CS 473, Spring 2023
 Homework 9 (due Apr 19 Wed 9pm)

Instructions: As in Homework 1.

Problem 9.1: Prove that the following problem"JIGSAW-PuZZLE" is NP-complete:
Input: a set P of n polygons where all vertices have integer coordinates and all edges are horizontal or vertical, and $M, N \leq 100 n$.
Output: yes iff there exists a placement of the n polygons so that they do not overlap and their union is exactly the $M \times N$ rectangle.

For simplicity, you may assume that we are only allowed to place each polygon by translation only, but not rotation (not even reflection).
(Hint: Reduce from Hamiltonian-Path (a variant of the Hamiltonian-Cycle), which you may assume is NP-complete. Pieces that look like the following may help. . .)

Problem 9.2: We are given a transportation network in the form of an undirected graph $G=$ (V, E). There are k factories each of which want to open two sites that are connected in G. In particular, factory i wants to open two given sites s_{i} and t_{i} in G (sites will be installed at the vertices of G) that are connected by some path P_{i} in G. Unfortunately, the roads in G are so narrow that they can support transportation service (say one truck) from only one factory at a time, i.e., we do not allow P_{i} and P_{j} to share vertices for any two distinct $i, j \in\{1, \ldots, k\}$. Prove that given G and $s_{1}, t_{1}, \ldots, s_{k}, t_{k}$, deciding whether there exists a feasible site installation (i.e., whether there exist paths P_{1}, \ldots, P_{k} satisfying the aforementioned constraints) is NP-complete.
(Hint: reduce from 3 SAT. For each variable x_{i}, create a new $\left(s_{i}, t_{i}\right)$ pair and connect them by 2 non-intersecting long paths-call this the "variable gadget". For each clause C_{j}, create a new $\left(s_{j}, t_{j}\right)$ pair, and try to connect them with 3 paths, using vertices from the variable gadgets...)

Problem 9.3: We want to divide a set of indivisible items $S=\{1,2, \ldots, m\}$ among two agents 1 and 2. Each agent $i \in\{1,2\}$ has a utility of $u_{i j}$ (a positive integer) for item j. Given
an allocation $X=\left\langle X_{1}, X_{2}\right\rangle$ of S among the agents (i.e., S is the disjoint union of X_{1} and X_{2}), we say that agent i envies agent j if and only if i prefers j 's bundle to her own, i.e., $\sum_{k \in X_{j}} u_{j k}>\sum_{k \in X_{i}} u_{i k}$. We call an allocation envy-free if no agent envies another. Prove that
(a) deciding whether an envy-free allocation exists is NP-complete;
(b) given an integer r, deciding whether there exists an allocation $X=\left\langle X_{1}, X_{2}\right\rangle$ such that $\left(\sum_{k \in X_{1}} u_{1 k}\right) \cdot\left(\sum_{k \in X_{2}} u_{2 k}\right)=r$ is NP-complete.
(Hint: Reduce from the Partition Problem.)

