Reductions: Reduction R is a mapping from instances of decision problem A to instances of decision problem B s.t.

$A(I) = \text{"YES"} \iff B(R(I)) = \text{"YES"}$

Poly-time Reductions (Karp Reductions)

A poly-time ALG that maps any instance I of A to I' of B, s.t.

$A(I) = \text{"YES"} \iff B(I') = \text{"YES"}$

$A \leq_{P} B$

Claim: If I poly-time alg for B, then I poly-time alg for A.

R: poly-time alg

$|I'| = \text{Poly}(|I|)$

Running time: $\text{Running time } (R) + \text{Running time } (ALG_{B})$
\[A \leq_p B \]

NP-hard: Problem \(T \) is NP-hard if every problem \(A \in \text{NP} \), \(A \leq_p T \)

NP-complete: Problem \(A \) is NP-complete

1. \(A \in \text{NP} \)
2. \(A \) is NP-hard.

Thm: Cook-Levin Thm

CNF-SAT is NP-complete

\[
\text{CNF-SAT} \leq_p \text{1-CLIQUE} \leq_p \text{TSP}
\]

\[
\text{CNF-SAT} \leq_p \text{Hamiltonian} \leq_p \text{TSP}
\]
Given: 1) Undirected Graph \(G = (V,E) \)
2) Integer \(k \in V \)

Question: Does a clique of size \(k \) exist in \(G \).

CNF-SAT \(\leq_p \) 3-SAT

Thm: \(k \)-clique is \(\text{NP-complete} \)

1) clique \(\in \text{NP} \) (obvious)
2) 3-SAT \(\leq_p \) \(k \)-clique

We need a poly-time alg that maps every instance \(I \) of 3-SAT to \(I' \) of \(k \)-clique.

\[C_1 = x_1 \vee \neg x_2 \vee x_3 \]
\[C_2 = \neg x_2 \vee x_3 \vee x_4 \]

\(I \) is satisfiable \(\rightarrow \) \(I' \) has a clique of size \(k \).
⇒ I is satisfiable.
For each clause \(C_r \), pick a literal \(l \in l_r \) that satisfies \(C_r \)

\[G[l_1, \ldots, l_{km}, E] \models \text{clique} \]

∈
I' has a clique of size m
⇒ \(C \) has one vertex from each clause set.
⇒ Say \(l \) is chosen from \(C \) in
Set \(l \) to appropriate value to satisfy \(C_r \)

\[IS: \text{GIVEN:}\quad \text{Und. Graph } G = (V,E) \]
\[\text{integer } k \in [m] \]

\[\text{Question:} \quad \exists IS \text{ of size } k \]
\[S \subseteq V \text{ s.t } A VS \cup \nu \subseteq (V,V) \& E \]

\[\text{Thm: } IS \text{ is NP-complete} \cdot \]
1) \(IS \in \text{NP} \text{ (obvious)} \)
2) \(k\text{-clique} \leq_\text{P} IS \)
I of k-clique \Rightarrow I' of IS

$$(G, E) \quad \leq \quad \overline{G} \quad \leq \quad k$$

Hamiltonian Cycles:

Given:
1) Directed Graph $G = (V, E)$
2) Exists cycle C in G that visits each part exactly once

Thm: HC is NP-complete

1) $HC \in$ NP
2) 3SAT $\leq_p HC$

$(\eta_1, \eta_2, \ldots, \eta_n) =$ variable
$(c_1, c_2, \ldots, c_m) =$ clause

Variable gadgets

$$V = (\eta_1, \eta_2, \ldots, \eta_n)$$
Clause-gadgets

\[V_{i, j, x} \rightarrow c_v \] if \(x \) occurs in \(c_v \).

\[c_v \rightarrow V_{i, j, x+1} \] if \(x \) occurs in \(c_v \).

\[c_v \rightarrow V_{j, x} \]

\[V_{j, x+1} \rightarrow c_v \] if \(x \) occurs in \(c_v \).

\[I \text{ has a satisfying assignment} \implies I' \text{ has a} \]

\[HC \]

\[\implies \text{straightforward.} \]

\[\Leftarrow \text{let } c \text{ be a } HC \text{ in } I' \]

\[\text{if } c \text{ enters } c_v \text{ then } V_{i, j, x} \text{ then it must leave } c_v \text{ to } V_{j, x+1} \]

\[\text{Symmetry.} \]